Skip to main content
Erschienen in:

07.12.2018 | Original Article

External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy

verfasst von: François Lucia, Dimitris Visvikis, Martin Vallières, Marie-Charlotte Desseroit, Omar Miranda, Philippe Robin, Pietro Andrea Bonaffini, Joanne Alfieri, Ingrid Masson, Augustin Mervoyer, Caroline Reinhold, Olivier Pradier, Mathieu Hatt, Ulrike Schick

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The aim of this study was to validate previously developed radiomics models relying on just two radiomics features from 18F-fluorodeoxyglucose positron emission tomography (PET) and magnetic resonance imaging (MRI) images for prediction of disease free survival (DFS) and locoregional control (LRC) in locally advanced cervical cancer (LACC).

Methods

Patients with LACC receiving chemoradiotherapy were enrolled in two French and one Canadian center. Pre-treatment imaging was performed for each patient. Multicentric harmonization of the two radiomics features was performed with the ComBat method. The models for DFS (using the feature from apparent diffusion coefficient (ADC) MRI) and LRC (adding one PET feature to the DFS model) were tuned using one of the French cohorts (n = 112) and applied to the other French (n = 50) and the Canadian (n = 28) external validation cohorts.

Results

The DFS model reached an accuracy of 90% (95% CI [79–98%]) (sensitivity 92–93%, specificity 87–89%) in both the French and the Canadian cohorts. The LRC model reached an accuracy of 98% (95% CI [90–99%]) (sensitivity 86%, specificity 100%) in the French cohort and 96% (95% CI [80–99%]) (sensitivity 83%, specificity 100%) in the Canadian cohort. Accuracy was significantly lower without ComBat harmonization (82–85% and 71–86% for DFS and LRC, respectively). The best prediction using standard clinical variables was 56–60% only.

Conclusions

The previously developed PET/MRI radiomics predictive models were successfully validated in two independent external cohorts. A proposed flowchart for improved management of patients based on these models should now be confirmed in future larger prospective studies.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMed Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMed
2.
Zurück zum Zitat Moore KN, Java JJ, Slaughter KN, Rose PG, Lanciano R, DiSilvestro PA, et al. Is age a prognostic biomarker for survival among women with locally advanced cervical cancer treated with chemoradiation? An NRG oncology/gynecologic oncology group ancillary data analysis. Gynecol Oncol. 2016;143(2):294–301.CrossRefPubMedPubMedCentral Moore KN, Java JJ, Slaughter KN, Rose PG, Lanciano R, DiSilvestro PA, et al. Is age a prognostic biomarker for survival among women with locally advanced cervical cancer treated with chemoradiation? An NRG oncology/gynecologic oncology group ancillary data analysis. Gynecol Oncol. 2016;143(2):294–301.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Choi J, Kim HJ, Jeong YH, Lee JH, Cho A, Yun M, et al. The role of (18) F-FDG PET/CT in assessing therapy response in cervix cancer after concurrent chemoradiation therapy. Nucl Med Mol Imaging. 2014;48(2):130–6.CrossRefPubMed Choi J, Kim HJ, Jeong YH, Lee JH, Cho A, Yun M, et al. The role of (18) F-FDG PET/CT in assessing therapy response in cervix cancer after concurrent chemoradiation therapy. Nucl Med Mol Imaging. 2014;48(2):130–6.CrossRefPubMed
5.
Zurück zum Zitat Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.CrossRefPubMedPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Ho KC, Fang YH, Chung HW, Yen TC, Ho TY, Chou HH, et al. A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy. Am J Nucl Med Mol Imaging. 2016;6(3):166–75.PubMedPubMedCentral Ho KC, Fang YH, Chung HW, Yen TC, Ho TY, Chou HH, et al. A preliminary investigation into textural features of intratumoral metabolic heterogeneity in (18)F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy. Am J Nucl Med Mol Imaging. 2016;6(3):166–75.PubMedPubMedCentral
8.
Zurück zum Zitat Torheim T, Groendahl AR, Andersen EK, Lyng H, Malinen E, Kvaal K, et al. Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients. Acta Oncol. 2016;55(11):1294–8.CrossRefPubMed Torheim T, Groendahl AR, Andersen EK, Lyng H, Malinen E, Kvaal K, et al. Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients. Acta Oncol. 2016;55(11):1294–8.CrossRefPubMed
9.
Zurück zum Zitat Chung HH, Kang SY, Ha S, Kim JW, Park NH, Song YS, et al. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in early stage uterine cervical cancer. J Gynecol Oncol. 2016;27(2):e15.CrossRefPubMed Chung HH, Kang SY, Ha S, Kim JW, Park NH, Song YS, et al. Prognostic value of preoperative intratumoral FDG uptake heterogeneity in early stage uterine cervical cancer. J Gynecol Oncol. 2016;27(2):e15.CrossRefPubMed
10.
Zurück zum Zitat Guan Y, Li W, Jiang Z, Chen Y, Liu S, He J, et al. Whole-lesion apparent diffusion coefficient-based entropy-related parameters for characterizing cervical cancers: initial findings. Acad Radiol. 2016;23(12):1559–67.CrossRefPubMed Guan Y, Li W, Jiang Z, Chen Y, Liu S, He J, et al. Whole-lesion apparent diffusion coefficient-based entropy-related parameters for characterizing cervical cancers: initial findings. Acad Radiol. 2016;23(12):1559–67.CrossRefPubMed
11.
Zurück zum Zitat Reuze S, Orlhac F, Chargari C, Nioche C, Limkin E, Riet F, et al. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget. 2017;8(26):43169–79.CrossRefPubMedPubMedCentral Reuze S, Orlhac F, Chargari C, Nioche C, Limkin E, Riet F, et al. Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget. 2017;8(26):43169–79.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Lucia F, Visvikis D, Desseroit MC, Miranda O, Malhaire JP, Robin P, et al. Prediction of outcome using pretreatment (18)F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2018;45(5):768–86.CrossRefPubMed Lucia F, Visvikis D, Desseroit MC, Miranda O, Malhaire JP, Robin P, et al. Prediction of outcome using pretreatment (18)F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2018;45(5):768–86.CrossRefPubMed
13.
Zurück zum Zitat Zwanenburg A, Lock S. Why validation of prognostic models matters? Radiother Oncol J Eur Soc Ther Radiol Oncol. 2018;127(3):370–3.CrossRef Zwanenburg A, Lock S. Why validation of prognostic models matters? Radiother Oncol J Eur Soc Ther Radiol Oncol. 2018;127(3):370–3.CrossRef
14.
Zurück zum Zitat Vallieres M, Zwanenburg A, Badic B, Cheze Le Rest C, Visvikis D, Hatt M. Responsible radiomics research for faster clinical translation. J Nucl Med. 2018;59(2):189–93.CrossRefPubMedPubMedCentral Vallieres M, Zwanenburg A, Badic B, Cheze Le Rest C, Visvikis D, Hatt M. Responsible radiomics research for faster clinical translation. J Nucl Med. 2018;59(2):189–93.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Lim K, Small W Jr, Portelance L, Creutzberg C, Jurgenliemk-Schulz IM, Mundt A, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–55.CrossRefPubMed Lim K, Small W Jr, Portelance L, Creutzberg C, Jurgenliemk-Schulz IM, Mundt A, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–55.CrossRefPubMed
16.
Zurück zum Zitat Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRefPubMedPubMedCentral Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative - feature definitions. 2017. Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative - feature definitions. 2017.
18.
Zurück zum Zitat Desseroit MC, et al. Comparison of three quantization methods for the calculation of textural features in PET/CT images: impact on prognostic models in non-small cell lung cancer. IEEE Nucl Sci Symp Med Imaging Conf 2016. 2016. Desseroit MC, et al. Comparison of three quantization methods for the calculation of textural features in PET/CT images: impact on prognostic models in non-small cell lung cancer. IEEE Nucl Sci Symp Med Imaging Conf 2016. 2016.
19.
Zurück zum Zitat Chalkidou A, O'Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One. 2015;10(5):e0124165.CrossRefPubMedPubMedCentral Chalkidou A, O'Doherty MJ, Marsden PK. False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One. 2015;10(5):e0124165.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Eur J Clin Investig. 2015;45(2):204–14.CrossRef Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Eur J Clin Investig. 2015;45(2):204–14.CrossRef
21.
Zurück zum Zitat Yang F, Dogan N, Stoyanova R, Ford JC. Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: a simulation study utilizing ground truth. Phys Med Int J Devoted Appl Phys Med Biol Off J Ital Assoc Biomed Phys. 2018;50:26–36. Yang F, Dogan N, Stoyanova R, Ford JC. Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: a simulation study utilizing ground truth. Phys Med Int J Devoted Appl Phys Med Biol Off J Ital Assoc Biomed Phys. 2018;50:26–36.
22.
Zurück zum Zitat Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med. 2015;56(11):1667–73.CrossRefPubMed Yan J, Chu-Shern JL, Loi HY, Khor LK, Sinha AK, Quek ST, et al. Impact of image reconstruction settings on texture features in 18F-FDG PET. J Nucl Med. 2015;56(11):1667–73.CrossRefPubMed
23.
Zurück zum Zitat Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging. 2009;28(6):881–93.CrossRefPubMedPubMedCentral Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging. 2009;28(6):881–93.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys. 2010;77(1):301–8.CrossRefPubMed Hatt M, Cheze le Rest C, Descourt P, Dekker A, De Ruysscher D, Oellers M, et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications. Int J Radiat Oncol Biol Phys. 2010;77(1):301–8.CrossRefPubMed
25.
Zurück zum Zitat Velazquez ER, Parmar C, Jermoumi M, Mak RH, van Baardwijk A, Fennessy FM, et al. Volumetric CT-based segmentation of NSCLC using 3D-slicer. Sci Rep. 2013;3:3529.CrossRefPubMedPubMedCentral Velazquez ER, Parmar C, Jermoumi M, Mak RH, van Baardwijk A, Fennessy FM, et al. Volumetric CT-based segmentation of NSCLC using 3D-slicer. Sci Rep. 2013;3:3529.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104–20.CrossRefPubMed Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, et al. Harmonization of cortical thickness measurements across scanners and sites. Neuroimage. 2018;167:104–20.CrossRefPubMed
27.
Zurück zum Zitat Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, Soussan M, Frouin F, Frouin V, Buvat I. A post-reconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018. Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, Soussan M, Frouin F, Frouin V, Buvat I. A post-reconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018.
28.
Zurück zum Zitat Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27.CrossRefPubMed Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27.CrossRefPubMed
29.
Zurück zum Zitat Fortin JP, Parker D, Tunc B, Watanabe T, Elliott MA, Ruparel K, et al. Harmonization of multi-site diffusion tensor imaging data. NeuroImage. 2017;161:149–70.CrossRefPubMedPubMedCentral Fortin JP, Parker D, Tunc B, Watanabe T, Elliott MA, Ruparel K, et al. Harmonization of multi-site diffusion tensor imaging data. NeuroImage. 2017;161:149–70.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Naik A, Gurjar OP, Gupta KL, Singh K, Nag P, Bhandari V. Comparison of dosimetric parameters and acute toxicity of intensity-modulated and three-dimensional radiotherapy in patients with cervix carcinoma: a randomized prospective study. Cancer Radiother J de la Societe Francaise de Radiother Oncol. 2016;20(5):370–6. Naik A, Gurjar OP, Gupta KL, Singh K, Nag P, Bhandari V. Comparison of dosimetric parameters and acute toxicity of intensity-modulated and three-dimensional radiotherapy in patients with cervix carcinoma: a randomized prospective study. Cancer Radiother J de la Societe Francaise de Radiother Oncol. 2016;20(5):370–6.
31.
Zurück zum Zitat Lin G, Yang LY, Lin YC, Huang YT, Liu FY, Wang CC, Lu HY, Chiang HJ, Chen YR, Wu RC, et al. Prognostic model based on magnetic resonance imaging, whole-tumour apparent diffusion coefficient values and HPV genotyping for stage IB-IV cervical cancer patients following chemoradiotherapy. Eur Radiol. 2018. Lin G, Yang LY, Lin YC, Huang YT, Liu FY, Wang CC, Lu HY, Chiang HJ, Chen YR, Wu RC, et al. Prognostic model based on magnetic resonance imaging, whole-tumour apparent diffusion coefficient values and HPV genotyping for stage IB-IV cervical cancer patients following chemoradiotherapy. Eur Radiol. 2018.
32.
Zurück zum Zitat Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49(7):1012–6.CrossRefPubMedPubMedCentral Galavis PE, Hollensen C, Jallow N, Paliwal B, Jeraj R. Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters. Acta Oncol. 2010;49(7):1012–6.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Goh WWB, Wang W, Wong L. Why batch effects matter in omics data, and how to avoid them. Trends Biotechnol. 2017;35(6):498–507.CrossRefPubMed Goh WWB, Wang W, Wong L. Why batch effects matter in omics data, and how to avoid them. Trends Biotechnol. 2017;35(6):498–507.CrossRefPubMed
34.
Zurück zum Zitat Kothari S, Phan JH, Stokes TH, Osunkoya AO, Young AN, Wang MD. Removing batch effects from histopathological images for enhanced cancer diagnosis. IEEE J Biomed Health Inf. 2014;18(3):765–72.CrossRef Kothari S, Phan JH, Stokes TH, Osunkoya AO, Young AN, Wang MD. Removing batch effects from histopathological images for enhanced cancer diagnosis. IEEE J Biomed Health Inf. 2014;18(3):765–72.CrossRef
35.
Zurück zum Zitat Mackin D, Fave X, Zhang L, Yang J, Jones AK, Ng CS, et al. Harmonizing the pixel size in retrospective computed tomography radiomics studies. PLoS One. 2017;12(9):e0178524.CrossRefPubMedPubMedCentral Mackin D, Fave X, Zhang L, Yang J, Jones AK, Ng CS, et al. Harmonizing the pixel size in retrospective computed tomography radiomics studies. PLoS One. 2017;12(9):e0178524.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Wu J, Aguilera T, Shultz D, Gudur M, Rubin DL, Loo BW Jr, et al. Early-stage non-small cell lung cancer: quantitative imaging characteristics of (18)F fluorodeoxyglucose PET/CT allow prediction of distant metastasis. Radiology. 2016;281(1):270–8.CrossRefPubMedPubMedCentral Wu J, Aguilera T, Shultz D, Gudur M, Rubin DL, Loo BW Jr, et al. Early-stage non-small cell lung cancer: quantitative imaging characteristics of (18)F fluorodeoxyglucose PET/CT allow prediction of distant metastasis. Radiology. 2016;281(1):270–8.CrossRefPubMedPubMedCentral
Metadaten
Titel
External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy
verfasst von
François Lucia
Dimitris Visvikis
Martin Vallières
Marie-Charlotte Desseroit
Omar Miranda
Philippe Robin
Pietro Andrea Bonaffini
Joanne Alfieri
Ingrid Masson
Augustin Mervoyer
Caroline Reinhold
Olivier Pradier
Mathieu Hatt
Ulrike Schick
Publikationsdatum
07.12.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 4/2019
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-018-4231-9