Skip to main content
Erschienen in: Heart Failure Reviews 4/2019

22.01.2019

Experimental models of cardiac physiology and pathology

verfasst von: Jae Gyun Oh, Changwon Kho, Roger J. Hajjar, Kiyotake Ishikawa

Erschienen in: Heart Failure Reviews | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Experimental models of cardiac disease play a key role in understanding the pathophysiology of the disease and developing new therapies. The features of the experimental models should reflect the clinical phenotype, which can have a wide spectrum of underlying mechanisms. We review characteristics of commonly used experimental models of cardiac physiology and pathophysiology in all translational steps including in vitro, small animal, and large animal models. Understanding their characteristics and relevance to clinical disease is the key for successful translation to effective therapies.
Literatur
2.
Zurück zum Zitat Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA (2007) Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293:H1883–H1891CrossRefPubMed Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA (2007) Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293:H1883–H1891CrossRefPubMed
3.
Zurück zum Zitat Fujiu K, Nagai R (2013) Contributions of cardiomyocyte-cardiac fibroblast-immune cell interactions in heart failure development. Basic Res Cardiol 108:357CrossRefPubMed Fujiu K, Nagai R (2013) Contributions of cardiomyocyte-cardiac fibroblast-immune cell interactions in heart failure development. Basic Res Cardiol 108:357CrossRefPubMed
5.
Zurück zum Zitat Brette F, Orchard C (2003) T-tubule function in mammalian cardiac myocytes. Circ Res 92:1182–1192CrossRefPubMed Brette F, Orchard C (2003) T-tubule function in mammalian cardiac myocytes. Circ Res 92:1182–1192CrossRefPubMed
6.
Zurück zum Zitat Chlopcikova S, Psotova J, Miketova P (2001) Neonatal rat cardiomyocytes--a model for the study of morphological, biochemical and electrophysiological characteristics of the heart. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 145:49–55CrossRefPubMed Chlopcikova S, Psotova J, Miketova P (2001) Neonatal rat cardiomyocytes--a model for the study of morphological, biochemical and electrophysiological characteristics of the heart. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 145:49–55CrossRefPubMed
7.
Zurück zum Zitat Muller-Werdan U, Klein D, Zander M, Werdan K, Hammer C (1994) Beating neonatal rat cardiomyocytes as a model to study the role of xenoreactive natural antibodies in xenotransplantation. Transplantation 58:1403–1409PubMed Muller-Werdan U, Klein D, Zander M, Werdan K, Hammer C (1994) Beating neonatal rat cardiomyocytes as a model to study the role of xenoreactive natural antibodies in xenotransplantation. Transplantation 58:1403–1409PubMed
9.
Zurück zum Zitat Djurovic S, Iversen N, Jeansson S, Hoover F, Christensen G (2004) Comparison of nonviral transfection and adeno-associated viral transduction on cardiomyocytes. Mol Biotechnol 28:21–32CrossRefPubMed Djurovic S, Iversen N, Jeansson S, Hoover F, Christensen G (2004) Comparison of nonviral transfection and adeno-associated viral transduction on cardiomyocytes. Mol Biotechnol 28:21–32CrossRefPubMed
10.
Zurück zum Zitat Frank D, Kuhn C, Brors B et al (2008) Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension 51:309–318CrossRefPubMed Frank D, Kuhn C, Brors B et al (2008) Gene expression pattern in biomechanically stretched cardiomyocytes: evidence for a stretch-specific gene program. Hypertension 51:309–318CrossRefPubMed
11.
Zurück zum Zitat Harary I, Farley B (1963) In vitro studies on single beating rat heart cells. I. Growth and organization. Exp Cell Res 29:451–465CrossRefPubMed Harary I, Farley B (1963) In vitro studies on single beating rat heart cells. I. Growth and organization. Exp Cell Res 29:451–465CrossRefPubMed
12.
Zurück zum Zitat Mohamed BA, Barakat AZ, Zimmermann WH et al (2012) Targeted disruption of Hspa4 gene leads to cardiac hypertrophy and fibrosis. J Mol Cell Cardiol 53:459–468CrossRefPubMed Mohamed BA, Barakat AZ, Zimmermann WH et al (2012) Targeted disruption of Hspa4 gene leads to cardiac hypertrophy and fibrosis. J Mol Cell Cardiol 53:459–468CrossRefPubMed
13.
Zurück zum Zitat Simpson P, McGrath A, Savion S (1982) Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circ Res 51:787–801CrossRefPubMed Simpson P, McGrath A, Savion S (1982) Myocyte hypertrophy in neonatal rat heart cultures and its regulation by serum and by catecholamines. Circ Res 51:787–801CrossRefPubMed
14.
Zurück zum Zitat Huang Q, Huang J, Zeng Z, Luo J, Liu P, Chen S, Liu B, Pan X, Zang L, Zhou S (2015) Effects of ERK1/2/PPARalpha/SCAD signal pathways on cardiomyocyte hypertrophy induced by insulin-like growth factor 1 and phenylephrine. Life Sci 124:41–49CrossRefPubMed Huang Q, Huang J, Zeng Z, Luo J, Liu P, Chen S, Liu B, Pan X, Zang L, Zhou S (2015) Effects of ERK1/2/PPARalpha/SCAD signal pathways on cardiomyocyte hypertrophy induced by insulin-like growth factor 1 and phenylephrine. Life Sci 124:41–49CrossRefPubMed
15.
Zurück zum Zitat Nakaoka M, Iwai-Kanai E, Katamura M, Okawa Y, Mita Y, Matoba S (2015) An alpha-adrenergic agonist protects hearts by inducing Akt1-mediated autophagy. Biochem Biophys Res Commun 456:250–256CrossRefPubMed Nakaoka M, Iwai-Kanai E, Katamura M, Okawa Y, Mita Y, Matoba S (2015) An alpha-adrenergic agonist protects hearts by inducing Akt1-mediated autophagy. Biochem Biophys Res Commun 456:250–256CrossRefPubMed
16.
Zurück zum Zitat Zobel C, Kassiri Z, Nguyen TT, Meng Y, Backx PH (2002) Prevention of hypertrophy by overexpression of Kv4.2 in cultured neonatal cardiomyocytes. Circulation 106:2385–2391CrossRefPubMed Zobel C, Kassiri Z, Nguyen TT, Meng Y, Backx PH (2002) Prevention of hypertrophy by overexpression of Kv4.2 in cultured neonatal cardiomyocytes. Circulation 106:2385–2391CrossRefPubMed
17.
Zurück zum Zitat Menaouar A, Florian M, Wang D, Danalache B, Jankowski M, Gutkowska J (2014) Anti-hypertrophic effects of oxytocin in rat ventricular myocytes. Int J Cardiol 175:38–49CrossRefPubMed Menaouar A, Florian M, Wang D, Danalache B, Jankowski M, Gutkowska J (2014) Anti-hypertrophic effects of oxytocin in rat ventricular myocytes. Int J Cardiol 175:38–49CrossRefPubMed
18.
Zurück zum Zitat Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423CrossRefPubMed Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423CrossRefPubMed
19.
Zurück zum Zitat Sakai S, Shimojo N, Kimura T, Tajiri K, Maruyama H, Homma S, Kuga K, Mizutani T, Aonuma K, Miyauchi T (2014) Involvement of peptidyl-prolyl isomerase Pin1 in the inhibitory effect of fluvastatin on endothelin-1-induced cardiomyocyte hypertrophy. Life Sci 102:98–104CrossRefPubMed Sakai S, Shimojo N, Kimura T, Tajiri K, Maruyama H, Homma S, Kuga K, Mizutani T, Aonuma K, Miyauchi T (2014) Involvement of peptidyl-prolyl isomerase Pin1 in the inhibitory effect of fluvastatin on endothelin-1-induced cardiomyocyte hypertrophy. Life Sci 102:98–104CrossRefPubMed
20.
Zurück zum Zitat Reid BG, Stratton MS, Bowers S et al (2016) Discovery of novel small molecule inhibitors of cardiac hypertrophy using high throughput, high content imaging. J Mol Cell Cardiol 97:106–113CrossRefPubMedPubMedCentral Reid BG, Stratton MS, Bowers S et al (2016) Discovery of novel small molecule inhibitors of cardiac hypertrophy using high throughput, high content imaging. J Mol Cell Cardiol 97:106–113CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Skwarek-Maruszewska A, Hotulainen P, Mattila PK, Lappalainen P (2009) Contractility-dependent actin dynamics in cardiomyocyte sarcomeres. J Cell Sci 122:2119–2126CrossRefPubMed Skwarek-Maruszewska A, Hotulainen P, Mattila PK, Lappalainen P (2009) Contractility-dependent actin dynamics in cardiomyocyte sarcomeres. J Cell Sci 122:2119–2126CrossRefPubMed
22.
Zurück zum Zitat Fan X, Hughes BG, Ali MA, Chan BY, Launier K, Schulz R (2016) Matrix metalloproteinase-2 in oncostatin M-induced sarcomere degeneration in cardiomyocytes. Am J Physiol Heart Circ Physiol 311:H183–H189CrossRefPubMed Fan X, Hughes BG, Ali MA, Chan BY, Launier K, Schulz R (2016) Matrix metalloproteinase-2 in oncostatin M-induced sarcomere degeneration in cardiomyocytes. Am J Physiol Heart Circ Physiol 311:H183–H189CrossRefPubMed
23.
Zurück zum Zitat Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265:3595–3598PubMed Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y (1990) Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 265:3595–3598PubMed
24.
Zurück zum Zitat Komuro I, Katoh Y, Kaida T, Shibazaki Y, Kurabayashi M, Hoh E, Takaku F, Yazaki Y (1991) Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. Possible role of protein kinase C activation. J Biol Chem 266:1265–1268PubMed Komuro I, Katoh Y, Kaida T, Shibazaki Y, Kurabayashi M, Hoh E, Takaku F, Yazaki Y (1991) Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. Possible role of protein kinase C activation. J Biol Chem 266:1265–1268PubMed
25.
Zurück zum Zitat Lin L, Tang C, Xu J et al (2014) Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II. PLoS One 9:e89629CrossRefPubMedPubMedCentral Lin L, Tang C, Xu J et al (2014) Mechanical stress triggers cardiomyocyte autophagy through angiotensin II type 1 receptor-mediated p38MAP kinase independently of angiotensin II. PLoS One 9:e89629CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Choudhary R, Baker KM, Pan J (2008) All-trans retinoic acid prevents angiotensin II- and mechanical stretch-induced reactive oxygen species generation and cardiomyocyte apoptosis. J Cell Physiol 215:172–181CrossRefPubMed Choudhary R, Baker KM, Pan J (2008) All-trans retinoic acid prevents angiotensin II- and mechanical stretch-induced reactive oxygen species generation and cardiomyocyte apoptosis. J Cell Physiol 215:172–181CrossRefPubMed
27.
Zurück zum Zitat Cheng TH, Chen JJ, Shih NL et al (2009) Mechanical stretch induces endothelial nitric oxide synthase gene expression in neonatal rat cardiomyocytes. Clin Exp Pharmacol Physiol 36:559–566CrossRefPubMed Cheng TH, Chen JJ, Shih NL et al (2009) Mechanical stretch induces endothelial nitric oxide synthase gene expression in neonatal rat cardiomyocytes. Clin Exp Pharmacol Physiol 36:559–566CrossRefPubMed
28.
Zurück zum Zitat Wang BW, Wu GJ, Cheng WP, Shyu KG (2013) Mechanical stretch via transforming growth factor-beta1 activates microRNA-208a to regulate hypertrophy in cultured rat cardiac myocytes. J Formos Med Assoc 112:635–643CrossRefPubMed Wang BW, Wu GJ, Cheng WP, Shyu KG (2013) Mechanical stretch via transforming growth factor-beta1 activates microRNA-208a to regulate hypertrophy in cultured rat cardiac myocytes. J Formos Med Assoc 112:635–643CrossRefPubMed
29.
Zurück zum Zitat Liu W, Wang X, Mei Z, Gong J, Gao X, Zhao Y, Ma J, Xie F, Qian L (2015) Chronic stress promotes the progression of pressure overload-induced cardiac dysfunction through inducing more apoptosis and fibrosis. Physiol Res 64:325–334PubMed Liu W, Wang X, Mei Z, Gong J, Gao X, Zhao Y, Ma J, Xie F, Qian L (2015) Chronic stress promotes the progression of pressure overload-induced cardiac dysfunction through inducing more apoptosis and fibrosis. Physiol Res 64:325–334PubMed
30.
Zurück zum Zitat Acosta D, Puckett M (1977) Ischemic myocardial injury in cultured heart cells: preliminary observations on morphology and beating activity. In Vitro 13:818–823CrossRefPubMed Acosta D, Puckett M (1977) Ischemic myocardial injury in cultured heart cells: preliminary observations on morphology and beating activity. In Vitro 13:818–823CrossRefPubMed
31.
Zurück zum Zitat Wang XX, Wang XL, Tong MM, Gan L, Chen H, Wu SS, Chen JX, Li RL, Wu Y, Zhang HY, Zhu Y, Li YX, He JH, Wang M, Jiang W (2016) SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3alpha-dependent antioxidant defense mechanisms. Basic Res Cardiol 111:13CrossRefPubMed Wang XX, Wang XL, Tong MM, Gan L, Chen H, Wu SS, Chen JX, Li RL, Wu Y, Zhang HY, Zhu Y, Li YX, He JH, Wang M, Jiang W (2016) SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3alpha-dependent antioxidant defense mechanisms. Basic Res Cardiol 111:13CrossRefPubMed
32.
Zurück zum Zitat Peng K, Qiu Y, Li J, Zhang ZC, Ji FH (2017) Dexmedetomidine attenuates hypoxia/reoxygenation injury in primary neonatal rat cardiomyocytes. Exp Ther Med 14:689–695CrossRefPubMedPubMedCentral Peng K, Qiu Y, Li J, Zhang ZC, Ji FH (2017) Dexmedetomidine attenuates hypoxia/reoxygenation injury in primary neonatal rat cardiomyocytes. Exp Ther Med 14:689–695CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S, Khodayari H (2016) Reactive oxygen species-mediated cardiac-reperfusion injury: mechanisms and therapies. Life Sci 165:43–55CrossRefPubMed Bagheri F, Khori V, Alizadeh AM, Khalighfard S, Khodayari S, Khodayari H (2016) Reactive oxygen species-mediated cardiac-reperfusion injury: mechanisms and therapies. Life Sci 165:43–55CrossRefPubMed
34.
Zurück zum Zitat Diaz RJ, Wilson GJ (2006) Studying ischemic preconditioning in isolated cardiomyocyte models. Cardiovasc Res 70:286–296CrossRefPubMed Diaz RJ, Wilson GJ (2006) Studying ischemic preconditioning in isolated cardiomyocyte models. Cardiovasc Res 70:286–296CrossRefPubMed
35.
Zurück zum Zitat Graham RM, Frazier DP, Thompson JW et al (2004) A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J Exp Biol 207:3189–3200CrossRefPubMed Graham RM, Frazier DP, Thompson JW et al (2004) A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J Exp Biol 207:3189–3200CrossRefPubMed
36.
Zurück zum Zitat Musters RJ, Post JA, Verkleij AJ (1991) The isolated neonatal rat-cardiomyocyte used in an in vitro model for ‘ischemia’. I. a morphological study. Biochim Biophys Acta 1091:270–277CrossRefPubMed Musters RJ, Post JA, Verkleij AJ (1991) The isolated neonatal rat-cardiomyocyte used in an in vitro model for ‘ischemia’. I. a morphological study. Biochim Biophys Acta 1091:270–277CrossRefPubMed
37.
Zurück zum Zitat Kim MY, Seo EJ, Lee DH, Kim EJ, Kim HS, Cho HY, Chung EY, Lee SH, Baik EJ, Moon CH, Jung YS (2010) Gadd45beta is a novel mediator of cardiomyocyte apoptosis induced by ischaemia/hypoxia. Cardiovasc Res 87:119–126CrossRefPubMed Kim MY, Seo EJ, Lee DH, Kim EJ, Kim HS, Cho HY, Chung EY, Lee SH, Baik EJ, Moon CH, Jung YS (2010) Gadd45beta is a novel mediator of cardiomyocyte apoptosis induced by ischaemia/hypoxia. Cardiovasc Res 87:119–126CrossRefPubMed
38.
Zurück zum Zitat Tu S, Liu ZQ, Fu JJ, Zhu WF, Luo DY, Wan FS (2012) Inhibitory effect of p53 upregulated modulator of apoptosis targeting siRNA on hypoxia/reoxygenation-induced cardiomyocyte apoptosis in rats. Cardiology 122:93–100CrossRefPubMed Tu S, Liu ZQ, Fu JJ, Zhu WF, Luo DY, Wan FS (2012) Inhibitory effect of p53 upregulated modulator of apoptosis targeting siRNA on hypoxia/reoxygenation-induced cardiomyocyte apoptosis in rats. Cardiology 122:93–100CrossRefPubMed
39.
Zurück zum Zitat Gilsbach R, Preissl S, Gruning BA et al (2014) Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 5:5288CrossRefPubMed Gilsbach R, Preissl S, Gruning BA et al (2014) Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun 5:5288CrossRefPubMed
40.
Zurück zum Zitat Dolinsky VW, Soltys CL, Rogan KJ et al (2015) Resveratrol prevents pathological but not physiological cardiac hypertrophy. J Mol Med (Berl) 93:413–425CrossRef Dolinsky VW, Soltys CL, Rogan KJ et al (2015) Resveratrol prevents pathological but not physiological cardiac hypertrophy. J Mol Med (Berl) 93:413–425CrossRef
41.
Zurück zum Zitat von Lueder TG, Wang BH, Kompa AR et al (2015) Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy. Circ Heart Fail 8:71–78CrossRef von Lueder TG, Wang BH, Kompa AR et al (2015) Angiotensin receptor neprilysin inhibitor LCZ696 attenuates cardiac remodeling and dysfunction after myocardial infarction by reducing cardiac fibrosis and hypertrophy. Circ Heart Fail 8:71–78CrossRef
42.
Zurück zum Zitat Bell RM, Mocanu MM, Yellon DM (2011) Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 50:940–950CrossRefPubMed Bell RM, Mocanu MM, Yellon DM (2011) Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 50:940–950CrossRefPubMed
43.
Zurück zum Zitat Tan T, Marin-Garcia J, Damle S, Weiss HR (2010) Hypoxia-inducible factor-1 improves inotropic responses of cardiac myocytes in ageing heart without affecting mitochondrial activity. Exp Physiol 95:712–722CrossRefPubMed Tan T, Marin-Garcia J, Damle S, Weiss HR (2010) Hypoxia-inducible factor-1 improves inotropic responses of cardiac myocytes in ageing heart without affecting mitochondrial activity. Exp Physiol 95:712–722CrossRefPubMed
44.
Zurück zum Zitat Mellor KM, Curl CL, Chandramouli C, Pedrazzini T, Wendt IR, Delbridge LM (2014) Ageing-related cardiomyocyte functional decline is sex and angiotensin II dependent. Age (Dordr) 36:9630CrossRef Mellor KM, Curl CL, Chandramouli C, Pedrazzini T, Wendt IR, Delbridge LM (2014) Ageing-related cardiomyocyte functional decline is sex and angiotensin II dependent. Age (Dordr) 36:9630CrossRef
45.
Zurück zum Zitat Wang YX, Korth M (1995) Effects of doxorubicin on excitation-contraction coupling in Guinea pig ventricular myocardium. Circ Res 76:645–653CrossRefPubMed Wang YX, Korth M (1995) Effects of doxorubicin on excitation-contraction coupling in Guinea pig ventricular myocardium. Circ Res 76:645–653CrossRefPubMed
46.
Zurück zum Zitat Oh JG, Kim J, Jang SP et al (2013) Decoy peptides targeted to protein phosphatase 1 inhibit dephosphorylation of phospholamban in cardiomyocytes. J Mol Cell Cardiol 56:63–71CrossRefPubMed Oh JG, Kim J, Jang SP et al (2013) Decoy peptides targeted to protein phosphatase 1 inhibit dephosphorylation of phospholamban in cardiomyocytes. J Mol Cell Cardiol 56:63–71CrossRefPubMed
47.
Zurück zum Zitat Zhang M, Prosser BL, Bamboye MA et al (2015) Contractile function during angiotensin-II activation: increased Nox2 activity modulates cardiac calcium handling via phospholamban phosphorylation. J Am Coll Cardiol 66:261–272CrossRefPubMedPubMedCentral Zhang M, Prosser BL, Bamboye MA et al (2015) Contractile function during angiotensin-II activation: increased Nox2 activity modulates cardiac calcium handling via phospholamban phosphorylation. J Am Coll Cardiol 66:261–272CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Toischer K, Zhu W, Hunlich M et al (2017) Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. J Clin Invest 127:4285–4296CrossRefPubMedPubMedCentral Toischer K, Zhu W, Hunlich M et al (2017) Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. J Clin Invest 127:4285–4296CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Du CK, Morimoto S, Nishii K et al (2007) Knock-in mouse model of dilated cardiomyopathy caused by troponin mutation. Circ Res 101:185–194CrossRefPubMed Du CK, Morimoto S, Nishii K et al (2007) Knock-in mouse model of dilated cardiomyopathy caused by troponin mutation. Circ Res 101:185–194CrossRefPubMed
50.
Zurück zum Zitat Inoue T, Kobirumaki-Shimozawa F, Kagemoto T, Fujii T, Terui T, Kusakari Y, Hongo K, Morimoto S, Ohtsuki I, Hashimoto K, Fukuda N (2013) Depressed Frank-Starling mechanism in the left ventricular muscle of the knock-in mouse model of dilated cardiomyopathy with troponin T deletion mutation DeltaK210. J Mol Cell Cardiol 63:69–78CrossRefPubMed Inoue T, Kobirumaki-Shimozawa F, Kagemoto T, Fujii T, Terui T, Kusakari Y, Hongo K, Morimoto S, Ohtsuki I, Hashimoto K, Fukuda N (2013) Depressed Frank-Starling mechanism in the left ventricular muscle of the knock-in mouse model of dilated cardiomyopathy with troponin T deletion mutation DeltaK210. J Mol Cell Cardiol 63:69–78CrossRefPubMed
51.
Zurück zum Zitat Hu LR, Ackermann MA, Hecker PA et al (2017) Deregulated ca(2+) cycling underlies the development of arrhythmia and heart disease due to mutant obscurin. Sci Adv 3:e1603081CrossRefPubMedPubMedCentral Hu LR, Ackermann MA, Hecker PA et al (2017) Deregulated ca(2+) cycling underlies the development of arrhythmia and heart disease due to mutant obscurin. Sci Adv 3:e1603081CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Bhargava A, Lin X, Novak P et al (2013) Super-resolution scanning patch clamp reveals clustering of functional ion channels in adult ventricular myocyte. Circ Res 112:1112–1120CrossRefPubMedPubMedCentral Bhargava A, Lin X, Novak P et al (2013) Super-resolution scanning patch clamp reveals clustering of functional ion channels in adult ventricular myocyte. Circ Res 112:1112–1120CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Gaitas A, Malhotra R, Li T, Herron T, Jalife J (2015) A device for rapid and quantitative measurement of cardiac myocyte contractility. Rev Sci Instrum 86:034302CrossRefPubMedPubMedCentral Gaitas A, Malhotra R, Li T, Herron T, Jalife J (2015) A device for rapid and quantitative measurement of cardiac myocyte contractility. Rev Sci Instrum 86:034302CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC (2008) Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295:H890–H897CrossRefPubMedPubMedCentral Moshal KS, Tipparaju SM, Vacek TP, Kumar M, Singh M, Frank IE, Patibandla PK, Tyagi N, Rai J, Metreveli N, Rodriguez WE, Tseng MT, Tyagi SC (2008) Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. Am J Physiol Heart Circ Physiol 295:H890–H897CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Cagalinec M, Waczulikova I, Ulicna O, Chorvat D Jr (2013) Morphology and contractility of cardiac myocytes in early stages of streptozotocin-induced diabetes mellitus in rats. Physiol Res 62:489–501PubMed Cagalinec M, Waczulikova I, Ulicna O, Chorvat D Jr (2013) Morphology and contractility of cardiac myocytes in early stages of streptozotocin-induced diabetes mellitus in rats. Physiol Res 62:489–501PubMed
56.
Zurück zum Zitat Kerr JP, Robison P, Shi G et al (2015) Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat Commun 6:8526CrossRefPubMed Kerr JP, Robison P, Shi G et al (2015) Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat Commun 6:8526CrossRefPubMed
57.
Zurück zum Zitat Thandapilly SJ, Louis XL, Yang T, Stringer DM, Yu L, Zhang S, Wigle J, Kardami E, Zahradka P, Taylor C, Anderson HD, Netticadan T (2011) Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating NO-AMPK pathway. Eur J Pharmacol 668:217–224CrossRefPubMed Thandapilly SJ, Louis XL, Yang T, Stringer DM, Yu L, Zhang S, Wigle J, Kardami E, Zahradka P, Taylor C, Anderson HD, Netticadan T (2011) Resveratrol prevents norepinephrine induced hypertrophy in adult rat cardiomyocytes, by activating NO-AMPK pathway. Eur J Pharmacol 668:217–224CrossRefPubMed
58.
Zurück zum Zitat Eom GH, Nam YS, Oh JG et al (2014) Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ Res 114:1133–1143CrossRefPubMed Eom GH, Nam YS, Oh JG et al (2014) Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ Res 114:1133–1143CrossRefPubMed
59.
Zurück zum Zitat Sowah D, Brown BF, Quon A, Alvarez BV, Casey JR (2014) Resistance to cardiomyocyte hypertrophy in ae3-/- mice, deficient in the AE3 Cl-/HCO3- exchanger. BMC Cardiovasc Disord 14:89CrossRefPubMedPubMedCentral Sowah D, Brown BF, Quon A, Alvarez BV, Casey JR (2014) Resistance to cardiomyocyte hypertrophy in ae3-/- mice, deficient in the AE3 Cl-/HCO3- exchanger. BMC Cardiovasc Disord 14:89CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Miller CL, Oikawa M, Cai Y et al (2009) Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res 105:956–964CrossRefPubMedPubMedCentral Miller CL, Oikawa M, Cai Y et al (2009) Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res 105:956–964CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Nam YS, Kim Y, Joung H et al (2014) Small heterodimer partner blocks cardiac hypertrophy by interfering with GATA6 signaling. Circ Res 115:493–503CrossRefPubMed Nam YS, Kim Y, Joung H et al (2014) Small heterodimer partner blocks cardiac hypertrophy by interfering with GATA6 signaling. Circ Res 115:493–503CrossRefPubMed
62.
Zurück zum Zitat Iribe G, Kohl P (2008) Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in Guinea pig ventricular myocytes: experiments and models. Prog Biophys Mol Biol 97:298–311CrossRefPubMed Iribe G, Kohl P (2008) Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in Guinea pig ventricular myocytes: experiments and models. Prog Biophys Mol Biol 97:298–311CrossRefPubMed
63.
64.
Zurück zum Zitat Marvin WJ Jr, Robinson RB, Hermsmeyer K (1979) Correlation of function and morphology of neonatal rat and embryonic chick cultured cardiac and vascular muscle cells. Circ Res 45:528–540CrossRefPubMed Marvin WJ Jr, Robinson RB, Hermsmeyer K (1979) Correlation of function and morphology of neonatal rat and embryonic chick cultured cardiac and vascular muscle cells. Circ Res 45:528–540CrossRefPubMed
65.
Zurück zum Zitat Claycomb WC, Palazzo MC (1980) Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study. Dev Biol 80:466–482CrossRefPubMed Claycomb WC, Palazzo MC (1980) Culture of the terminally differentiated adult cardiac muscle cell: a light and scanning electron microscope study. Dev Biol 80:466–482CrossRefPubMed
66.
Zurück zum Zitat Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381CrossRefPubMed Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381CrossRefPubMed
67.
Zurück zum Zitat Steinhelper ME, Lanson NA Jr, Dresdner KP et al (1990) Proliferation in vivo and in culture of differentiated adult atrial cardiomyocytes from transgenic mice. Am J Phys 259:H1826–H1834 Steinhelper ME, Lanson NA Jr, Dresdner KP et al (1990) Proliferation in vivo and in culture of differentiated adult atrial cardiomyocytes from transgenic mice. Am J Phys 259:H1826–H1834
68.
Zurück zum Zitat Delcarpio JB, Lanson NA Jr, Field LJ, Claycomb WC (1991) Morphological characterization of cardiomyocytes isolated from a transplantable cardiac tumor derived from transgenic mouse atria (AT-1 cells). Circ Res 69:1591–1600CrossRefPubMed Delcarpio JB, Lanson NA Jr, Field LJ, Claycomb WC (1991) Morphological characterization of cardiomyocytes isolated from a transplantable cardiac tumor derived from transgenic mouse atria (AT-1 cells). Circ Res 69:1591–1600CrossRefPubMed
69.
Zurück zum Zitat Jaffredo T, Chestier A, Bachnou N, Dieterlen-Lievre F (1991) MC29-immortalized clonal avian heart cell lines can partially differentiate in vitro. Exp Cell Res 192:481–491CrossRefPubMed Jaffredo T, Chestier A, Bachnou N, Dieterlen-Lievre F (1991) MC29-immortalized clonal avian heart cell lines can partially differentiate in vitro. Exp Cell Res 192:481–491CrossRefPubMed
70.
Zurück zum Zitat Claycomb WC, Lanson NA Jr, Stallworth BS et al (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95:2979–2984CrossRefPubMedPubMedCentral Claycomb WC, Lanson NA Jr, Stallworth BS et al (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95:2979–2984CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Davidson MM, Nesti C, Palenzuela L et al (2005) Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol 39:133–147CrossRefPubMed Davidson MM, Nesti C, Palenzuela L et al (2005) Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol 39:133–147CrossRefPubMed
72.
Zurück zum Zitat Menard C, Pupier S, Mornet D, Kitzmann M, Nargeot J, Lory P (1999) Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. J Biol Chem 274:29063–29070CrossRefPubMed Menard C, Pupier S, Mornet D, Kitzmann M, Nargeot J, Lory P (1999) Modulation of L-type calcium channel expression during retinoic acid-induced differentiation of H9C2 cardiac cells. J Biol Chem 274:29063–29070CrossRefPubMed
73.
Zurück zum Zitat Branco AF, Pereira SP, Gonzalez S, Gusev O, Rizvanov AA, Oliveira PJ (2015) Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS One 10:e0129303CrossRefPubMedPubMedCentral Branco AF, Pereira SP, Gonzalez S, Gusev O, Rizvanov AA, Oliveira PJ (2015) Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS One 10:e0129303CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Watkins SJ, Borthwick GM, Arthur HM (2011) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim 47:125–131CrossRefPubMed Watkins SJ, Borthwick GM, Arthur HM (2011) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim 47:125–131CrossRefPubMed
75.
Zurück zum Zitat Wang G, Tang C, Yan G, Feng B (2016) Gene expression profiling of H9c2 cells subjected to H2O2-induced apoptosis with/without AF-HF001. Biol Pharm Bull 39:207–214CrossRefPubMed Wang G, Tang C, Yan G, Feng B (2016) Gene expression profiling of H9c2 cells subjected to H2O2-induced apoptosis with/without AF-HF001. Biol Pharm Bull 39:207–214CrossRefPubMed
76.
Zurück zum Zitat Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S, Grimm M (1853) H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochim Biophys Acta 2015:276–284 Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S, Grimm M (1853) H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochim Biophys Acta 2015:276–284
77.
Zurück zum Zitat Branco AF, Pereira SL, Moreira AC, Holy J, Sardao VA, Oliveira PJ (2011) Isoproterenol cytotoxicity is dependent on the differentiation state of the cardiomyoblast H9c2 cell line. Cardiovasc Toxicol 11:191–203CrossRefPubMed Branco AF, Pereira SL, Moreira AC, Holy J, Sardao VA, Oliveira PJ (2011) Isoproterenol cytotoxicity is dependent on the differentiation state of the cardiomyoblast H9c2 cell line. Cardiovasc Toxicol 11:191–203CrossRefPubMed
78.
Zurück zum Zitat McWhinney CD, Hansen C, Robishaw JD (2000) Alpha-1 adrenergic signaling in a cardiac murine atrial myocyte (HL-1) cell line. Mol Cell Biochem 214:111–119CrossRefPubMed McWhinney CD, Hansen C, Robishaw JD (2000) Alpha-1 adrenergic signaling in a cardiac murine atrial myocyte (HL-1) cell line. Mol Cell Biochem 214:111–119CrossRefPubMed
79.
Zurück zum Zitat Kitta K, Clement SA, Remeika J, Blumberg JB, Suzuki YJ (2001) Endothelin-1 induces phosphorylation of GATA-4 transcription factor in the HL-1 atrial-muscle cell line. Biochem J 359:375–380CrossRefPubMedPubMedCentral Kitta K, Clement SA, Remeika J, Blumberg JB, Suzuki YJ (2001) Endothelin-1 induces phosphorylation of GATA-4 transcription factor in the HL-1 atrial-muscle cell line. Biochem J 359:375–380CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Haas S, Jahnke HG, Moerbt N, von Bergen M, Aharinejad S, Andrukhova O, Robitzki AA (2012) DIGE proteome analysis reveals suitability of ischemic cardiac in vitro model for studying cellular response to acute ischemia and regeneration. PLoS One 7:e31669CrossRefPubMedPubMedCentral Haas S, Jahnke HG, Moerbt N, von Bergen M, Aharinejad S, Andrukhova O, Robitzki AA (2012) DIGE proteome analysis reveals suitability of ischemic cardiac in vitro model for studying cellular response to acute ischemia and regeneration. PLoS One 7:e31669CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Hong JH, Choi JH, Kim TY, Lee KJ (2008) Spiral reentry waves in confluent layer of HL-1 cardiomyocyte cell lines. Biochem Biophys Res Commun 377:1269–1273CrossRefPubMed Hong JH, Choi JH, Kim TY, Lee KJ (2008) Spiral reentry waves in confluent layer of HL-1 cardiomyocyte cell lines. Biochem Biophys Res Commun 377:1269–1273CrossRefPubMed
82.
Zurück zum Zitat Sartiani L, Bochet P, Cerbai E, Mugelli A, Fischmeister R (2002) Functional expression of the hyperpolarization-activated, non-selective cation current I(f) in immortalized HL-1 cardiomyocytes. J Physiol 545:81–92CrossRefPubMedPubMedCentral Sartiani L, Bochet P, Cerbai E, Mugelli A, Fischmeister R (2002) Functional expression of the hyperpolarization-activated, non-selective cation current I(f) in immortalized HL-1 cardiomyocytes. J Physiol 545:81–92CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Dias P, Desplantez T, El-Harasis MA et al (2014) Characterisation of connexin expression and electrophysiological properties in stable clones of the HL-1 myocyte cell line. PLoS One 9:e90266CrossRefPubMedPubMedCentral Dias P, Desplantez T, El-Harasis MA et al (2014) Characterisation of connexin expression and electrophysiological properties in stable clones of the HL-1 myocyte cell line. PLoS One 9:e90266CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Fang X, Robinson J, Wang-Hu J, Jiang L, Freeman DA, Rivkees SA, Wendler CC (2015) cAMP induces hypertrophy and alters DNA methylation in HL-1 cardiomyocytes. Am J Physiol Cell Physiol 309:C425–C436CrossRefPubMedPubMedCentral Fang X, Robinson J, Wang-Hu J, Jiang L, Freeman DA, Rivkees SA, Wendler CC (2015) cAMP induces hypertrophy and alters DNA methylation in HL-1 cardiomyocytes. Am J Physiol Cell Physiol 309:C425–C436CrossRefPubMedPubMedCentral
85.
Zurück zum Zitat Bloch L, Ndongson-Dongmo B, Kusch A, Dragun D, Heller R, Huber O (2016) Real-time monitoring of hypertrophy in HL-1 cardiomyocytes by impedance measurements reveals different modes of growth. Cytotechnology 68:1897–1907CrossRefPubMedPubMedCentral Bloch L, Ndongson-Dongmo B, Kusch A, Dragun D, Heller R, Huber O (2016) Real-time monitoring of hypertrophy in HL-1 cardiomyocytes by impedance measurements reveals different modes of growth. Cytotechnology 68:1897–1907CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Asensio-Lopez MC, Soler F, Pascual-Figal D, Fernandez-Belda F, Lax A (2017) Doxorubicin-induced oxidative stress: the protective effect of nicorandil on HL-1 cardiomyocytes. PLoS One 12:e0172803CrossRefPubMedPubMedCentral Asensio-Lopez MC, Soler F, Pascual-Figal D, Fernandez-Belda F, Lax A (2017) Doxorubicin-induced oxidative stress: the protective effect of nicorandil on HL-1 cardiomyocytes. PLoS One 12:e0172803CrossRefPubMedPubMedCentral
87.
Zurück zum Zitat Dutta D, Xu J, Kim JS, Dunn WA Jr, Leeuwenburgh C (2013) Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy 9:328–344CrossRefPubMedPubMedCentral Dutta D, Xu J, Kim JS, Dunn WA Jr, Leeuwenburgh C (2013) Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy 9:328–344CrossRefPubMedPubMedCentral
88.
Zurück zum Zitat Truong J, Mailloux RJ, Chan HM (2015) Impact of methylmercury exposure on mitochondrial energetics in AC16 and H9C2 cardiomyocytes. Toxicol in Vitro 29:953–961CrossRefPubMed Truong J, Mailloux RJ, Chan HM (2015) Impact of methylmercury exposure on mitochondrial energetics in AC16 and H9C2 cardiomyocytes. Toxicol in Vitro 29:953–961CrossRefPubMed
89.
Zurück zum Zitat Li Q, Qi X, Jia W (2016) 3,3′,5-triiodothyroxine inhibits apoptosis and oxidative stress by the PKM2/PKM1 ratio during oxygen-glucose deprivation/reperfusion AC16 and HCM-a cells: T3 inhibits apoptosis and oxidative stress by PKM2/PKM1 ratio. Biochem Biophys Res Commun 475:51–56CrossRefPubMed Li Q, Qi X, Jia W (2016) 3,3′,5-triiodothyroxine inhibits apoptosis and oxidative stress by the PKM2/PKM1 ratio during oxygen-glucose deprivation/reperfusion AC16 and HCM-a cells: T3 inhibits apoptosis and oxidative stress by PKM2/PKM1 ratio. Biochem Biophys Res Commun 475:51–56CrossRefPubMed
90.
Zurück zum Zitat Cui L, Guo J, Zhang Q, Yin J, Li J, Zhou W, Zhang T, Yuan H, Zhao J, Zhang L, Carmichael PL, Peng S (2017) Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity. Toxicol Lett 275:28–38CrossRefPubMed Cui L, Guo J, Zhang Q, Yin J, Li J, Zhou W, Zhang T, Yuan H, Zhao J, Zhang L, Carmichael PL, Peng S (2017) Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity. Toxicol Lett 275:28–38CrossRefPubMed
91.
Zurück zum Zitat Xiao Y, Yang Z, Wu QQ, Jiang XH, Yuan Y, Chang W, Bian ZY, Zhu JX, Tang QZ (2017) Cucurbitacin B protects against pressure overload induced cardiac hypertrophy. J Cell Biochem 118:3899–3910CrossRefPubMed Xiao Y, Yang Z, Wu QQ, Jiang XH, Yuan Y, Chang W, Bian ZY, Zhu JX, Tang QZ (2017) Cucurbitacin B protects against pressure overload induced cardiac hypertrophy. J Cell Biochem 118:3899–3910CrossRefPubMed
92.
Zurück zum Zitat Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefPubMed Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefPubMed
93.
Zurück zum Zitat Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921CrossRefPubMed Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921CrossRefPubMed
94.
Zurück zum Zitat Goumans MJ, de Boer TP, Smits AM, van Laake L, van Vliet P, Metz CH, Korfage TH, Kats KP, Hochstenbach R, Pasterkamp G, Verhaar MC, van der Heyden M, de Kleijn D, Mummery CL, van Veen T, Sluijter JP, Doevendans PA (2007) TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 1:138–149CrossRefPubMed Goumans MJ, de Boer TP, Smits AM, van Laake L, van Vliet P, Metz CH, Korfage TH, Kats KP, Hochstenbach R, Pasterkamp G, Verhaar MC, van der Heyden M, de Kleijn D, Mummery CL, van Veen T, Sluijter JP, Doevendans PA (2007) TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 1:138–149CrossRefPubMed
95.
Zurück zum Zitat Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMed Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMed
96.
Zurück zum Zitat Peters AK, Wouwer GV, Weyn B, Verheyen GR, Vanparys P, Gompel JV (2008) Automated analysis of contractility in the embryonic stem cell test, a novel approach to assess embryotoxicity. Toxicol in Vitro 22:1948–1956CrossRefPubMed Peters AK, Wouwer GV, Weyn B, Verheyen GR, Vanparys P, Gompel JV (2008) Automated analysis of contractility in the embryonic stem cell test, a novel approach to assess embryotoxicity. Toxicol in Vitro 22:1948–1956CrossRefPubMed
97.
Zurück zum Zitat Liu H, Ren C, Liu W, Jiang X, Wang L, Zhu B, Jia W, Lin J, Tan J, Liu X (2017) Embryotoxicity estimation of commonly used compounds with embryonic stem cell test. Mol Med Rep 16:263–271CrossRefPubMedPubMedCentral Liu H, Ren C, Liu W, Jiang X, Wang L, Zhu B, Jia W, Lin J, Tan J, Liu X (2017) Embryotoxicity estimation of commonly used compounds with embryonic stem cell test. Mol Med Rep 16:263–271CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A, Holmström A, Chang AC, Coronado MJ, Ebert AD, Knowles JW, Telli ML, Witteles RM, Blau HM, Bernstein D, Altman RB, Wu JC (2016) Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22:547–556CrossRefPubMedPubMedCentral Burridge PW, Li YF, Matsa E, Wu H, Ong SG, Sharma A, Holmström A, Chang AC, Coronado MJ, Ebert AD, Knowles JW, Telli ML, Witteles RM, Blau HM, Bernstein D, Altman RB, Wu JC (2016) Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22:547–556CrossRefPubMedPubMedCentral
99.
Zurück zum Zitat Maillet A, Tan K, Chai X, Sadananda SN, Mehta A, Ooi J, Hayden MR, Pouladi MA, Ghosh S, Shim W, Brunham LR (2016) Modeling doxorubicin-induced cardiotoxicity in human pluripotent stem cell derived-cardiomyocytes. Sci Rep 6:25333CrossRefPubMedPubMedCentral Maillet A, Tan K, Chai X, Sadananda SN, Mehta A, Ooi J, Hayden MR, Pouladi MA, Ghosh S, Shim W, Brunham LR (2016) Modeling doxorubicin-induced cardiotoxicity in human pluripotent stem cell derived-cardiomyocytes. Sci Rep 6:25333CrossRefPubMedPubMedCentral
100.
Zurück zum Zitat Seewald MJ, Ellinghaus P, Kassner A, Stork I, Barg M, Niebrügge S, Golz S, Summer H, Zweigerdt R, Schräder EM, Feicht S, Jaquet K, Reis S, Körfer R, Milting H (2009) Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters. Physiol Genomics 38:7–15CrossRefPubMed Seewald MJ, Ellinghaus P, Kassner A, Stork I, Barg M, Niebrügge S, Golz S, Summer H, Zweigerdt R, Schräder EM, Feicht S, Jaquet K, Reis S, Körfer R, Milting H (2009) Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters. Physiol Genomics 38:7–15CrossRefPubMed
101.
Zurück zum Zitat Shinozawa T, Tsuji A, Imahashi K et al (2009) Gene expression profiling of functional murine embryonic stem cell-derived cardiomyocytes and comparison with adult heart: profiling of murine ESC-derived cardiomyocytes. J Biomol Screen 14:239–245CrossRefPubMed Shinozawa T, Tsuji A, Imahashi K et al (2009) Gene expression profiling of functional murine embryonic stem cell-derived cardiomyocytes and comparison with adult heart: profiling of murine ESC-derived cardiomyocytes. J Biomol Screen 14:239–245CrossRefPubMed
102.
Zurück zum Zitat Lee YK, Ng KM, Lai WH et al (2011) Calcium homeostasis in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Rev 7:976–986CrossRefPubMedCentral Lee YK, Ng KM, Lai WH et al (2011) Calcium homeostasis in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Rev 7:976–986CrossRefPubMedCentral
103.
Zurück zum Zitat Carvajal-Vergara X, Sevilla A, D'Souza SL et al (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465:808–812CrossRefPubMedPubMedCentral Carvajal-Vergara X, Sevilla A, D'Souza SL et al (2010) Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465:808–812CrossRefPubMedPubMedCentral
104.
Zurück zum Zitat Wu H, Lee J, Vincent LG et al (2015) Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised beta-adrenergic signaling in an iPSC model of dilated cardiomyopathy. Cell Stem Cell 17:89–100CrossRefPubMedPubMedCentral Wu H, Lee J, Vincent LG et al (2015) Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised beta-adrenergic signaling in an iPSC model of dilated cardiomyopathy. Cell Stem Cell 17:89–100CrossRefPubMedPubMedCentral
105.
Zurück zum Zitat Lin B, Li Y, Han L, Kaplan AD, Ao Y, Kalra S, Bett GCL, Rasmusson RL, Denning C, Yang L (2015) Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis Model Mech 8:457–466CrossRefPubMedPubMedCentral Lin B, Li Y, Han L, Kaplan AD, Ao Y, Kalra S, Bett GCL, Rasmusson RL, Denning C, Yang L (2015) Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy. Dis Model Mech 8:457–466CrossRefPubMedPubMedCentral
106.
Zurück zum Zitat Crombie DE, Curl CL, Raaijmakers AJ et al. Friedreich’s ataxia induced pluripotent stem cell-derived cardiomyocytes display electrophysiological abnormalities and calcium handling deficiency. Aging (Albany NY) 2017;9:1440–1452 Crombie DE, Curl CL, Raaijmakers AJ et al. Friedreich’s ataxia induced pluripotent stem cell-derived cardiomyocytes display electrophysiological abnormalities and calcium handling deficiency. Aging (Albany NY) 2017;9:1440–1452
107.
Zurück zum Zitat Itzhaki I, Maizels L, Huber I et al (2012) Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. J Am Coll Cardiol 60:990–1000CrossRefPubMed Itzhaki I, Maizels L, Huber I et al (2012) Modeling of catecholaminergic polymorphic ventricular tachycardia with patient-specific human-induced pluripotent stem cells. J Am Coll Cardiol 60:990–1000CrossRefPubMed
108.
Zurück zum Zitat Guhr A, Kobold S, Seltmann S, Seiler Wulczyn AEM, Kurtz A, Loser P (2018) Recent trends in research with human pluripotent stem cells: impact of research and use of cell lines in experimental research and clinical trials. Stem Cell Reports 11:485–496CrossRefPubMedPubMedCentral Guhr A, Kobold S, Seltmann S, Seiler Wulczyn AEM, Kurtz A, Loser P (2018) Recent trends in research with human pluripotent stem cells: impact of research and use of cell lines in experimental research and clinical trials. Stem Cell Reports 11:485–496CrossRefPubMedPubMedCentral
109.
Zurück zum Zitat Mayourian J, Cashman TJ, Ceholski DK et al (2017) Experimental and computational insight into human mesenchymal stem cell paracrine signaling and heterocellular coupling effects on cardiac contractility and arrhythmogenicity. Circ Res 121:411–423CrossRefPubMedPubMedCentral Mayourian J, Cashman TJ, Ceholski DK et al (2017) Experimental and computational insight into human mesenchymal stem cell paracrine signaling and heterocellular coupling effects on cardiac contractility and arrhythmogenicity. Circ Res 121:411–423CrossRefPubMedPubMedCentral
110.
Zurück zum Zitat Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165–4173CrossRefPubMedPubMedCentral Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165–4173CrossRefPubMedPubMedCentral
111.
Zurück zum Zitat Lee J, Razu ME, Wang X, Lacerda C, Kim JJ (2015) Biomimetic cardiac microsystems for pathophysiological studies and drug screens. J Lab Autom 20:96–106CrossRefPubMed Lee J, Razu ME, Wang X, Lacerda C, Kim JJ (2015) Biomimetic cardiac microsystems for pathophysiological studies and drug screens. J Lab Autom 20:96–106CrossRefPubMed
112.
Zurück zum Zitat Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Kitamori T (2007) A micro-spherical heart pump powered by cultured cardiomyocytes. Lab Chip 7:207–212CrossRefPubMed Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Kitamori T (2007) A micro-spherical heart pump powered by cultured cardiomyocytes. Lab Chip 7:207–212CrossRefPubMed
113.
Zurück zum Zitat Li RA, Keung W, Cashman TJ, Backeris PC, Johnson BV, Bardot ES, Wong AOT, Chan PKW, Chan CWY, Costa KD (2018) Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Biomaterials 163:116–127CrossRefPubMedPubMedCentral Li RA, Keung W, Cashman TJ, Backeris PC, Johnson BV, Bardot ES, Wong AOT, Chan PKW, Chan CWY, Costa KD (2018) Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells. Biomaterials 163:116–127CrossRefPubMedPubMedCentral
114.
Zurück zum Zitat Olejnickova V, Novakova M, Provaznik I (2015) Isolated heart models: cardiovascular system studies and technological advances. Med Biol Eng Comput 53:669–678CrossRefPubMed Olejnickova V, Novakova M, Provaznik I (2015) Isolated heart models: cardiovascular system studies and technological advances. Med Biol Eng Comput 53:669–678CrossRefPubMed
115.
Zurück zum Zitat de Bakker JM, Coronel R, Tasseron S et al (1990) Ventricular tachycardia in the infarcted, Langendorff-perfused human heart: role of the arrangement of surviving cardiac fibers. J Am Coll Cardiol 15:1594–1607CrossRefPubMed de Bakker JM, Coronel R, Tasseron S et al (1990) Ventricular tachycardia in the infarcted, Langendorff-perfused human heart: role of the arrangement of surviving cardiac fibers. J Am Coll Cardiol 15:1594–1607CrossRefPubMed
116.
Zurück zum Zitat Akar JG, Akar FG (2006) Mapping arrhythmias in the failing heart: from Langendorff to patient. J Electrocardiol 39:S19–S23CrossRefPubMed Akar JG, Akar FG (2006) Mapping arrhythmias in the failing heart: from Langendorff to patient. J Electrocardiol 39:S19–S23CrossRefPubMed
117.
Zurück zum Zitat Takewa Y, Chemaly ER, Takaki M, Liang LF, Jin H, Karakikes I, Morel C, Taenaka Y, Tatsumi E, Hajjar RJ (2009) Mechanical work and energetic analysis of eccentric cardiac remodeling in a volume overload heart failure in rats. Am J Physiol Heart Circ Physiol 296:H1117–H1124CrossRefPubMedPubMedCentral Takewa Y, Chemaly ER, Takaki M, Liang LF, Jin H, Karakikes I, Morel C, Taenaka Y, Tatsumi E, Hajjar RJ (2009) Mechanical work and energetic analysis of eccentric cardiac remodeling in a volume overload heart failure in rats. Am J Physiol Heart Circ Physiol 296:H1117–H1124CrossRefPubMedPubMedCentral
119.
Zurück zum Zitat Zhu XY, Wu SQ, Guo SY, Yang H, Xia B, Li P, Li CQ (2018) A zebrafish heart failure model for assessing therapeutic agents. Zebrafish 15:243–253CrossRefPubMed Zhu XY, Wu SQ, Guo SY, Yang H, Xia B, Li P, Li CQ (2018) A zebrafish heart failure model for assessing therapeutic agents. Zebrafish 15:243–253CrossRefPubMed
120.
Zurück zum Zitat Hempel A, Kuhl M (2016) A matter of the heart: the African clawed frog Xenopus as a model for studying vertebrate cardiogenesis and congenital heart defects. J Cardiovasc Dev Dis 3 Hempel A, Kuhl M (2016) A matter of the heart: the African clawed frog Xenopus as a model for studying vertebrate cardiogenesis and congenital heart defects. J Cardiovasc Dev Dis 3
121.
Zurück zum Zitat Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562CrossRef Mouse Genome Sequencing C, Waterston RH, Lindblad-Toh K et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562CrossRef
122.
Zurück zum Zitat Flister MJ, Prokop JW, Lazar J, Shimoyama M, Dwinell M, Geurts A, International Committee on Standardized Genetic Nomenclature for Mice., Rat Genome and Nomenclature Committee 2015 Guidelines for establishing genetically modified rat models for cardiovascular research. J Cardiovasc Transl Res 2015;8:269–277 Flister MJ, Prokop JW, Lazar J, Shimoyama M, Dwinell M, Geurts A, International Committee on Standardized Genetic Nomenclature for Mice., Rat Genome and Nomenclature Committee 2015 Guidelines for establishing genetically modified rat models for cardiovascular research. J Cardiovasc Transl Res 2015;8:269–277
123.
Zurück zum Zitat Gehrmann J, Frantz S, Maguire CT, Vargas M, Ducharme A, Wakimoto H, Lee RT, Berul CI (2001) Electrophysiological characterization of murine myocardial ischemia and infarction. Basic Res Cardiol 96:237–250CrossRefPubMed Gehrmann J, Frantz S, Maguire CT, Vargas M, Ducharme A, Wakimoto H, Lee RT, Berul CI (2001) Electrophysiological characterization of murine myocardial ischemia and infarction. Basic Res Cardiol 96:237–250CrossRefPubMed
124.
Zurück zum Zitat Redel A, Jazbutyte V, Smul TM et al (2008) Impact of ischemia and reperfusion times on myocardial infarct size in mice in vivo. Exp Biol Med 233:84–93CrossRef Redel A, Jazbutyte V, Smul TM et al (2008) Impact of ischemia and reperfusion times on myocardial infarct size in mice in vivo. Exp Biol Med 233:84–93CrossRef
125.
Zurück zum Zitat Christia P, Bujak M, Gonzalez-Quesada C, Chen W, Dobaczewski M, Reddy A, Frangogiannis NG (2013) Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction. J Histochem Cytochem 61:555–570CrossRefPubMedPubMedCentral Christia P, Bujak M, Gonzalez-Quesada C, Chen W, Dobaczewski M, Reddy A, Frangogiannis NG (2013) Systematic characterization of myocardial inflammation, repair, and remodeling in a mouse model of reperfused myocardial infarction. J Histochem Cytochem 61:555–570CrossRefPubMedPubMedCentral
126.
Zurück zum Zitat Chen J, Ceholski DK, Liang L, Fish K, Hajjar RJ (2017) Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 313:H275–H282CrossRefPubMedPubMedCentral Chen J, Ceholski DK, Liang L, Fish K, Hajjar RJ (2017) Variability in coronary artery anatomy affects consistency of cardiac damage after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 313:H275–H282CrossRefPubMedPubMedCentral
127.
128.
Zurück zum Zitat Hampton C, Rosa R, Campbell B, Kennan R, Gichuru L, Ping X, Shen X, Small K, Madwed J, Lynch JJ (2017) Early echocardiographic predictors of outcomes in the mouse transverse aortic constriction heart failure model. J Pharmacol Toxicol Methods 84:93–101CrossRefPubMed Hampton C, Rosa R, Campbell B, Kennan R, Gichuru L, Ping X, Shen X, Small K, Madwed J, Lynch JJ (2017) Early echocardiographic predictors of outcomes in the mouse transverse aortic constriction heart failure model. J Pharmacol Toxicol Methods 84:93–101CrossRefPubMed
129.
Zurück zum Zitat Chaanine AH, Jeong D, Liang L, Chemaly ER, Fish K, Gordon RE, Hajjar RJ (2012) JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis 3:265CrossRefPubMedPubMedCentral Chaanine AH, Jeong D, Liang L, Chemaly ER, Fish K, Gordon RE, Hajjar RJ (2012) JNK modulates FOXO3a for the expression of the mitochondrial death and mitophagy marker BNIP3 in pathological hypertrophy and in heart failure. Cell Death Dis 3:265CrossRefPubMedPubMedCentral
130.
Zurück zum Zitat You J, Wu J, Zhang Q et al (2018) Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. Am J Physiol Heart Circ Physiol 314:H552–H562PubMed You J, Wu J, Zhang Q et al (2018) Differential cardiac hypertrophy and signaling pathways in pressure versus volume overload. Am J Physiol Heart Circ Physiol 314:H552–H562PubMed
131.
Zurück zum Zitat Pu M, Gao Z, Zhang X, Liao D, Pu DK, Brennan T, Davidson WR Jr (2009) Impact of mitral regurgitation on left ventricular anatomic and molecular remodeling and systolic function: implication for outcome. Am J Physiol Heart Circ Physiol 296:H1727–H1732CrossRefPubMed Pu M, Gao Z, Zhang X, Liao D, Pu DK, Brennan T, Davidson WR Jr (2009) Impact of mitral regurgitation on left ventricular anatomic and molecular remodeling and systolic function: implication for outcome. Am J Physiol Heart Circ Physiol 296:H1727–H1732CrossRefPubMed
132.
Zurück zum Zitat Melenovsky V, Skaroupkova P, Benes J, Torresova V, Kopkan L, Cervenka L (2012) The course of heart failure development and mortality in rats with volume overload due to aorto-caval fistula. Kidney Blood Press Res 35:167–173CrossRefPubMed Melenovsky V, Skaroupkova P, Benes J, Torresova V, Kopkan L, Cervenka L (2012) The course of heart failure development and mortality in rats with volume overload due to aorto-caval fistula. Kidney Blood Press Res 35:167–173CrossRefPubMed
133.
Zurück zum Zitat Chemaly ER, Kang S, Zhang S, McCollum LT, Chen J, Bénard L, Purushothaman KR, Hajjar RJ, Lebeche D (2013) Differential patterns of replacement and reactive fibrosis in pressure and volume overload are related to the propensity for ischaemia and involve resistin. J Physiol 591:5337–5355CrossRefPubMedPubMedCentral Chemaly ER, Kang S, Zhang S, McCollum LT, Chen J, Bénard L, Purushothaman KR, Hajjar RJ, Lebeche D (2013) Differential patterns of replacement and reactive fibrosis in pressure and volume overload are related to the propensity for ischaemia and involve resistin. J Physiol 591:5337–5355CrossRefPubMedPubMedCentral
134.
Zurück zum Zitat Angsutararux P, Luanpitpong S, Issaragrisil S (2015) Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxidative Med Cell Longev 2015:795602CrossRef Angsutararux P, Luanpitpong S, Issaragrisil S (2015) Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress. Oxidative Med Cell Longev 2015:795602CrossRef
135.
Zurück zum Zitat Muller AM, Fischer A, Katus HA, Kaya Z (2015) Mouse models of autoimmune diseases - autoimmune myocarditis. Curr Pharm Des 21:2498–2512CrossRefPubMed Muller AM, Fischer A, Katus HA, Kaya Z (2015) Mouse models of autoimmune diseases - autoimmune myocarditis. Curr Pharm Des 21:2498–2512CrossRefPubMed
136.
Zurück zum Zitat Pummerer CL, Luze K, Grassl G et al (1996) Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J Clin Invest 97:2057–2062CrossRefPubMedPubMedCentral Pummerer CL, Luze K, Grassl G et al (1996) Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J Clin Invest 97:2057–2062CrossRefPubMedPubMedCentral
137.
Zurück zum Zitat Kaya Z, Goser S, Buss SJ et al (2008) Identification of cardiac troponin I sequence motifs leading to heart failure by induction of myocardial inflammation and fibrosis. Circulation 118:2063–2072CrossRefPubMedPubMedCentral Kaya Z, Goser S, Buss SJ et al (2008) Identification of cardiac troponin I sequence motifs leading to heart failure by induction of myocardial inflammation and fibrosis. Circulation 118:2063–2072CrossRefPubMedPubMedCentral
138.
Zurück zum Zitat Takeshita D, Shimizu J, Kitagawa Y et al (2008) Isoproterenol-induced hypertrophied rat hearts: does short-term treatment correspond to long-term treatment? J Physiol Sci 58:179–188CrossRefPubMed Takeshita D, Shimizu J, Kitagawa Y et al (2008) Isoproterenol-induced hypertrophied rat hearts: does short-term treatment correspond to long-term treatment? J Physiol Sci 58:179–188CrossRefPubMed
139.
Zurück zum Zitat Wang JJ, Rau C, Avetisyan R et al (2016) Genetic dissection of cardiac remodeling in an isoproterenol-induced heart failure mouse model. PLoS Genet 12:e1006038CrossRefPubMedPubMedCentral Wang JJ, Rau C, Avetisyan R et al (2016) Genetic dissection of cardiac remodeling in an isoproterenol-induced heart failure mouse model. PLoS Genet 12:e1006038CrossRefPubMedPubMedCentral
140.
Zurück zum Zitat Shinohara K, Kishi T, Hirooka Y, Sunagawa K (2015) Circulating angiotensin II deteriorates left ventricular function with sympathoexcitation via brain angiotensin II receptor. Physiol Rep 3 Shinohara K, Kishi T, Hirooka Y, Sunagawa K (2015) Circulating angiotensin II deteriorates left ventricular function with sympathoexcitation via brain angiotensin II receptor. Physiol Rep 3
141.
Zurück zum Zitat Regan JA, Mauro AG, Carbone S et al (2015) A mouse model of heart failure with preserved ejection fraction due to chronic infusion of a low subpressor dose of angiotensin II. Am J Physiol Heart Circ Physiol 309:H771–H778PubMedPubMedCentral Regan JA, Mauro AG, Carbone S et al (2015) A mouse model of heart failure with preserved ejection fraction due to chronic infusion of a low subpressor dose of angiotensin II. Am J Physiol Heart Circ Physiol 309:H771–H778PubMedPubMedCentral
142.
Zurück zum Zitat Tsukamoto Y, Mano T, Sakata Y, Ohtani T, Takeda Y, Tamaki S, Omori Y, Ikeya Y, Saito Y, Ishii R, Higashimori M, Kaneko M, Miwa T, Yamamoto K, Komuro I (2013) A novel heart failure mice model of hypertensive heart disease by angiotensin II infusion, nephrectomy, and salt loading. Am J Physiol Heart Circ Physiol 305:H1658–H1667CrossRefPubMed Tsukamoto Y, Mano T, Sakata Y, Ohtani T, Takeda Y, Tamaki S, Omori Y, Ikeya Y, Saito Y, Ishii R, Higashimori M, Kaneko M, Miwa T, Yamamoto K, Komuro I (2013) A novel heart failure mice model of hypertensive heart disease by angiotensin II infusion, nephrectomy, and salt loading. Am J Physiol Heart Circ Physiol 305:H1658–H1667CrossRefPubMed
143.
Zurück zum Zitat Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, Voelkel NF, McMurtry IF, Oka M (2010) Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121:2747–2754CrossRefPubMed Abe K, Toba M, Alzoubi A, Ito M, Fagan KA, Cool CD, Voelkel NF, McMurtry IF, Oka M (2010) Formation of plexiform lesions in experimental severe pulmonary arterial hypertension. Circulation 121:2747–2754CrossRefPubMed
144.
Zurück zum Zitat Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, Gu L, Kumar P, Pokhrel N, Zeng D, Belardinelli L, Sorescu D, Solaro RJ, Dudley SC Jr (2012) Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ Res 110:841–850CrossRefPubMedPubMedCentral Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, Gu L, Kumar P, Pokhrel N, Zeng D, Belardinelli L, Sorescu D, Solaro RJ, Dudley SC Jr (2012) Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity. Circ Res 110:841–850CrossRefPubMedPubMedCentral
145.
Zurück zum Zitat Doi R, Masuyama T, Yamamoto K et al (2000) Development of different phenotypes of hypertensive heart failure: systolic versus diastolic failure in Dahl salt-sensitive rats. J Hypertens 18:111–120CrossRefPubMed Doi R, Masuyama T, Yamamoto K et al (2000) Development of different phenotypes of hypertensive heart failure: systolic versus diastolic failure in Dahl salt-sensitive rats. J Hypertens 18:111–120CrossRefPubMed
146.
Zurück zum Zitat Van den Bergh A, Vanderper A, Vangheluwe P et al (2008) Dyslipidaemia in type II diabetic mice does not aggravate contractile impairment but increases ventricular stiffness. Cardiovasc Res 77:371–379CrossRefPubMed Van den Bergh A, Vanderper A, Vangheluwe P et al (2008) Dyslipidaemia in type II diabetic mice does not aggravate contractile impairment but increases ventricular stiffness. Cardiovasc Res 77:371–379CrossRefPubMed
147.
Zurück zum Zitat Molinar-Toribio E, Perez-Jimenez J, Ramos-Romero S et al (2014) Cardiovascular disease-related parameters and oxidative stress in SHROB rats, a model for metabolic syndrome. PLoS One 9:e104637CrossRefPubMedPubMedCentral Molinar-Toribio E, Perez-Jimenez J, Ramos-Romero S et al (2014) Cardiovascular disease-related parameters and oxidative stress in SHROB rats, a model for metabolic syndrome. PLoS One 9:e104637CrossRefPubMedPubMedCentral
149.
Zurück zum Zitat Foster DB, Liu T, Kammers K et al (2016) Integrated omic analysis of a Guinea pig model of heart failure and sudden cardiac death. J Proteome Res 15:3009–3028CrossRefPubMedPubMedCentral Foster DB, Liu T, Kammers K et al (2016) Integrated omic analysis of a Guinea pig model of heart failure and sudden cardiac death. J Proteome Res 15:3009–3028CrossRefPubMedPubMedCentral
150.
Zurück zum Zitat Laviolle B, Pape D, Verdier MC, Lavenu A, Bellissant E (2009) Hemodynamic and histomorphometric characteristics of heart failure induced by aortic stenosis in the Guinea pig: comparison of two constriction sizes. Can J Physiol Pharmacol 87:908–914CrossRefPubMed Laviolle B, Pape D, Verdier MC, Lavenu A, Bellissant E (2009) Hemodynamic and histomorphometric characteristics of heart failure induced by aortic stenosis in the Guinea pig: comparison of two constriction sizes. Can J Physiol Pharmacol 87:908–914CrossRefPubMed
151.
Zurück zum Zitat Fox PR, Basso C, Thiene G, Maron BJ (2014) Spontaneously occurring restrictive nonhypertrophied cardiomyopathy in domestic cats: a new animal model of human disease. Cardiovasc Pathol 23:28–34CrossRefPubMed Fox PR, Basso C, Thiene G, Maron BJ (2014) Spontaneously occurring restrictive nonhypertrophied cardiomyopathy in domestic cats: a new animal model of human disease. Cardiovasc Pathol 23:28–34CrossRefPubMed
152.
Zurück zum Zitat Freeman LM, Rush JE, Stern JA, Huggins GS, Maron MS (2017) Feline hypertrophic cardiomyopathy: a spontaneous large animal model of human HCM. Cardiol Res 8:139–142CrossRefPubMedPubMedCentral Freeman LM, Rush JE, Stern JA, Huggins GS, Maron MS (2017) Feline hypertrophic cardiomyopathy: a spontaneous large animal model of human HCM. Cardiol Res 8:139–142CrossRefPubMedPubMedCentral
153.
Zurück zum Zitat Suzuki T, Palmer BM, James J et al (2009) Effects of cardiac myosin isoform variation on myofilament function and crossbridge kinetics in transgenic rabbits. Circ Heart Fail 2:334–341CrossRefPubMedPubMedCentral Suzuki T, Palmer BM, James J et al (2009) Effects of cardiac myosin isoform variation on myofilament function and crossbridge kinetics in transgenic rabbits. Circ Heart Fail 2:334–341CrossRefPubMedPubMedCentral
154.
Zurück zum Zitat Piacentino V 3rd, Weber CR, Chen X et al (2003) Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 92:651–658CrossRefPubMed Piacentino V 3rd, Weber CR, Chen X et al (2003) Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 92:651–658CrossRefPubMed
155.
156.
Zurück zum Zitat Freeman GL, Colston JT (1992) Myocardial depression produced by sustained tachycardia in rabbits. Am J Phys 262:H63–H67 Freeman GL, Colston JT (1992) Myocardial depression produced by sustained tachycardia in rabbits. Am J Phys 262:H63–H67
157.
Zurück zum Zitat Shimizu T, Nakai K, Morimoto Y et al (2009) Simple rabbit model of vulnerable atherosclerotic plaque. Neurol Med Chir (Tokyo) 49:327–332 discussion 332 CrossRef Shimizu T, Nakai K, Morimoto Y et al (2009) Simple rabbit model of vulnerable atherosclerotic plaque. Neurol Med Chir (Tokyo) 49:327–332 discussion 332 CrossRef
158.
Zurück zum Zitat Thomas SA, Fallavollita JA, Suzuki G, Borgers M, Canty JM Jr (2002) Dissociation of regional adaptations to ischemia and global myolysis in an accelerated swine model of chronic hibernating myocardium. Circ Res 91:970–977CrossRefPubMed Thomas SA, Fallavollita JA, Suzuki G, Borgers M, Canty JM Jr (2002) Dissociation of regional adaptations to ischemia and global myolysis in an accelerated swine model of chronic hibernating myocardium. Circ Res 91:970–977CrossRefPubMed
159.
Zurück zum Zitat Hedstrom E, Engblom H, Frogner F et al (2009) Infarct evolution in man studied in patients with first-time coronary occlusion in comparison to different species - implications for assessment of myocardial salvage. J Cardiovasc Magn Reson 11:38CrossRefPubMedPubMedCentral Hedstrom E, Engblom H, Frogner F et al (2009) Infarct evolution in man studied in patients with first-time coronary occlusion in comparison to different species - implications for assessment of myocardial salvage. J Cardiovasc Magn Reson 11:38CrossRefPubMedPubMedCentral
160.
Zurück zum Zitat Maxwell MP, Hearse DJ, Yellon DM (1987) Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 21:737–746CrossRefPubMed Maxwell MP, Hearse DJ, Yellon DM (1987) Species variation in the coronary collateral circulation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res 21:737–746CrossRefPubMed
161.
Zurück zum Zitat Ishikawa K, Aguero J, Tilemann L, Ladage D, Hammoudi N, Kawase Y, Santos-Gallego CG, Fish K, Levine RA, Hajjar RJ (2014) Characterizing preclinical models of ischemic heart failure: differences between LAD and LCx infarctions. Am J Physiol Heart Circ Physiol 307:H1478–H1486CrossRefPubMedPubMedCentral Ishikawa K, Aguero J, Tilemann L, Ladage D, Hammoudi N, Kawase Y, Santos-Gallego CG, Fish K, Levine RA, Hajjar RJ (2014) Characterizing preclinical models of ischemic heart failure: differences between LAD and LCx infarctions. Am J Physiol Heart Circ Physiol 307:H1478–H1486CrossRefPubMedPubMedCentral
162.
Zurück zum Zitat Galvez-Monton C, Prat-Vidal C, Diaz-Guemes I et al (2014) Comparison of two preclinical myocardial infarct models: coronary coil deployment versus surgical ligation. J Transl Med 12:137CrossRefPubMedPubMedCentral Galvez-Monton C, Prat-Vidal C, Diaz-Guemes I et al (2014) Comparison of two preclinical myocardial infarct models: coronary coil deployment versus surgical ligation. J Transl Med 12:137CrossRefPubMedPubMedCentral
163.
Zurück zum Zitat Saavedra WF, Tunin RS, Paolocci N et al (2002) Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. J Am Coll Cardiol 39:2069–2076CrossRefPubMed Saavedra WF, Tunin RS, Paolocci N et al (2002) Reverse remodeling and enhanced adrenergic reserve from passive external support in experimental dilated heart failure. J Am Coll Cardiol 39:2069–2076CrossRefPubMed
164.
Zurück zum Zitat Page BJ, Banas MD, Suzuki G et al (2015) Revascularization of chronic hibernating myocardium stimulates myocyte proliferation and partially reverses chronic adaptations to ischemia. J Am Coll Cardiol 65:684–697CrossRefPubMedPubMedCentral Page BJ, Banas MD, Suzuki G et al (2015) Revascularization of chronic hibernating myocardium stimulates myocyte proliferation and partially reverses chronic adaptations to ischemia. J Am Coll Cardiol 65:684–697CrossRefPubMedPubMedCentral
165.
Zurück zum Zitat Ishikawa K, Ladage D, Takewa Y et al (2011) Development of a preclinical model of ischemic cardiomyopathy in swine. Am J Physiol Heart Circ Physiol 301:H530–H537CrossRefPubMedPubMedCentral Ishikawa K, Ladage D, Takewa Y et al (2011) Development of a preclinical model of ischemic cardiomyopathy in swine. Am J Physiol Heart Circ Physiol 301:H530–H537CrossRefPubMedPubMedCentral
166.
Zurück zum Zitat Tuzun E, Oliveira E, Narin C et al (2010) Correlation of ischemic area and coronary flow with ameroid size in a porcine model. J Surg Res 164:38–42CrossRefPubMed Tuzun E, Oliveira E, Narin C et al (2010) Correlation of ischemic area and coronary flow with ameroid size in a porcine model. J Surg Res 164:38–42CrossRefPubMed
167.
Zurück zum Zitat Hinkel R, Howe A, Renner S, Ng J, Lee S, Klett K, Kaczmarek V, Moretti A, Laugwitz KL, Skroblin P, Mayr M, Milting H, Dendorfer A, Reichart B, Wolf E, Kupatt C (2017) Diabetes mellitus-induced microvascular destabilization in the myocardium. J Am Coll Cardiol 69:131–143CrossRefPubMed Hinkel R, Howe A, Renner S, Ng J, Lee S, Klett K, Kaczmarek V, Moretti A, Laugwitz KL, Skroblin P, Mayr M, Milting H, Dendorfer A, Reichart B, Wolf E, Kupatt C (2017) Diabetes mellitus-induced microvascular destabilization in the myocardium. J Am Coll Cardiol 69:131–143CrossRefPubMed
168.
Zurück zum Zitat Wisenbaugh T, Allen P, Cooper G, Holzgrefe H, Beller G, Carabello B (1983) Contractile function, myosin ATPase activity and isozymes in the hypertrophied pig left ventricle after a chronic progressive pressure overload. Circ Res 53:332–341CrossRefPubMed Wisenbaugh T, Allen P, Cooper G, Holzgrefe H, Beller G, Carabello B (1983) Contractile function, myosin ATPase activity and isozymes in the hypertrophied pig left ventricle after a chronic progressive pressure overload. Circ Res 53:332–341CrossRefPubMed
169.
Zurück zum Zitat Ishikawa K, Aguero J, Oh JG et al (2015) Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. J Am Heart Assoc 4 Ishikawa K, Aguero J, Oh JG et al (2015) Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. J Am Heart Assoc 4
170.
Zurück zum Zitat Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136:6–19CrossRefPubMedPubMedCentral Obokata M, Reddy YNV, Pislaru SV, Melenovsky V, Borlaug BA (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136:6–19CrossRefPubMedPubMedCentral
171.
Zurück zum Zitat Borlaug BA (2014) The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11:507–515CrossRefPubMed Borlaug BA (2014) The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11:507–515CrossRefPubMed
172.
Zurück zum Zitat Zakeri R, Moulay G, Chai Q, Ogut O, Hussain S, Takahama H, Lu T, Wang XL, Linke WA, Lee HC, Redfield MM (2016) Left atrial remodeling and atrioventricular coupling in a canine model of early heart failure with preserved ejection fraction. Circ Heart Fail 9 Zakeri R, Moulay G, Chai Q, Ogut O, Hussain S, Takahama H, Lu T, Wang XL, Linke WA, Lee HC, Redfield MM (2016) Left atrial remodeling and atrioventricular coupling in a canine model of early heart failure with preserved ejection fraction. Circ Heart Fail 9
173.
Zurück zum Zitat Munagala VK, Hart CY, Burnett JC Jr, Meyer DM, Redfield MM (2005) Ventricular structure and function in aged dogs with renal hypertension: a model of experimental diastolic heart failure. Circulation 111:1128–1135CrossRefPubMedPubMedCentral Munagala VK, Hart CY, Burnett JC Jr, Meyer DM, Redfield MM (2005) Ventricular structure and function in aged dogs with renal hypertension: a model of experimental diastolic heart failure. Circulation 111:1128–1135CrossRefPubMedPubMedCentral
174.
Zurück zum Zitat Schwarzl M, Hamdani N, Seiler S, Alogna A, Manninger M, Reilly S, Zirngast B, Kirsch A, Steendijk P, Verderber J, Zweiker D, Eller P, Höfler G, Schauer S, Eller K, Maechler H, Pieske BM, Linke WA, Casadei B, Post H (2015) A porcine model of hypertensive cardiomyopathy: implications for heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 309:H1407–H1418CrossRefPubMed Schwarzl M, Hamdani N, Seiler S, Alogna A, Manninger M, Reilly S, Zirngast B, Kirsch A, Steendijk P, Verderber J, Zweiker D, Eller P, Höfler G, Schauer S, Eller K, Maechler H, Pieske BM, Linke WA, Casadei B, Post H (2015) A porcine model of hypertensive cardiomyopathy: implications for heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 309:H1407–H1418CrossRefPubMed
175.
Zurück zum Zitat Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367CrossRefPubMed Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367:356–367CrossRefPubMed
176.
Zurück zum Zitat Leroux AA, Moonen ML, Pierard LA, Kolh P, Amory H (2012) Animal models of mitral regurgitation induced by mitral valve chordae tendineae rupture. J Heart Valve Dis 21:416–423PubMed Leroux AA, Moonen ML, Pierard LA, Kolh P, Amory H (2012) Animal models of mitral regurgitation induced by mitral valve chordae tendineae rupture. J Heart Valve Dis 21:416–423PubMed
177.
Zurück zum Zitat Watanabe S, Ishikawa K, Fish K et al (2017) Protein phosphatase inhibitor-1 gene therapy in a swine model of nonischemic heart failure. J Am Coll Cardiol 70:1744–1756CrossRefPubMedPubMedCentral Watanabe S, Ishikawa K, Fish K et al (2017) Protein phosphatase inhibitor-1 gene therapy in a swine model of nonischemic heart failure. J Am Coll Cardiol 70:1744–1756CrossRefPubMedPubMedCentral
178.
Zurück zum Zitat Beeri R, Yosefy C, Guerrero JL, Nesta F, Abedat S, Chaput M, del Monte F, Handschumacher MD, Stroud R, Sullivan S, Pugatsch T, Gilon D, Vlahakes GJ, Spinale FG, Hajjar RJ, Levine RA (2008) Mitral regurgitation augments post-myocardial infarction remodeling failure of hypertrophic compensation. J Am Coll Cardiol 51:476–486CrossRefPubMed Beeri R, Yosefy C, Guerrero JL, Nesta F, Abedat S, Chaput M, del Monte F, Handschumacher MD, Stroud R, Sullivan S, Pugatsch T, Gilon D, Vlahakes GJ, Spinale FG, Hajjar RJ, Levine RA (2008) Mitral regurgitation augments post-myocardial infarction remodeling failure of hypertrophic compensation. J Am Coll Cardiol 51:476–486CrossRefPubMed
179.
Zurück zum Zitat Naito N, Nishimura T, Takewa Y et al (2016) What is the optimal setting for a continuous-flow left ventricular assist device in severe mitral regurgitation? Artif Organs 40:1039–1045CrossRefPubMed Naito N, Nishimura T, Takewa Y et al (2016) What is the optimal setting for a continuous-flow left ventricular assist device in severe mitral regurgitation? Artif Organs 40:1039–1045CrossRefPubMed
180.
Zurück zum Zitat Chaput M, Handschumacher MD, Guerrero JL, Holmvang G, Dal-Bianco JP, Sullivan S, Vlahakes GJ, Hung J, Levine RA, for the Leducq Foundation MITRAL Transatlantic Network (2009) Mitral leaflet adaptation to ventricular remodeling: prospective changes in a model of ischemic mitral regurgitation. Circulation 120:S99–S103CrossRefPubMedPubMedCentral Chaput M, Handschumacher MD, Guerrero JL, Holmvang G, Dal-Bianco JP, Sullivan S, Vlahakes GJ, Hung J, Levine RA, for the Leducq Foundation MITRAL Transatlantic Network (2009) Mitral leaflet adaptation to ventricular remodeling: prospective changes in a model of ischemic mitral regurgitation. Circulation 120:S99–S103CrossRefPubMedPubMedCentral
181.
Zurück zum Zitat Ishikawa K, Watanabe S, Hammoudi N et al (2018) Reduced longitudinal contraction is associated with ischemic mitral regurgitation after posterior MI. Am J Physiol Heart Circ Physiol 314:H322–H329CrossRefPubMed Ishikawa K, Watanabe S, Hammoudi N et al (2018) Reduced longitudinal contraction is associated with ischemic mitral regurgitation after posterior MI. Am J Physiol Heart Circ Physiol 314:H322–H329CrossRefPubMed
182.
Zurück zum Zitat Lu X, Zhang ZD, Guo X, Choy JS, Yang J, Svendsen M, Kassab G (2014) Response of various conduit arteries in tachycardia- and volume overload-induced heart failure. PLoS One 9:e101645CrossRefPubMedPubMedCentral Lu X, Zhang ZD, Guo X, Choy JS, Yang J, Svendsen M, Kassab G (2014) Response of various conduit arteries in tachycardia- and volume overload-induced heart failure. PLoS One 9:e101645CrossRefPubMedPubMedCentral
183.
Zurück zum Zitat Woitek F, Zentilin L, Hoffman NE, Powers JC, Ottiger I, Parikh S, Kulczycki AM, Hurst M, Ring N, Wang T, Shaikh F, Gross P, Singh H, Kolpakov MA, Linke A, Houser SR, Rizzo V, Sabri A, Madesh M, Giacca M, Recchia FA (2015) Intracoronary cytoprotective gene therapy: a study of VEGF-B167 in a pre-clinical animal model of dilated cardiomyopathy. J Am Coll Cardiol 66:139–153CrossRefPubMedPubMedCentral Woitek F, Zentilin L, Hoffman NE, Powers JC, Ottiger I, Parikh S, Kulczycki AM, Hurst M, Ring N, Wang T, Shaikh F, Gross P, Singh H, Kolpakov MA, Linke A, Houser SR, Rizzo V, Sabri A, Madesh M, Giacca M, Recchia FA (2015) Intracoronary cytoprotective gene therapy: a study of VEGF-B167 in a pre-clinical animal model of dilated cardiomyopathy. J Am Coll Cardiol 66:139–153CrossRefPubMedPubMedCentral
184.
Zurück zum Zitat Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L (1998) Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res 82:482–495CrossRefPubMed Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L (1998) Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res 82:482–495CrossRefPubMed
185.
Zurück zum Zitat Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM (1997) Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 29:709–715CrossRefPubMed Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM (1997) Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol 29:709–715CrossRefPubMed
186.
Zurück zum Zitat Riegger AJ, Liebau G (1982) The renin-angiotensin-aldosterone system, antidiuretic hormone and sympathetic nerve activity in an experimental model of congestive heart failure in the dog. Clin Sci (Lond) 62:465–469CrossRef Riegger AJ, Liebau G (1982) The renin-angiotensin-aldosterone system, antidiuretic hormone and sympathetic nerve activity in an experimental model of congestive heart failure in the dog. Clin Sci (Lond) 62:465–469CrossRef
187.
Zurück zum Zitat Monnet E, Orton EC (1999) A canine model of heart failure by intracoronary adriamycin injection: hemodynamic and energetic results. J Card Fail 5:255–264CrossRefPubMed Monnet E, Orton EC (1999) A canine model of heart failure by intracoronary adriamycin injection: hemodynamic and energetic results. J Card Fail 5:255–264CrossRefPubMed
188.
Zurück zum Zitat Toyoda Y, Okada M, Kashem MA (1998) A canine model of dilated cardiomyopathy induced by repetitive intracoronary doxorubicin administration. J Thorac Cardiovasc Surg 115:1367–1373CrossRefPubMed Toyoda Y, Okada M, Kashem MA (1998) A canine model of dilated cardiomyopathy induced by repetitive intracoronary doxorubicin administration. J Thorac Cardiovasc Surg 115:1367–1373CrossRefPubMed
189.
Zurück zum Zitat Hyldebrandt JA, Siven E, Agger P et al (2015) Effects of milrinone and epinephrine or dopamine on biventricular function and hemodynamics in an animal model with right ventricular failure after pulmonary artery banding. Am J Physiol Heart Circ Physiol 309:H206–H212CrossRefPubMed Hyldebrandt JA, Siven E, Agger P et al (2015) Effects of milrinone and epinephrine or dopamine on biventricular function and hemodynamics in an animal model with right ventricular failure after pulmonary artery banding. Am J Physiol Heart Circ Physiol 309:H206–H212CrossRefPubMed
190.
Zurück zum Zitat Aguero J, Ishikawa K, Hadri L, Santos-Gallego C, Fish K, Hammoudi N, Chaanine A, Torquato S, Naim C, Ibanez B, Pereda D, García-Alvarez A, Fuster V, Sengupta PP, Leopold JA, Hajjar RJ (2014) Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model. Am J Physiol Heart Circ Physiol 307:H1204–H1215CrossRefPubMedPubMedCentral Aguero J, Ishikawa K, Hadri L, Santos-Gallego C, Fish K, Hammoudi N, Chaanine A, Torquato S, Naim C, Ibanez B, Pereda D, García-Alvarez A, Fuster V, Sengupta PP, Leopold JA, Hajjar RJ (2014) Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model. Am J Physiol Heart Circ Physiol 307:H1204–H1215CrossRefPubMedPubMedCentral
191.
Zurück zum Zitat van Duin RWB, Stam K, Cai Z et al (2018) Transition from post-capillary pulmonary hypertension to combined pre- and post-capillary pulmonary hypertension in swine: a key role for endothelin. J Physiol van Duin RWB, Stam K, Cai Z et al (2018) Transition from post-capillary pulmonary hypertension to combined pre- and post-capillary pulmonary hypertension in swine: a key role for endothelin. J Physiol
192.
Zurück zum Zitat Aguero J, Ishikawa K, Fish KM, Hammoudi N, Hadri L, Garcia-Alvarez A, Ibanez B, Fuster V, Hajjar RJ, Leopold JA (2015) Combination proximal pulmonary artery coiling and distal embolization induces chronic elevations in pulmonary artery pressure in swine. PLoS One 10:e0124526CrossRefPubMedPubMedCentral Aguero J, Ishikawa K, Fish KM, Hammoudi N, Hadri L, Garcia-Alvarez A, Ibanez B, Fuster V, Hajjar RJ, Leopold JA (2015) Combination proximal pulmonary artery coiling and distal embolization induces chronic elevations in pulmonary artery pressure in swine. PLoS One 10:e0124526CrossRefPubMedPubMedCentral
193.
Zurück zum Zitat Pereda D, Garcia-Lunar I, Sierra F et al (2016) Magnetic resonance characterization of cardiac adaptation and myocardial fibrosis in pulmonary hypertension secondary to systemic-to-pulmonary shunt. Circ Cardiovasc Imaging 9 Pereda D, Garcia-Lunar I, Sierra F et al (2016) Magnetic resonance characterization of cardiac adaptation and myocardial fibrosis in pulmonary hypertension secondary to systemic-to-pulmonary shunt. Circ Cardiovasc Imaging 9
194.
Zurück zum Zitat Sage E, Mercier O, Herve P et al (2012) Right lung ischemia induces contralateral pulmonary vasculopathy in an animal model. J Thorac Cardiovasc Surg 143:967–973CrossRefPubMed Sage E, Mercier O, Herve P et al (2012) Right lung ischemia induces contralateral pulmonary vasculopathy in an animal model. J Thorac Cardiovasc Surg 143:967–973CrossRefPubMed
Metadaten
Titel
Experimental models of cardiac physiology and pathology
verfasst von
Jae Gyun Oh
Changwon Kho
Roger J. Hajjar
Kiyotake Ishikawa
Publikationsdatum
22.01.2019
Verlag
Springer US
Erschienen in
Heart Failure Reviews / Ausgabe 4/2019
Print ISSN: 1382-4147
Elektronische ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-019-09769-2

Weitere Artikel der Ausgabe 4/2019

Heart Failure Reviews 4/2019 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.