Skip to main content
Erschienen in: Inflammation 1/2018

11.10.2017 | ORIGINAL ARTICLE

Experimental Study of the Protective Effect of Simvastatin on Lung Injury in Rats with Sepsis

Erschienen in: Inflammation | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

Simvastatin, which is primarily prescribed to lower cholesterol, may also mitigate lung injury caused by sepsis, although the mechanisms remain elusive. This study aimed to evaluate the protective effect of simvastatin on acute lung injury in rats with sepsis and to investigate possible mechanisms. Male Wistar rats were pretreated with simvastatin (0.2 μg/g) for 1 week before cecal ligation and puncture. Treatment with simvastatin demonstrated significant decreases in the concentration of protein, TNF-α, IL-1β, IL-6, and lipocalin 2, and the number of polymorphonuclear neutrophils in bronchoalveolar lavage fluid in septic rats. In addition, simvastatin also reduced levels of Evans blue, malondialdehyde, 8-hydroxy-2′-deoxyguanosine, and wet/dry lung weight ratios, and increased the activity of superoxide dismutase in lung tissue. Furthermore, expression levels of TLR4, NF-κB p65, and active caspase-3 proteins and Bax mRNA were also decreased by simvastatin. H&E staining showed that severe lung injury occurred in the sepsis group and that lung injury was reduced by treatment with simvastatin. In conclusion, simvastatin improved endothelial permeability and mitigated the inflammatory response of lung tissue, the oxidative stress response, and cell apoptosis by inhibiting the TLR4/NF-κB signaling pathway, thereby alleviating sepsis-induced acute lung injury in rats.
Literatur
2.
Zurück zum Zitat Do–Umehara, H.C., C. Chen, D. Urich, L. Zhou, J. Qiu, S. Jang, A. Zander, M.A. Baker, M. Eilers, et al. 2013. Suppression of inflammation and acute lung injury by Mizl via repression of C/EBP-δ. Nature Immunology 14: 46l–469. Do–Umehara, H.C., C. Chen, D. Urich, L. Zhou, J. Qiu, S. Jang, A. Zander, M.A. Baker, M. Eilers, et al. 2013. Suppression of inflammation and acute lung injury by Mizl via repression of C/EBP-δ. Nature Immunology 14: 46l–469.
3.
Zurück zum Zitat Tauseef, M., N. Knezevic, K.R. Chava, M. Smith, S. Sukriti, N. Gianaris, A.G. Obukhov, S.M. Vogel, D.E. Schraufnagel, A. Dietrich, et al. 2012. TLR4 activation of TRPC-6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. The Journal of Experimental Medicine 209: 1953–1968.CrossRefPubMedPubMedCentral Tauseef, M., N. Knezevic, K.R. Chava, M. Smith, S. Sukriti, N. Gianaris, A.G. Obukhov, S.M. Vogel, D.E. Schraufnagel, A. Dietrich, et al. 2012. TLR4 activation of TRPC-6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. The Journal of Experimental Medicine 209: 1953–1968.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat He, Z., X. Chen, S. Wang, and Z. Zou. 2014. Toll-like receptor 4 monoclonal antibody attenuates lipopolysaccharide-induced acute lung injury in mice. Experimental and Therapeutic Medicine 8: 871–876.CrossRefPubMedPubMedCentral He, Z., X. Chen, S. Wang, and Z. Zou. 2014. Toll-like receptor 4 monoclonal antibody attenuates lipopolysaccharide-induced acute lung injury in mice. Experimental and Therapeutic Medicine 8: 871–876.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Zhang, M., L. Zou, Y. Feng, Y.J. Chen, Q. Zhou, F. Ichinose, and W. Chao. 2014. Toll-like receptor 4 is essential to preserving cardiac function and survival in low grade polymicrobial sepsis. Anesthesiology 121: 1270–1280.CrossRefPubMedPubMedCentral Zhang, M., L. Zou, Y. Feng, Y.J. Chen, Q. Zhou, F. Ichinose, and W. Chao. 2014. Toll-like receptor 4 is essential to preserving cardiac function and survival in low grade polymicrobial sepsis. Anesthesiology 121: 1270–1280.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Hackam, D.G., M. Mamdani, P. Li, and D.A. Redelmeier. 2006. Statins and sepsis in patients with cardiovascular disease, a population-based cohort analysis. Lancet 367: 413–418.CrossRefPubMed Hackam, D.G., M. Mamdani, P. Li, and D.A. Redelmeier. 2006. Statins and sepsis in patients with cardiovascular disease, a population-based cohort analysis. Lancet 367: 413–418.CrossRefPubMed
8.
Zurück zum Zitat Koptertides, P., and M.E. Falagas. 2009. Statins for sepsis: a critical and updated review. Clinical Microbiology and Infection 15: 325–334.CrossRef Koptertides, P., and M.E. Falagas. 2009. Statins for sepsis: a critical and updated review. Clinical Microbiology and Infection 15: 325–334.CrossRef
9.
Zurück zum Zitat Zhang, S., M. Rahman, S. Zhang, Z. Qi, and H. Thorlacius. 2011. Simvastatin antagonizes CD40L secretion, CXC chemokine formation, and pulmonary infiltration of neutrophils in abdominal sepsis. Journal of Leukocyte Biology 89: 735–742.CrossRefPubMed Zhang, S., M. Rahman, S. Zhang, Z. Qi, and H. Thorlacius. 2011. Simvastatin antagonizes CD40L secretion, CXC chemokine formation, and pulmonary infiltration of neutrophils in abdominal sepsis. Journal of Leukocyte Biology 89: 735–742.CrossRefPubMed
10.
Zurück zum Zitat Rittirsch, D., M.S. Huber-Lang, M.A. Flierl, and P.A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4: 31–36.CrossRefPubMedPubMedCentral Rittirsch, D., M.S. Huber-Lang, M.A. Flierl, and P.A. Ward. 2009. Immunodesign of experimental sepsis by cecal ligation and puncture. Nature Protocols 4: 31–36.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Han, J., R. Ding, D. Zhao, Z. Zhang, and X. Ma. 2013. Unfractionated heparin attenuates lung vascular leak in a mouse model of sepsis: role of RhoA/Rho kinase pathway. Thrombosis Research 132: 42–47.CrossRef Han, J., R. Ding, D. Zhao, Z. Zhang, and X. Ma. 2013. Unfractionated heparin attenuates lung vascular leak in a mouse model of sepsis: role of RhoA/Rho kinase pathway. Thrombosis Research 132: 42–47.CrossRef
12.
Zurück zum Zitat Wu, R., W. Dong, M. Zhou, F. Zhang, C.P. Marini, T.S. Ravikumar, and P. Wang. 2007. Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. American Journal of Respiratory and Critical Care Medicine 176: 805–813.CrossRefPubMedPubMedCentral Wu, R., W. Dong, M. Zhou, F. Zhang, C.P. Marini, T.S. Ravikumar, and P. Wang. 2007. Ghrelin attenuates sepsis-induced acute lung injury and mortality in rats. American Journal of Respiratory and Critical Care Medicine 176: 805–813.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369: 840–851.CrossRefPubMed Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369: 840–851.CrossRefPubMed
14.
Zurück zum Zitat Tasaka, S., H. Koh, W. Yamada, M. Shimizu, Y. Ogawa, N. Hasegawa, K. Yamaguchi, Y. Ishii, S.E. Richer, C.M. Doerschuk, et al. 2005. Attenuation of endotoxin-induced acute lung injury by the Rho-associated kinase inhibitor. Y-27632. American Journal of Respiratory Cell and Molecular Biology 32: 504–5l0.CrossRefPubMed Tasaka, S., H. Koh, W. Yamada, M. Shimizu, Y. Ogawa, N. Hasegawa, K. Yamaguchi, Y. Ishii, S.E. Richer, C.M. Doerschuk, et al. 2005. Attenuation of endotoxin-induced acute lung injury by the Rho-associated kinase inhibitor. Y-27632. American Journal of Respiratory Cell and Molecular Biology 32: 504–5l0.CrossRefPubMed
16.
Zurück zum Zitat Prauchner, C.A. 2017. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns 43: 471–485.CrossRefPubMed Prauchner, C.A. 2017. Oxidative stress in sepsis: pathophysiological implications justifying antioxidant co-therapy. Burns 43: 471–485.CrossRefPubMed
17.
Zurück zum Zitat Gil, H.W., S.J. Seok, D.S. Jeong, J.O. Yang, E.Y. Lee, and S.Y. Hong. 2010. Plasma level of malondialdehyde in the case of acute qaraquat intoxicatin. Clinical Toxicology (Philadelphia, Pa.) 48: 149–152.CrossRef Gil, H.W., S.J. Seok, D.S. Jeong, J.O. Yang, E.Y. Lee, and S.Y. Hong. 2010. Plasma level of malondialdehyde in the case of acute qaraquat intoxicatin. Clinical Toxicology (Philadelphia, Pa.) 48: 149–152.CrossRef
18.
Zurück zum Zitat Byrd-Leikr, C.A., E.F. Block, K. Takeda, S. Akira, and A. Ding. 2001. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. European Journal of Immunology 31: 2448–2457.CrossRef Byrd-Leikr, C.A., E.F. Block, K. Takeda, S. Akira, and A. Ding. 2001. The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol. European Journal of Immunology 31: 2448–2457.CrossRef
21.
Zurück zum Zitat Hu, R., H. Xu, H. Jiang, Y. Zhang, and Y. Sun. 2013. The role of TLR4 in the pathogenesis of indirect acute lung injury. Frontiers in Bioscience 18: 1244–1255.CrossRef Hu, R., H. Xu, H. Jiang, Y. Zhang, and Y. Sun. 2013. The role of TLR4 in the pathogenesis of indirect acute lung injury. Frontiers in Bioscience 18: 1244–1255.CrossRef
22.
Zurück zum Zitat Li, W.C., Z.J. Zou, M.C. Zhou, L. Chen, L. Zhou, Y.K. Zheng, and Z.J. He. 2015. Effects of simvastatin on the expression of inducible NOS in acute lung injury in septic rats. International Journal of Clinical and Experimental Pathology 8: 15106–15111.PubMedPubMedCentral Li, W.C., Z.J. Zou, M.C. Zhou, L. Chen, L. Zhou, Y.K. Zheng, and Z.J. He. 2015. Effects of simvastatin on the expression of inducible NOS in acute lung injury in septic rats. International Journal of Clinical and Experimental Pathology 8: 15106–15111.PubMedPubMedCentral
23.
Zurück zum Zitat Gil, M., Y.K. Kim, S.B. Hong, and K.J. Lee. 2016. Naringin decreases TNF-α and HMGB1 release from LPS-stimulated macrophages and improves survival in a CLP-induced sepsis mice. PloS One 11: e0164186.CrossRefPubMedPubMedCentral Gil, M., Y.K. Kim, S.B. Hong, and K.J. Lee. 2016. Naringin decreases TNF-α and HMGB1 release from LPS-stimulated macrophages and improves survival in a CLP-induced sepsis mice. PloS One 11: e0164186.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Borregaard, N., and J.B. Cowland. 2006. Neutrophil gelatinase-associated lipocalin, a siderophore-binding eukaryotic protein. Biology of Metals 19: 211–215. Borregaard, N., and J.B. Cowland. 2006. Neutrophil gelatinase-associated lipocalin, a siderophore-binding eukaryotic protein. Biology of Metals 19: 211–215.
25.
Zurück zum Zitat Aigner, F., H.T. Maier, H.G. Schwelberger, E.A. Wallnöfer, A. Amberger, P. Obrist, T. Berger, T.W. Mak, M. Maglione, R. Margreiter, et al. 2007. Lipocalin-2 regulates the inflammatory response during ischemia and reperfusion of the transplanted heart. American Journal of Transplantation 7: 779–788.CrossRefPubMed Aigner, F., H.T. Maier, H.G. Schwelberger, E.A. Wallnöfer, A. Amberger, P. Obrist, T. Berger, T.W. Mak, M. Maglione, R. Margreiter, et al. 2007. Lipocalin-2 regulates the inflammatory response during ischemia and reperfusion of the transplanted heart. American Journal of Transplantation 7: 779–788.CrossRefPubMed
26.
Zurück zum Zitat Roudkenar, M.H., Y. Kuwahara, T. Baba, A.M. Roushandeh, S. Ebishima, S. Abe, Y. Ohkubo, and M. Fukumoto. 2007. Oxidative stress induced lipocalin 2 gene expression: addressing its expression under the harmful conditions. Journal of Radiation Research 48: 39–44.CrossRefPubMed Roudkenar, M.H., Y. Kuwahara, T. Baba, A.M. Roushandeh, S. Ebishima, S. Abe, Y. Ohkubo, and M. Fukumoto. 2007. Oxidative stress induced lipocalin 2 gene expression: addressing its expression under the harmful conditions. Journal of Radiation Research 48: 39–44.CrossRefPubMed
27.
Zurück zum Zitat Connor, A.J., J.D. Laskin, and D.L. Laskin. 2012. Ozone-induced lung injury and sterile inflammation. Role of toll-like receptor 4. Experimental and Molecular Pathology 92: 229–235.CrossRefPubMedPubMedCentral Connor, A.J., J.D. Laskin, and D.L. Laskin. 2012. Ozone-induced lung injury and sterile inflammation. Role of toll-like receptor 4. Experimental and Molecular Pathology 92: 229–235.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Shapiro, N.I., S. Trzeciak, J.E. Hollander, R. Birkhahn, R. Otero, T.M. Osborn, E. Moretti, H.B. Nguyen, K.J. Gunnerson, D. Milzman, et al. 2009. A prospective, muhicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Critical Care Medicine 37: 96–104.CrossRefPubMed Shapiro, N.I., S. Trzeciak, J.E. Hollander, R. Birkhahn, R. Otero, T.M. Osborn, E. Moretti, H.B. Nguyen, K.J. Gunnerson, D. Milzman, et al. 2009. A prospective, muhicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Critical Care Medicine 37: 96–104.CrossRefPubMed
29.
Zurück zum Zitat Sultan, S., M. Pascucci, S. Ahmad, I.A. Malik, A. Bianchi, P. Ramadori, G. Ahmad, and G. Ramadori. 2012. Lipocalin-2 is a major acute-phase protein in a rat and mouse model of sterile abscess. Shock 37: 191–196.PubMed Sultan, S., M. Pascucci, S. Ahmad, I.A. Malik, A. Bianchi, P. Ramadori, G. Ahmad, and G. Ramadori. 2012. Lipocalin-2 is a major acute-phase protein in a rat and mouse model of sterile abscess. Shock 37: 191–196.PubMed
30.
Zurück zum Zitat Hai, Y., X. Zhou, Q. Dai, Y. Fan, and X. Huang. 2015. Hydrogen rich saline ameliorates lung injury associated with cecal ligation and puncture induced sepsis in rats. Experimental and Molecular Pathology 98: 268–276.CrossRef Hai, Y., X. Zhou, Q. Dai, Y. Fan, and X. Huang. 2015. Hydrogen rich saline ameliorates lung injury associated with cecal ligation and puncture induced sepsis in rats. Experimental and Molecular Pathology 98: 268–276.CrossRef
31.
Zurück zum Zitat Bannerman, D.D., and S.E. Goldblum. 2003. Mechanisms of bacterial lipopolysaccharide–induced endothelial apoptosis. American Journal of Physiology-Lung Cellular and Molecular Physiology 284: L899–L914.CrossRefPubMed Bannerman, D.D., and S.E. Goldblum. 2003. Mechanisms of bacterial lipopolysaccharide–induced endothelial apoptosis. American Journal of Physiology-Lung Cellular and Molecular Physiology 284: L899–L914.CrossRefPubMed
Metadaten
Titel
Experimental Study of the Protective Effect of Simvastatin on Lung Injury in Rats with Sepsis
Publikationsdatum
11.10.2017
Erschienen in
Inflammation / Ausgabe 1/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0668-4

Weitere Artikel der Ausgabe 1/2018

Inflammation 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.