Skip to main content
Erschienen in: Journal of Thrombosis and Thrombolysis 2/2018

02.06.2018

Experimental hypercoagulable state induced by tissue factor expression in monocyte-derived dendritic cells and its modulation by C1 inhibitor

verfasst von: Shogo Kasuda, Yoshihiko Sakurai, Kohei Tatsumi, Tomohiro Takeda, Risa Kudo, Katsuya Yuui, Katsuhiko Hatake

Erschienen in: Journal of Thrombosis and Thrombolysis | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

The crosstalk between immune and coagulation systems plays pivotal roles in host defense, which may involve monocyte-derived dendritic cells (moDCs). Our objectives were to elucidate the role of moDCs in coagulation under inflammatory conditions and the involvement of the complement system. We assessed the effects of lipopolysaccharide (LPS)-stimulated moDCs on coagulation using whole blood thromboelastometry in the presence of complement inhibitors. The sum of clotting time and clot formation time (CT plus CFT) in whole blood thromboelastometry was significantly more reduced in the presence of moDCs than in the absence of monocytes or moDCs and in the presence of monocytes, indicating a more potent coagulability of moDCs. The mRNA expression of coagulation-related proteins in moDCs was analyzed by quantitative PCR, which showed an increase only in the mRNA levels of tissue factor (TF). TF protein expression was assessed by western blot analysis and an activity assay, revealing higher TF expression in moDCs than that in monocytes. The in vitro moDC-associated hypercoagulable state was suppressed by a TF-neutralizing antibody, whereas LPS enhanced the in vitro hypercoagulation further. C1 inhibitor suppressed the in vitro LPS-enhanced whole blood hypercoagulability in the presence of moDCs and the increased TF expression in moDCs. These results suggest a significant role of moDCs and the complement system through TF expression in a hypercoagulable state under inflammatory conditions and demonstrate the suppressive effects of C1 inhibitor on moDC-associated hypercoagulation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Alcock J, Brainard AH (2008) Hemostatic containment—an evolutionary hypothesis of injury by innate immune cells. Med Hypotheses 71:960–968CrossRefPubMed Alcock J, Brainard AH (2008) Hemostatic containment—an evolutionary hypothesis of injury by innate immune cells. Med Hypotheses 71:960–968CrossRefPubMed
3.
Zurück zum Zitat Engelmann B, Massberg S (2013) Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 13:34–45CrossRefPubMed Engelmann B, Massberg S (2013) Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 13:34–45CrossRefPubMed
4.
Zurück zum Zitat Segura E, Amigorena S (2013) Inflammatory dendritic cells in mice and humans. Trends Immunol 34:440–445CrossRefPubMed Segura E, Amigorena S (2013) Inflammatory dendritic cells in mice and humans. Trends Immunol 34:440–445CrossRefPubMed
5.
Zurück zum Zitat Qu C, Brinck-Jensen NS, Zang M, Chen K (2014) Monocyte-derived dendritic cells: targets as potent antigen-presenting cells for the design of vaccines against infectious diseases. Int J Infect Dis 19:1–5CrossRefPubMed Qu C, Brinck-Jensen NS, Zang M, Chen K (2014) Monocyte-derived dendritic cells: targets as potent antigen-presenting cells for the design of vaccines against infectious diseases. Int J Infect Dis 19:1–5CrossRefPubMed
6.
Zurück zum Zitat Puck A, Aigner R, Modak M, Cejka P, Blaas D, Stockl J (2015) Expression and regulation of Schlafen (SLFN) family members in primary human monocytes, monocyte-derived dendritic cells and T cells. Results Immunol 5:23–32CrossRefPubMedPubMedCentral Puck A, Aigner R, Modak M, Cejka P, Blaas D, Stockl J (2015) Expression and regulation of Schlafen (SLFN) family members in primary human monocytes, monocyte-derived dendritic cells and T cells. Results Immunol 5:23–32CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Fan X, Liu Z, Jin H, Yan J, Liang HP (2015) Alterations of dendritic cells in sepsis: featured role in immunoparalysis. Biomed Res Int 2015:903720 Fan X, Liu Z, Jin H, Yan J, Liang HP (2015) Alterations of dendritic cells in sepsis: featured role in immunoparalysis. Biomed Res Int 2015:903720
8.
Zurück zum Zitat Boyette LB, Macedo C, Hadi K, Elinoff BD, Walters JT, Ramaswami B, Chalasani G, Taboas JM, Lakkis FG, Metes DM (2017) Phenotype, function, and differentiation potential of human monocyte subsets. PLoS ONE 12:e0176460CrossRefPubMedPubMedCentral Boyette LB, Macedo C, Hadi K, Elinoff BD, Walters JT, Ramaswami B, Chalasani G, Taboas JM, Lakkis FG, Metes DM (2017) Phenotype, function, and differentiation potential of human monocyte subsets. PLoS ONE 12:e0176460CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Landsem A, Nielsen EW, Fure H, Christiansen D, Ludviksen JK, Lambris JD, Osterud B, Mollnes TE, Brekke OL (2013) C1-inhibitor efficiently inhibits Escherichia coli-induced tissue factor mRNA up-regulation, monocyte tissue factor expression and coagulation activation in human whole blood. Clin Exp Immunol 173:217–229CrossRefPubMedPubMedCentral Landsem A, Nielsen EW, Fure H, Christiansen D, Ludviksen JK, Lambris JD, Osterud B, Mollnes TE, Brekke OL (2013) C1-inhibitor efficiently inhibits Escherichia coli-induced tissue factor mRNA up-regulation, monocyte tissue factor expression and coagulation activation in human whole blood. Clin Exp Immunol 173:217–229CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Hoffman M, Monroe 3rd DM (2001) A cell-based model of hemostasis. Thromb Haemost 85:958–965CrossRefPubMed Hoffman M, Monroe 3rd DM (2001) A cell-based model of hemostasis. Thromb Haemost 85:958–965CrossRefPubMed
11.
Zurück zum Zitat Posch W, Lass-Florl C, Wilflingseder D (2016) Generation of human monocyte-derived dendritic cells from whole blood. J Vis Exp 118:1–7 Posch W, Lass-Florl C, Wilflingseder D (2016) Generation of human monocyte-derived dendritic cells from whole blood. J Vis Exp 118:1–7
12.
Zurück zum Zitat Kozek-Langenecker S (2007) Monitoring of hemostasis in emergency medicine. In: Vincent JL (ed) Intensive Care Medicine. Springer, Berlin, pp 847–860 Kozek-Langenecker S (2007) Monitoring of hemostasis in emergency medicine. In: Vincent JL (ed) Intensive Care Medicine. Springer, Berlin, pp 847–860
13.
Zurück zum Zitat Sheehy TW, Eichelberger JW (1958) Alimentary lipemia and the coagulability of blood: analysis by thrombelastography and silicone clotting time. Circulation 17:927–935CrossRefPubMed Sheehy TW, Eichelberger JW (1958) Alimentary lipemia and the coagulability of blood: analysis by thrombelastography and silicone clotting time. Circulation 17:927–935CrossRefPubMed
14.
Zurück zum Zitat Serradimigni A, Audier BM (1960) The variations in the ratio (am/r plus k) of the thromboelastogram during treatment with anticoagulants. Arch Mal Coeur Vaiss 53:796–801PubMed Serradimigni A, Audier BM (1960) The variations in the ratio (am/r plus k) of the thromboelastogram during treatment with anticoagulants. Arch Mal Coeur Vaiss 53:796–801PubMed
15.
Zurück zum Zitat Senzolo M, Agarwal S, Zappoli P, Vibhakorn S, Mallett S, Burroughs AK (2009) Heparin-like effect contributes to the coagulopathy in patients with acute liver failure undergoing liver transplantation. Liver Int 29:754–759CrossRefPubMedPubMedCentral Senzolo M, Agarwal S, Zappoli P, Vibhakorn S, Mallett S, Burroughs AK (2009) Heparin-like effect contributes to the coagulopathy in patients with acute liver failure undergoing liver transplantation. Liver Int 29:754–759CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Spiel AO, Mayr FB, Firbas C, Quehenberger P, Jilma B (2006) Validation of rotation thrombelastography in a model of systemic activation of fibrinolysis and coagulation in humans. J Thromb Haemost 4:411–416CrossRefPubMed Spiel AO, Mayr FB, Firbas C, Quehenberger P, Jilma B (2006) Validation of rotation thrombelastography in a model of systemic activation of fibrinolysis and coagulation in humans. J Thromb Haemost 4:411–416CrossRefPubMed
17.
Zurück zum Zitat Watanabe T, Yasuda M, Yamamoto T (1999) Angiogenesis induced by tissue factor in vitro and in vivo. Thromb Res 96:183–189CrossRefPubMed Watanabe T, Yasuda M, Yamamoto T (1999) Angiogenesis induced by tissue factor in vitro and in vivo. Thromb Res 96:183–189CrossRefPubMed
18.
Zurück zum Zitat Landsem A, Fure H, Mollnes TE, Nielsen EW, Brekke OL (2016) C1-inhibitor efficiently delays clot development in normal human whole blood and inhibits Escherichia coli-induced coagulation measured by thromboelastometry. Thromb Res 143:63–70CrossRefPubMed Landsem A, Fure H, Mollnes TE, Nielsen EW, Brekke OL (2016) C1-inhibitor efficiently delays clot development in normal human whole blood and inhibits Escherichia coli-induced coagulation measured by thromboelastometry. Thromb Res 143:63–70CrossRefPubMed
19.
Zurück zum Zitat Kasuda S, Tatsumi K, Sakurai Y, Kato J, Taminishi S, Takeda T, Ohashi K, Okano T, Hatake K, Shima M (2011) Expression of coagulation factors from murine induced pluripotent stem cell-derived liver cells. Blood Coagul Fibrinolysis 22:271–279CrossRefPubMed Kasuda S, Tatsumi K, Sakurai Y, Kato J, Taminishi S, Takeda T, Ohashi K, Okano T, Hatake K, Shima M (2011) Expression of coagulation factors from murine induced pluripotent stem cell-derived liver cells. Blood Coagul Fibrinolysis 22:271–279CrossRefPubMed
20.
Zurück zum Zitat Kasuda S, Sakurai Y, Tatsumi K, Kato J, Takeda T, Shima M, K H (2014) Sequential gene expression analysis of coagulation factors and protease activated receptors in hematopoietic lineage development. Curr Angiogenesis 3:139–143CrossRef Kasuda S, Sakurai Y, Tatsumi K, Kato J, Takeda T, Shima M, K H (2014) Sequential gene expression analysis of coagulation factors and protease activated receptors in hematopoietic lineage development. Curr Angiogenesis 3:139–143CrossRef
21.
Zurück zum Zitat Tatsumi K, Ohashi K, Taminishi S, Okano T, Yoshioka A, Shima M (2008) Reference gene selection for real-time RT-PCR in regenerating mouse livers. Biochem Biophys Res Commun 374:106–110CrossRefPubMed Tatsumi K, Ohashi K, Taminishi S, Okano T, Yoshioka A, Shima M (2008) Reference gene selection for real-time RT-PCR in regenerating mouse livers. Biochem Biophys Res Commun 374:106–110CrossRefPubMed
22.
Zurück zum Zitat Rydbirk R, Folke J, Winge K, Aznar S, Pakkenberg B, Brudek T (2016) Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases. Sci Rep 6:37116CrossRefPubMedPubMedCentral Rydbirk R, Folke J, Winge K, Aznar S, Pakkenberg B, Brudek T (2016) Assessment of brain reference genes for RT-qPCR studies in neurodegenerative diseases. Sci Rep 6:37116CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Monroe DM, Hoffman M, Roberts HR (1996) Transmission of a procoagulant signal from tissue factor-bearing cell to platelets. Blood Coagul Fibrinolysis 7:459–464CrossRefPubMed Monroe DM, Hoffman M, Roberts HR (1996) Transmission of a procoagulant signal from tissue factor-bearing cell to platelets. Blood Coagul Fibrinolysis 7:459–464CrossRefPubMed
24.
Zurück zum Zitat Ma L, Dorling A (2012) The roles of thrombin and protease-activated receptors in inflammation. Semin Immunopathol 34:63–72CrossRefPubMed Ma L, Dorling A (2012) The roles of thrombin and protease-activated receptors in inflammation. Semin Immunopathol 34:63–72CrossRefPubMed
25.
Zurück zum Zitat Johansson U, Lawson C, Dabare M, Syndercombe-Court D, Newland AC, Howells GL, Macey MG (2005) Human peripheral blood monocytes express protease receptor-2 and respond to receptor activation by production of IL-6, IL-8, and IL-1b. J Leukoc Biol 78:967–975CrossRefPubMed Johansson U, Lawson C, Dabare M, Syndercombe-Court D, Newland AC, Howells GL, Macey MG (2005) Human peripheral blood monocytes express protease receptor-2 and respond to receptor activation by production of IL-6, IL-8, and IL-1b. J Leukoc Biol 78:967–975CrossRefPubMed
26.
Zurück zum Zitat Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V (2016) Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 274:307–329CrossRefPubMed Roumenina LT, Rayes J, Frimat M, Fremeaux-Bacchi V (2016) Endothelial cells: source, barrier, and target of defensive mediators. Immunol Rev 274:307–329CrossRefPubMed
27.
Zurück zum Zitat Napoleone E, Di Santo A, Bastone A, Peri G, Mantovani A, de Gaetano G, Donati MB, Lorenzet R (2002) Long pentraxin PTX3 upregulates tissue factor expression in human endothelial cells: a novel link between vascular inflammation and clotting activation. Arterioscler Thromb Vasc Biol 22:782–787CrossRefPubMed Napoleone E, Di Santo A, Bastone A, Peri G, Mantovani A, de Gaetano G, Donati MB, Lorenzet R (2002) Long pentraxin PTX3 upregulates tissue factor expression in human endothelial cells: a novel link between vascular inflammation and clotting activation. Arterioscler Thromb Vasc Biol 22:782–787CrossRefPubMed
28.
Zurück zum Zitat Napoleone E, di Santo A, Peri G, Mantovani A, de Gaetano G, Donati MB, Lorenzet R (2004) The long pentraxin PTX3 up-regulates tissue factor in activated monocytes: another link between inflammation and clotting activation. J Leukoc Biol 76:203–209CrossRefPubMed Napoleone E, di Santo A, Peri G, Mantovani A, de Gaetano G, Donati MB, Lorenzet R (2004) The long pentraxin PTX3 up-regulates tissue factor in activated monocytes: another link between inflammation and clotting activation. J Leukoc Biol 76:203–209CrossRefPubMed
29.
Zurück zum Zitat Gurbel PA, Bliden KP, Cohen E, Navickas IA, Singla A, Antonino MJ, Fissha M, Kreutz RP, Bassi AK, Tantry US (2008) Race and sex differences in thrombogenicity: risk of ischemic events following coronary stenting. Blood Coagul Fibrinol 19:268–275CrossRef Gurbel PA, Bliden KP, Cohen E, Navickas IA, Singla A, Antonino MJ, Fissha M, Kreutz RP, Bassi AK, Tantry US (2008) Race and sex differences in thrombogenicity: risk of ischemic events following coronary stenting. Blood Coagul Fibrinol 19:268–275CrossRef
Metadaten
Titel
Experimental hypercoagulable state induced by tissue factor expression in monocyte-derived dendritic cells and its modulation by C1 inhibitor
verfasst von
Shogo Kasuda
Yoshihiko Sakurai
Kohei Tatsumi
Tomohiro Takeda
Risa Kudo
Katsuya Yuui
Katsuhiko Hatake
Publikationsdatum
02.06.2018
Verlag
Springer US
Erschienen in
Journal of Thrombosis and Thrombolysis / Ausgabe 2/2018
Print ISSN: 0929-5305
Elektronische ISSN: 1573-742X
DOI
https://doi.org/10.1007/s11239-018-1688-0

Weitere Artikel der Ausgabe 2/2018

Journal of Thrombosis and Thrombolysis 2/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.