Skip to main content
Erschienen in: Inflammation 1-2/2007

01.04.2007

Expression of β-1,4-Galactosyltransferase-I in Rat during Inflammation

verfasst von: Ji Qian, Chun Cheng, Haiou Liu, Jianping Chen, Meijuan Yan, Shuqiong Niu, Jing Qin, Linlin Sun, Lei Liu, Jianxin Gu, Aiguo Shen

Erschienen in: Inflammation | Ausgabe 1-2/2007

Einloggen, um Zugang zu erhalten

Abstract

β-1,4-Galactosyltransferase-I (β-1,4-GalT-I) which is one of the best-studied glycosyltransferases, plays a key role in the synthesis of selectin ligands such as sialy Lewis (sLe x ) and sulfated sLe x . Previous studies showed that inflammatory responses of β-1,4-GalT-I-deficient mice were impaired because of the defect in selectin-ligand biosynthesis. However, the expression of β-1,4-GalT-I during inflammation and its biological function remains to be elucidated. Real-time PCR showed that intraperitoneal administration of LPS strongly induced β-1,4-GalT-I mRNA expression in the lung, heart, liver, spleen, kidney, lymph node, hippocampus, and testis, as well as in the cerebral cortex. In the rat lung, liver and testis, LPS stimulation of β-1,4-GalT-I mRNA expression is time-dependent and biphasic. Lectin-fluorescent staining with RCA-I showed that LPS induced expression of galactose-containing glycans in rat lung and liver to the higher lever. Morphology analysis observed that galactose-containing glycans and β-1,4-GalT-I mRNA was mostly expressed in neutrophils, macrophages and endothelial cells. These findings indicated that β-1,4-GalT-I may play an important role in the inflammation reaction.
Literatur
1.
Zurück zum Zitat Ulevitch, R. J., and P. S. Tobias. 1995. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13:437–457.PubMedCrossRef Ulevitch, R. J., and P. S. Tobias. 1995. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 13:437–457.PubMedCrossRef
2.
Zurück zum Zitat Cines, D. B., E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, and D. M. Stern. 1998. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 91:3527–3561.PubMed Cines, D. B., E. S. Pollak, C. A. Buck, J. Loscalzo, G. A. Zimmerman, R. P. McEver, and D. M. Stern. 1998. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 91:3527–3561.PubMed
3.
Zurück zum Zitat Springer, T. A. 1995. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57:827–872.PubMedCrossRef Springer, T. A. 1995. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol. 57:827–872.PubMedCrossRef
4.
Zurück zum Zitat McEver, R. P., K. L. Moore, and R. D. Cummings. 1995. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J. Biol. Chem. 270:11025–11028.PubMedCrossRef McEver, R. P., K. L. Moore, and R. D. Cummings. 1995. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J. Biol. Chem. 270:11025–11028.PubMedCrossRef
5.
Zurück zum Zitat Lowe J. B. 1997. Selectin ligands, leukocyte trafficking, and fucosyltransferase genes. Kidney Int. 51:1418–1426.PubMed Lowe J. B. 1997. Selectin ligands, leukocyte trafficking, and fucosyltransferase genes. Kidney Int. 51:1418–1426.PubMed
6.
Zurück zum Zitat Mitsuoka, C., M. Sawada-Kasugai, and K. Ando-Furui. 1998. Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis X. J. Biol. Chem. 273:11225–11233.PubMedCrossRef Mitsuoka, C., M. Sawada-Kasugai, and K. Ando-Furui. 1998. Identification of a major carbohydrate capping group of the L-selectin ligand on high endothelial venules in human lymph nodes as 6-sulfo sialyl Lewis X. J. Biol. Chem. 273:11225–11233.PubMedCrossRef
7.
Zurück zum Zitat Hemmerich, S., and S. D. Rosen. 2000. Carbohydrate sulfotransferases in lymphocyte homing. Glycobiology. 10:849–856.PubMedCrossRef Hemmerich, S., and S. D. Rosen. 2000. Carbohydrate sulfotransferases in lymphocyte homing. Glycobiology. 10:849–856.PubMedCrossRef
8.
Zurück zum Zitat Furukawa, K., and T. Sato. 1999. Beta-1,4-Galactosylation of N-glycans is a complex process. J. Biochim. Biophys. Acta. 1473: 54–66. Furukawa, K., and T. Sato. 1999. Beta-1,4-Galactosylation of N-glycans is a complex process. J. Biochim. Biophys. Acta. 1473: 54–66.
9.
Zurück zum Zitat Shur, B. D., S. Evans, and Q. Lu. 1998. Cell surface galactosyltransferase: current issues. Glycoconj. J. 15:537–548.PubMedCrossRef Shur, B. D., S. Evans, and Q. Lu. 1998. Cell surface galactosyltransferase: current issues. Glycoconj. J. 15:537–548.PubMedCrossRef
10.
Zurück zum Zitat Miller, D. J., M. B. Macek, and B. D. Shur. 1992. Complementarity between sperm surface beta-l,4-galactosyltransferase and egg-coat ZP3 mediates sperm-egg binding. J. Nat. 357:589–593.CrossRef Miller, D. J., M. B. Macek, and B. D. Shur. 1992. Complementarity between sperm surface beta-l,4-galactosyltransferase and egg-coat ZP3 mediates sperm-egg binding. J. Nat. 357:589–593.CrossRef
11.
Zurück zum Zitat Hathaway, H. J., and B. D. Shur. 1992. Cell surface beta-l,4-galactosyltransferase functions during neural crest cell migration and neurulation in vivo. J. Cell Biol. 117:369–382.PubMedCrossRef Hathaway, H. J., and B. D. Shur. 1992. Cell surface beta-l,4-galactosyltransferase functions during neural crest cell migration and neurulation in vivo. J. Cell Biol. 117:369–382.PubMedCrossRef
12.
Zurück zum Zitat Maillet, C. M., and B. D. Shur. 1994. Perturbing cell surface β-1,4-galactosyltransferase on F9 embryonal carcinoma cells arrests cell growth and induces laminin synthesis. J. Cell Sci. 107:1713–1724.PubMed Maillet, C. M., and B. D. Shur. 1994. Perturbing cell surface β-1,4-galactosyltransferase on F9 embryonal carcinoma cells arrests cell growth and induces laminin synthesis. J. Cell Sci. 107:1713–1724.PubMed
13.
Zurück zum Zitat Huang, Q. L., B. D. Shur, and P. C. Begovac. 1995. Overexpression cell surface β-1,4- galactosyltransferase-I in PC12 cells increases neurite outgrowth on laminin. J. Cell Sci. 108:839–847.PubMed Huang, Q. L., B. D. Shur, and P. C. Begovac. 1995. Overexpression cell surface β-1,4- galactosyltransferase-I in PC12 cells increases neurite outgrowth on laminin. J. Cell Sci. 108:839–847.PubMed
14.
Zurück zum Zitat Eckstein, D. J., and B. D. Shur. 1992. Cell surface beta-1,4-galactosyltransferase is associated with the detergent-insoluble cytoskeleton on migrating mesenchymal cells. J. Exp. Cell Res. 201:83–90.CrossRef Eckstein, D. J., and B. D. Shur. 1992. Cell surface beta-1,4-galactosyltransferase is associated with the detergent-insoluble cytoskeleton on migrating mesenchymal cells. J. Exp. Cell Res. 201:83–90.CrossRef
15.
Zurück zum Zitat Evans, S. C., L. C. Lopez, and B. D. Shur. 1993. Dominant negative mutation in cell surface beta-1,4-Galactosyltransferase inhibits cell-cell and cell-matrix interactions. J. Biol. Chem. 120:1045–1057. Evans, S. C., L. C. Lopez, and B. D. Shur. 1993. Dominant negative mutation in cell surface beta-1,4-Galactosyltransferase inhibits cell-cell and cell-matrix interactions. J. Biol. Chem. 120:1045–1057.
16.
Zurück zum Zitat Maemura, K., and M. Fukuda. 1992. Poly-N-acetylactosaminyl O-glycans attached to leukosialin: the presence of sialyl Le(x) structures in O-glycans. J. Biol. Chem. 267:24379–24386.PubMed Maemura, K., and M. Fukuda. 1992. Poly-N-acetylactosaminyl O-glycans attached to leukosialin: the presence of sialyl Le(x) structures in O-glycans. J. Biol. Chem. 267:24379–24386.PubMed
17.
Zurück zum Zitat Wilkins, P. P., R. P. McEver, and R. D. Cummings. 1996. Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J. Biol. Chem. 271:18732–18742.PubMedCrossRef Wilkins, P. P., R. P. McEver, and R. D. Cummings. 1996. Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J. Biol. Chem. 271:18732–18742.PubMedCrossRef
18.
Zurück zum Zitat Hiraoka, N., B. Petryniak, and J. Nakayama. 1999. High endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. Immunity. 11:79–89.PubMedCrossRef Hiraoka, N., B. Petryniak, and J. Nakayama. 1999. High endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. Immunity. 11:79–89.PubMedCrossRef
19.
Zurück zum Zitat Kotani, N., M. Asano, Y. Iwakura, and S. Takasaki. 2001. Knockout of mouse beta 1,4-galactosyltransferase-1 gene results in a dramatic shift of outer chain moieties of N-glycans from type 2 to type 1 chains in hepatic membrane and plasma glycoproteins. Biochem. J. 357:827–834.PubMedCrossRef Kotani, N., M. Asano, Y. Iwakura, and S. Takasaki. 2001. Knockout of mouse beta 1,4-galactosyltransferase-1 gene results in a dramatic shift of outer chain moieties of N-glycans from type 2 to type 1 chains in hepatic membrane and plasma glycoproteins. Biochem. J. 357:827–834.PubMedCrossRef
20.
Zurück zum Zitat Asano, M., S. Nakae, N. Kotani, N. Shirafuji, A. Nambu, N. Hashimoto, H. Kawashima, M. Hirose, M. Miyasaka, S. Takasaki, and Y. Iwakura. 2003. Impaired selectin-ligand biosynthesis and reduced inflammatory resposes in beta-1,4-galactosyltransferase-I-deficient mice. Blood. 102:1678–1685.PubMedCrossRef Asano, M., S. Nakae, N. Kotani, N. Shirafuji, A. Nambu, N. Hashimoto, H. Kawashima, M. Hirose, M. Miyasaka, S. Takasaki, and Y. Iwakura. 2003. Impaired selectin-ligand biosynthesis and reduced inflammatory resposes in beta-1,4-galactosyltransferase-I-deficient mice. Blood. 102:1678–1685.PubMedCrossRef
21.
Zurück zum Zitat Xian, C. J., and X. F. Zhou. 1999. Neuronal-glial differential expression of TGF-α and its receptor in the dorsal root ganglia in response to sciatic nerve lesion. Exp. Neurol. 157:317–329.PubMedCrossRef Xian, C. J., and X. F. Zhou. 1999. Neuronal-glial differential expression of TGF-α and its receptor in the dorsal root ganglia in response to sciatic nerve lesion. Exp. Neurol. 157:317–329.PubMedCrossRef
22.
Zurück zum Zitat Venkatesh, Y. P., and J. M. Lambert. 1997. Galactose-induced dimerization of blocked ricin at acidic pH: evidence for a third galactosebinding site in ricin B-chain. Glycobiology. 7:329–335.PubMedCrossRef Venkatesh, Y. P., and J. M. Lambert. 1997. Galactose-induced dimerization of blocked ricin at acidic pH: evidence for a third galactosebinding site in ricin B-chain. Glycobiology. 7:329–335.PubMedCrossRef
23.
Zurück zum Zitat Nixon, B., Q. Lu, and M. J. Wassler. 2001. Galactosyltransferase function during mammalian fertilization. J. Cell Tissues Organs. 168:46–57.CrossRef Nixon, B., Q. Lu, and M. J. Wassler. 2001. Galactosyltransferase function during mammalian fertilization. J. Cell Tissues Organs. 168:46–57.CrossRef
24.
Zurück zum Zitat Hinton, D. A., S. C. Evans, and B. D. Shur. 1995. Altering the expression of cell surface beta-1,4-galactosyltransferase modulates cell growth. J. Exp. Cell Res. 219:640–649.CrossRef Hinton, D. A., S. C. Evans, and B. D. Shur. 1995. Altering the expression of cell surface beta-1,4-galactosyltransferase modulates cell growth. J. Exp. Cell Res. 219:640–649.CrossRef
25.
Zurück zum Zitat Shen, A., D. Zhu, and F. Ding. 2003. Increased gene expression of beta-1,4-galactosyltransferase I in rat injured sciatic nerve. J. Mol. Neurosci. 21:103–110.PubMedCrossRef Shen, A., D. Zhu, and F. Ding. 2003. Increased gene expression of beta-1,4-galactosyltransferase I in rat injured sciatic nerve. J. Mol. Neurosci. 21:103–110.PubMedCrossRef
26.
Zurück zum Zitat Johnson, F. M., and B. D. Shur. 1999. The level of cell surface beta-1,4-galactosyltransferase I influences the invasive potential of murine melanoma cells. J. Cell Sci. 112:2785–2795.PubMed Johnson, F. M., and B. D. Shur. 1999. The level of cell surface beta-1,4-galactosyltransferase I influences the invasive potential of murine melanoma cells. J. Cell Sci. 112:2785–2795.PubMed
27.
Zurück zum Zitat Wassler, M. J., C. I. Foote, I. H. Gelman, and B. D. Shur. 2001. Functional interaction between the SSeCKS scaffolding protein and the cytoplasmic domain of β1,4-galactosyltransferase. J. Cell Sci. 114:2291–2300.PubMed Wassler, M. J., C. I. Foote, I. H. Gelman, and B. D. Shur. 2001. Functional interaction between the SSeCKS scaffolding protein and the cytoplasmic domain of β1,4-galactosyltransferase. J. Cell Sci. 114:2291–2300.PubMed
28.
Zurück zum Zitat Kitamura, H., K. Okita, and D. Fujikura. 2002. Induction of Src-suppressed C kinase substrate (SSeCKS) in vascular endothelial cells by bacterial lipopolysaccharide. J. Histochem. Cytochem. 50:245–255.PubMed Kitamura, H., K. Okita, and D. Fujikura. 2002. Induction of Src-suppressed C kinase substrate (SSeCKS) in vascular endothelial cells by bacterial lipopolysaccharide. J. Histochem. Cytochem. 50:245–255.PubMed
29.
Zurück zum Zitat Gerdprasert, O., M. K. O’Bryan, D. J. Nikolic-Paterson, K. Sebire, D. M. de Kretser, and M. P. Hedger. 2002. Expression of monocyte chemoattractant protein-1 and macrophage colony-stimulating factor in normal and inflamed rat testis. Mol. Hum. Reprod. 8:518–524.PubMedCrossRef Gerdprasert, O., M. K. O’Bryan, D. J. Nikolic-Paterson, K. Sebire, D. M. de Kretser, and M. P. Hedger. 2002. Expression of monocyte chemoattractant protein-1 and macrophage colony-stimulating factor in normal and inflamed rat testis. Mol. Hum. Reprod. 8:518–524.PubMedCrossRef
30.
Zurück zum Zitat Mori, R., T. Kondo, T. Nishie, T. Ohshima, and M. Asano. 2004. Impairment of skin wound healing in β-1,4-galactosyltransferase-defficient mice with reduced leukocyte recruitment. Am. J. Pathol. 164:1303–1314.PubMed Mori, R., T. Kondo, T. Nishie, T. Ohshima, and M. Asano. 2004. Impairment of skin wound healing in β-1,4-galactosyltransferase-defficient mice with reduced leukocyte recruitment. Am. J. Pathol. 164:1303–1314.PubMed
31.
Zurück zum Zitat Defazio, G., B. Nico, M. Trojano, D. Ribatti, M. Giorelli, F. Ricchiuti, D. Martino, L. Roncali, and P. Livrea. 2000. Inhibition of protein kinase C counteracts TNFalpha-induced intercellular adhesion molecule 1expression and fluid phase endocytosis on brain microvascular endothelia cells. Brain Res. 863:245–248.PubMedCrossRef Defazio, G., B. Nico, M. Trojano, D. Ribatti, M. Giorelli, F. Ricchiuti, D. Martino, L. Roncali, and P. Livrea. 2000. Inhibition of protein kinase C counteracts TNFalpha-induced intercellular adhesion molecule 1expression and fluid phase endocytosis on brain microvascular endothelia cells. Brain Res. 863:245–248.PubMedCrossRef
32.
Zurück zum Zitat Nauert, J. B., T. M. Klauck, L. K. Langeberg, and J. D. Scott. 1996. Gravin, an autoantigen recognized by serum from myasthenia grais patients, is a kinase scaffold protein. Curr. Biol. 7:52–62.CrossRef Nauert, J. B., T. M. Klauck, L. K. Langeberg, and J. D. Scott. 1996. Gravin, an autoantigen recognized by serum from myasthenia grais patients, is a kinase scaffold protein. Curr. Biol. 7:52–62.CrossRef
33.
Zurück zum Zitat Lee, S. W., W. J. Kim, and Y. K. Choi. 2003. SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat. Med. 9:900–906.PubMedCrossRef Lee, S. W., W. J. Kim, and Y. K. Choi. 2003. SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat. Med. 9:900–906.PubMedCrossRef
34.
Zurück zum Zitat Lemaire, S., C. Derappe, and V. Pasqualetto. 1998. T lymphocyte activation results in an increased expression of beta-1,4-galactosyltransferase: phorbol ester induces a similar enhancement in the absence of mitosis. Glycoconj. J. 15:161–168.PubMedCrossRef Lemaire, S., C. Derappe, and V. Pasqualetto. 1998. T lymphocyte activation results in an increased expression of beta-1,4-galactosyltransferase: phorbol ester induces a similar enhancement in the absence of mitosis. Glycoconj. J. 15:161–168.PubMedCrossRef
35.
Zurück zum Zitat Lemaire, S., C. Derappe, and J. C. Michalski. 1996. Expression of beta-1-6-branched N-linked oligosaccharides is associated with activation in human T4 and T8 cell poluation. J. Biol. Chem. 269:8069–8074. Lemaire, S., C. Derappe, and J. C. Michalski. 1996. Expression of beta-1-6-branched N-linked oligosaccharides is associated with activation in human T4 and T8 cell poluation. J. Biol. Chem. 269:8069–8074.
36.
Zurück zum Zitat Garcia-Vallejo, J. J., W. van Dijk, I. van Die, and S. I. Gringhuis. 2005. Tumor necrosis factor-αUp-regulates the expression of β-1,4-Galactosyltransferase-I in primary human endothelial cells by mRNA stabilization. J. Biol. Chem. 280:12676–12682.PubMedCrossRef Garcia-Vallejo, J. J., W. van Dijk, I. van Die, and S. I. Gringhuis. 2005. Tumor necrosis factor-αUp-regulates the expression of β-1,4-Galactosyltransferase-I in primary human endothelial cells by mRNA stabilization. J. Biol. Chem. 280:12676–12682.PubMedCrossRef
Metadaten
Titel
Expression of β-1,4-Galactosyltransferase-I in Rat during Inflammation
verfasst von
Ji Qian
Chun Cheng
Haiou Liu
Jianping Chen
Meijuan Yan
Shuqiong Niu
Jing Qin
Linlin Sun
Lei Liu
Jianxin Gu
Aiguo Shen
Publikationsdatum
01.04.2007
Erschienen in
Inflammation / Ausgabe 1-2/2007
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-007-9022-6

Weitere Artikel der Ausgabe 1-2/2007

Inflammation 1-2/2007 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.