Skip to main content
Erschienen in:

27.02.2024 | Original Article

Exploring subtypes of multiple sclerosis through unsupervised machine learning of automated fiber quantification

verfasst von: Xueheng Liang, Zichun Yan, Yongmei Li

Erschienen in: Japanese Journal of Radiology | Ausgabe 6/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose

This study aimed to subtype multiple sclerosis (MS) patients using unsupervised machine learning on white matter (WM) fiber tracts and investigate the implications for cognitive function and disability outcomes.

Materials and methods

We utilized the automated fiber quantification (AFQ) method to extract 18 WM fiber tracts from the imaging data of 103 MS patients in total. Unsupervised machine learning techniques were applied to conduct cluster analysis and identify distinct subtypes. Clinical and diffusion tensor imaging (DTI) metrics were compared among the subtypes, and survival analysis was conducted to examine disability progression and cognitive impairment.

Results

The clustering analysis revealed three distinct subtypes with variations in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Significant differences were observed in clinical and DTI metrics among the subtypes. Subtype 3 showed the fastest disability progression and cognitive decline, while Subtype 2 exhibited a slower rate, and Subtype 1 fell in between.

Conclusions

Subtyping MS based on WM fiber tracts using unsupervised machine learning identified distinct subtypes with significant cognitive and disability differences. WM abnormalities may serve as biomarkers for predicting disease outcomes, enabling personalized treatment strategies and prognostic predictions for MS patients.
Literatur
1.
Zurück zum Zitat Stadlbauer A, Marhold F, Oberndorfer S, Heinz G, Buchfelder M, Kinfe TM, et al. Radiophysiomics: brain tumors classification by machine learning and physiological MRI data. Cancers (Basel). 2022;14(10):2363.CrossRefPubMedPubMedCentral Stadlbauer A, Marhold F, Oberndorfer S, Heinz G, Buchfelder M, Kinfe TM, et al. Radiophysiomics: brain tumors classification by machine learning and physiological MRI data. Cancers (Basel). 2022;14(10):2363.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, et al. Multiple sclerosis diagnosis using machine learning and deep learning: challenges and opportunities. Sens (Basel). 2022;22(20):7856.CrossRef Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, et al. Multiple sclerosis diagnosis using machine learning and deep learning: challenges and opportunities. Sens (Basel). 2022;22(20):7856.CrossRef
4.
5.
Zurück zum Zitat Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017;140(3):527–46.PubMed Correale J, Gaitán MI, Ysrraelit MC, Fiol MP. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain. 2017;140(3):527–46.PubMed
6.
Zurück zum Zitat Eshaghi A, Young AL, Wijeratne PA, Prados F, Arnold DL, Narayanan S, et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat Commun. 2021;12(1):2078.CrossRefPubMedPubMedCentral Eshaghi A, Young AL, Wijeratne PA, Prados F, Arnold DL, Narayanan S, et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat Commun. 2021;12(1):2078.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Lassmann H. Mechanisms of white matter damage in multiple sclerosis. Glia. 2014;62(11):1816–30.CrossRefPubMed Lassmann H. Mechanisms of white matter damage in multiple sclerosis. Glia. 2014;62(11):1816–30.CrossRefPubMed
8.
Zurück zum Zitat Sbardella E, Petsas N, Tona F, Prosperini L, Raz E, Pace G, et al. Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients. PLoS One. 2013;8(5): e63250.CrossRefPubMedPubMedCentral Sbardella E, Petsas N, Tona F, Prosperini L, Raz E, Pace G, et al. Assessing the correlation between grey and white matter damage with motor and cognitive impairment in multiple sclerosis patients. PLoS One. 2013;8(5): e63250.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Andersen O, Hildeman A, Longfils M, Tedeholm H, Skoog B, Tian W, et al. Diffusion tensor imaging in multiple sclerosis at different final outcomes. Acta Neurol Scand. 2018;137(2):165–73.CrossRefPubMed Andersen O, Hildeman A, Longfils M, Tedeholm H, Skoog B, Tian W, et al. Diffusion tensor imaging in multiple sclerosis at different final outcomes. Acta Neurol Scand. 2018;137(2):165–73.CrossRefPubMed
10.
Zurück zum Zitat Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM. Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One. 2012;7(11): e49790.CrossRefPubMedPubMedCentral Yeatman JD, Dougherty RF, Myall NJ, Wandell BA, Feldman HM. Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One. 2012;7(11): e49790.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Chen HF, Huang LL, Li HY, Qian Y, Yang D, Qing Z, et al. Microstructural disruption of the right inferior fronto-occipital and inferior longitudinal fasciculus contributes to WMH-related cognitive impairment. CNS Neurosci Ther. 2020;26(5):576–88.CrossRefPubMedPubMedCentral Chen HF, Huang LL, Li HY, Qian Y, Yang D, Qing Z, et al. Microstructural disruption of the right inferior fronto-occipital and inferior longitudinal fasciculus contributes to WMH-related cognitive impairment. CNS Neurosci Ther. 2020;26(5):576–88.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Sun H, Lui S, Yao L, Deng W, Xiao Y, Zhang W, et al. Two Patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiat. 2015;72(7):678–86.CrossRef Sun H, Lui S, Yao L, Deng W, Xiao Y, Zhang W, et al. Two Patterns of white matter abnormalities in medication-naive patients with first-episode schizophrenia revealed by diffusion tensor imaging and cluster analysis. JAMA Psychiat. 2015;72(7):678–86.CrossRef
13.
Zurück zum Zitat Shu M, Yu C, Shi Q, Li Y, Niu K, Zhang S, et al. Alterations in white matter integrity and asymmetry in patients with benign childhood epilepsy with centrotemporal spikes and childhood absence epilepsy: an automated fiber quantification tractography study. Epilepsy Behav. 2021;123: 108235.CrossRefPubMed Shu M, Yu C, Shi Q, Li Y, Niu K, Zhang S, et al. Alterations in white matter integrity and asymmetry in patients with benign childhood epilepsy with centrotemporal spikes and childhood absence epilepsy: an automated fiber quantification tractography study. Epilepsy Behav. 2021;123: 108235.CrossRefPubMed
14.
Zurück zum Zitat Yan Z, Wang X, Zhu Q, Shi Z, Chen X, Han Y, et al. Alterations in white matter fiber tracts characterized by automated fiber-tract quantification and their correlations with cognitive impairment in neuromyelitis optica spectrum disorder patients. Front Neurosci. 2022;16: 904309.CrossRefPubMedPubMedCentral Yan Z, Wang X, Zhu Q, Shi Z, Chen X, Han Y, et al. Alterations in white matter fiber tracts characterized by automated fiber-tract quantification and their correlations with cognitive impairment in neuromyelitis optica spectrum disorder patients. Front Neurosci. 2022;16: 904309.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.CrossRefPubMed Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.CrossRefPubMed
16.
Zurück zum Zitat Amato MP, Morra VB, Falautano M, Ghezzi A, Goretti B, Patti F, et al. Correction to: cognitive assessment in multiple sclerosis-an italian consensus. Neurol Sci. 2019;40(5):1097.CrossRefPubMed Amato MP, Morra VB, Falautano M, Ghezzi A, Goretti B, Patti F, et al. Correction to: cognitive assessment in multiple sclerosis-an italian consensus. Neurol Sci. 2019;40(5):1097.CrossRefPubMed
17.
Zurück zum Zitat Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36(3):630–44.CrossRefPubMed Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36(3):630–44.CrossRefPubMed
18.
19.
Zurück zum Zitat Syakur MA, Khotimah BK, Rochman EMS, Satoto BD. Integration K-means clustering method and elbow method for identification of the best customer profile cluster. IOP Conf Ser Mater Sci Eng. 2018;336(1): 012017.CrossRef Syakur MA, Khotimah BK, Rochman EMS, Satoto BD. Integration K-means clustering method and elbow method for identification of the best customer profile cluster. IOP Conf Ser Mater Sci Eng. 2018;336(1): 012017.CrossRef
20.
Zurück zum Zitat Hori M, Maekawa T, Kamiya K, Hagiwara A, Goto M, Takemura MY, et al. Advanced diffusion MR imaging for multiple sclerosis in the brain and spinal cord. Magn Reson Med Sci. 2022;21(1):58–70.CrossRefPubMedPubMedCentral Hori M, Maekawa T, Kamiya K, Hagiwara A, Goto M, Takemura MY, et al. Advanced diffusion MR imaging for multiple sclerosis in the brain and spinal cord. Magn Reson Med Sci. 2022;21(1):58–70.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Lopez-Soley E, Martinez-Heras E, Solana E, Solanes A, Radua J, Vivo F, et al. Diffusion tensor imaging metrics associated with future disability in multiple sclerosis. Sci Rep. 2023;13(1):3565.CrossRefPubMedPubMedCentral Lopez-Soley E, Martinez-Heras E, Solana E, Solanes A, Radua J, Vivo F, et al. Diffusion tensor imaging metrics associated with future disability in multiple sclerosis. Sci Rep. 2023;13(1):3565.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Cercignani M, Gandini W-K. From micro- to macro-structures in multiple sclerosis: what is the added value of diffusion imaging. NMR Biomed. 2019;32(4): e3888.CrossRefPubMed Cercignani M, Gandini W-K. From micro- to macro-structures in multiple sclerosis: what is the added value of diffusion imaging. NMR Biomed. 2019;32(4): e3888.CrossRefPubMed
24.
Zurück zum Zitat Rocca MA, Amato MP, De Stefano N, Enzinger C, Geurts JJ, Penner IK, et al. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 2015;14(3):302–17.CrossRefPubMed Rocca MA, Amato MP, De Stefano N, Enzinger C, Geurts JJ, Penner IK, et al. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 2015;14(3):302–17.CrossRefPubMed
25.
Zurück zum Zitat Fjell AM, Sneve MH, Grydeland H, Storsve AB, Amlien IK, Yendiki A, et al. Relationship between structural and functional connectivity change across the adult lifespan: a longitudinal investigation. Hum Brain Mapp. 2017;38(1):561–73.CrossRefPubMed Fjell AM, Sneve MH, Grydeland H, Storsve AB, Amlien IK, Yendiki A, et al. Relationship between structural and functional connectivity change across the adult lifespan: a longitudinal investigation. Hum Brain Mapp. 2017;38(1):561–73.CrossRefPubMed
26.
Zurück zum Zitat Lawes IN, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, et al. Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage. 2008;39(1):62–79.CrossRefPubMed Lawes IN, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, et al. Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage. 2008;39(1):62–79.CrossRefPubMed
27.
Zurück zum Zitat Audoin B, Au Duong MV, Ranjeva JP, Ibarrola D, Malikova I, Confort-Gouny S, et al. Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Hum Brain Mapp. 2005;24(3):216–28.CrossRefPubMed Audoin B, Au Duong MV, Ranjeva JP, Ibarrola D, Malikova I, Confort-Gouny S, et al. Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Hum Brain Mapp. 2005;24(3):216–28.CrossRefPubMed
28.
Zurück zum Zitat Degraeve B, Sequeira H, Mecheri H, Lenne B. Corpus callosum damage to account for cognitive, affective, and social-cognitive dysfunctions in multiple sclerosis: a model of callosal disconnection syndrome? Mult Scler. 2023;29(2):160–8.CrossRefPubMed Degraeve B, Sequeira H, Mecheri H, Lenne B. Corpus callosum damage to account for cognitive, affective, and social-cognitive dysfunctions in multiple sclerosis: a model of callosal disconnection syndrome? Mult Scler. 2023;29(2):160–8.CrossRefPubMed
29.
Zurück zum Zitat Elliott C, Belachew S, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, et al. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain. 2019;142(9):2787–99.CrossRefPubMedPubMedCentral Elliott C, Belachew S, Wolinsky JS, Hauser SL, Kappos L, Barkhof F, et al. Chronic white matter lesion activity predicts clinical progression in primary progressive multiple sclerosis. Brain. 2019;142(9):2787–99.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Herbert E, Engel-Hills P, Hattingh C, Fouche JP, Kidd M, Lochner C, et al. Fractional anisotropy of white matter, disability and blood iron parameters in multiple sclerosis. Metab Brain Dis. 2018;33(2):545–57.CrossRefPubMed Herbert E, Engel-Hills P, Hattingh C, Fouche JP, Kidd M, Lochner C, et al. Fractional anisotropy of white matter, disability and blood iron parameters in multiple sclerosis. Metab Brain Dis. 2018;33(2):545–57.CrossRefPubMed
31.
Zurück zum Zitat Cordani C, Preziosa P, Valsasina P, Meani A, Pagani E, Morozumi T, et al. MRI of transcallosal white matter helps to predict motor impairment in multiple sclerosis. Radiology. 2022;302(3):639–49.CrossRefPubMed Cordani C, Preziosa P, Valsasina P, Meani A, Pagani E, Morozumi T, et al. MRI of transcallosal white matter helps to predict motor impairment in multiple sclerosis. Radiology. 2022;302(3):639–49.CrossRefPubMed
32.
Zurück zum Zitat Tovar-Moll F, Evangelou IE, Chiu AW, Auh S, Chen C, Ehrmantraut M, et al. Diffuse and focal corticospinal tract disease and its impact on patient disability in multiple sclerosis. J Neuroimaging. 2015;25(2):200–6.CrossRefPubMed Tovar-Moll F, Evangelou IE, Chiu AW, Auh S, Chen C, Ehrmantraut M, et al. Diffuse and focal corticospinal tract disease and its impact on patient disability in multiple sclerosis. J Neuroimaging. 2015;25(2):200–6.CrossRefPubMed
33.
Zurück zum Zitat Poole VN, Wooten T, Iloputaife I, Milberg W, Esterman M, Lipsitz LA. Compromised prefrontal structure and function are associated with slower walking in older adults. Neuroimage Clin. 2018;20:620–6.CrossRefPubMedPubMedCentral Poole VN, Wooten T, Iloputaife I, Milberg W, Esterman M, Lipsitz LA. Compromised prefrontal structure and function are associated with slower walking in older adults. Neuroimage Clin. 2018;20:620–6.CrossRefPubMedPubMedCentral
Metadaten
Titel
Exploring subtypes of multiple sclerosis through unsupervised machine learning of automated fiber quantification
verfasst von
Xueheng Liang
Zichun Yan
Yongmei Li
Publikationsdatum
27.02.2024
Verlag
Springer Nature Singapore
Erschienen in
Japanese Journal of Radiology / Ausgabe 6/2024
Print ISSN: 1867-1071
Elektronische ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-024-01535-1

Neu im Fachgebiet Radiologie

KI-gestütztes Mammografiescreening überzeugt im Praxistest

Mit dem Einsatz künstlicher Intelligenz lässt sich die Detektionsrate im Mammografiescreening offenbar deutlich steigern. Mehr unnötige Zusatzuntersuchungen sind laut der Studie aus Deutschland nicht zu befürchten.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.