Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 2/2020

29.10.2019 | Review

Extracellular Vesicles as Messengers in Atherosclerosis

verfasst von: Mengna Peng, Xinfeng Liu, Gelin Xu

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Atherosclerosis is a major cause of cardiovascular diseases. Most cells involved in atherosclerosis can shed extracellular vesicles (EVs). Both atherogenic factors, such as hypoxia and oxidative stress, and atheroprotective factors, such as laminar blood flow, can influence the production of EV shedding. EVs can carry protein, DNA, mRNA, and noncoding RNA and act as mediators or messengers for cell-to-cell communications. EVs have been proven to promote or inhibit atherogenesis under particular circumstances. Therefore, EVs might be targeted for preventing or treating atherosclerotic diseases. The level of circulating EVs has been associated with the presence, progressiveness, or severity of atherosclerosis. Therefore, EVs may be utilized as indexes for diagnosing and grading atherosclerosis. Here, we reviewed the progress concerning the involvements of EVs in atherogenesis and atheroprotection. We also discussed the potential applications of EVs in managing atherosclerotic diseases.
Literatur
1.
Zurück zum Zitat van der Pol, E., Boing, A. N., Harrison, P., Sturk, A., & Nieuwland, R. (2012). Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological Reviews, 64(3), 676–705.PubMed van der Pol, E., Boing, A. N., Harrison, P., Sturk, A., & Nieuwland, R. (2012). Classification, functions, and clinical relevance of extracellular vesicles. Pharmacological Reviews, 64(3), 676–705.PubMed
2.
Zurück zum Zitat Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology, 200(4), 373-8(1540-8140 (Electronic)). Raposo, G., & Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. Journal of Cell Biology, 200(4), 373-8(1540-8140 (Electronic)).
3.
Zurück zum Zitat Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., et al. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13(1), 17–24. Zhang, J., Li, S., Li, L., Li, M., Guo, C., Yao, J., et al. (2015). Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics, Proteomics & Bioinformatics, 13(1), 17–24.
4.
Zurück zum Zitat Boukouris, S., & Mathivanan, S. (2015). Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics. Clinical Applications, 9(3-4), 358–367.PubMedPubMedCentral Boukouris, S., & Mathivanan, S. (2015). Exosomes in bodily fluids are a highly stable resource of disease biomarkers. Proteomics. Clinical Applications, 9(3-4), 358–367.PubMedPubMedCentral
5.
Zurück zum Zitat Morel, O., Jesel, L., Freyssinet, J. M., & Toti, F. (2011). Cellular mechanisms underlying the formation of circulating microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(1), 15–26.PubMed Morel, O., Jesel, L., Freyssinet, J. M., & Toti, F. (2011). Cellular mechanisms underlying the formation of circulating microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(1), 15–26.PubMed
6.
Zurück zum Zitat Giuseppina Turturici, R. T., Sconzo, G., & Geraci, F. (2014). Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. American Journal of Physiology. Cell Physiology, 306, C621–CC33.PubMed Giuseppina Turturici, R. T., Sconzo, G., & Geraci, F. (2014). Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. American Journal of Physiology. Cell Physiology, 306, C621–CC33.PubMed
7.
Zurück zum Zitat Brown, R. A., Shantsila, E., Varma, C., & Lip, G. Y. (2017). Current understanding of atherogenesis. The American Journal of Medicine, 130(3), 268–282.PubMed Brown, R. A., Shantsila, E., Varma, C., & Lip, G. Y. (2017). Current understanding of atherogenesis. The American Journal of Medicine, 130(3), 268–282.PubMed
8.
Zurück zum Zitat Gao, W., Liu, H., Yuan, J., Wu, C., Huang, D., Ma, Y., et al. (2016). Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. Journal of Cellular and Molecular Medicine, 20(12), 2318–2327.PubMedPubMedCentral Gao, W., Liu, H., Yuan, J., Wu, C., Huang, D., Ma, Y., et al. (2016). Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF-alpha mediated NF-kappaB pathway. Journal of Cellular and Molecular Medicine, 20(12), 2318–2327.PubMedPubMedCentral
9.
Zurück zum Zitat Zakharova, L., Svetlova, M., & Fomina, A. F. (2007). T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. Journal of Cellular Physiology, 212(1), 174–181.PubMed Zakharova, L., Svetlova, M., & Fomina, A. F. (2007). T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. Journal of Cellular Physiology, 212(1), 174–181.PubMed
10.
Zurück zum Zitat Jansen, F., Yang, X., Franklin, B. S., Hoelscher, M., Schmitz, T., Bedorf, J., et al. (2013). High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovascular Research, 98(1), 94–106.PubMed Jansen, F., Yang, X., Franklin, B. S., Hoelscher, M., Schmitz, T., Bedorf, J., et al. (2013). High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovascular Research, 98(1), 94–106.PubMed
11.
Zurück zum Zitat Paudel, K. R., Panth, N., & Kim, D. W. (2016). Circulating endothelial microparticles: a key hallmark of atherosclerosis progression. Scientifica., 2016, 8514056.PubMedPubMedCentral Paudel, K. R., Panth, N., & Kim, D. W. (2016). Circulating endothelial microparticles: a key hallmark of atherosclerosis progression. Scientifica., 2016, 8514056.PubMedPubMedCentral
12.
Zurück zum Zitat Jansen, F., Yang, X., Hoelscher, M., Cattelan, A., Schmitz, T., Proebsting, S., et al. (2013). Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation., 128(18), 2026–2038.PubMed Jansen, F., Yang, X., Hoelscher, M., Cattelan, A., Schmitz, T., Proebsting, S., et al. (2013). Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation., 128(18), 2026–2038.PubMed
13.
Zurück zum Zitat Jansen, F., Stumpf, T., Proebsting, S., Franklin, B. S., Wenzel, D., Pfeifer, P., et al. (2017). Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. Journal of Molecular and Cellular Cardiology, 104, 43–52.PubMed Jansen, F., Stumpf, T., Proebsting, S., Franklin, B. S., Wenzel, D., Pfeifer, P., et al. (2017). Intercellular transfer of miR-126-3p by endothelial microparticles reduces vascular smooth muscle cell proliferation and limits neointima formation by inhibiting LRP6. Journal of Molecular and Cellular Cardiology, 104, 43–52.PubMed
14.
Zurück zum Zitat Njock, M. S., Cheng, H. S., Dang, L. T., Nazari-Jahantigh, M., Lau, A. C., Boudreau, E., et al. (2015). Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood., 125(20), 3202–3212.PubMedPubMedCentral Njock, M. S., Cheng, H. S., Dang, L. T., Nazari-Jahantigh, M., Lau, A. C., Boudreau, E., et al. (2015). Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood., 125(20), 3202–3212.PubMedPubMedCentral
15.
Zurück zum Zitat Keyel, P. A., Tkacheva, O. A., Larregina, A. T., & Salter, R. D. (2012). Coordinate stimulation of macrophages by microparticles and TLR ligands induces foam cell formation. Journal of Immunology, 189(9), 4621–4629. Keyel, P. A., Tkacheva, O. A., Larregina, A. T., & Salter, R. D. (2012). Coordinate stimulation of macrophages by microparticles and TLR ligands induces foam cell formation. Journal of Immunology, 189(9), 4621–4629.
16.
Zurück zum Zitat Barberio, M. D., Kasselman, L. J., Playford, M. P., Epstein, S. B., Renna, H. A., Goldberg, M., et al. (2019). Cholesterol efflux alterations in adolescent obesity: role of adipose-derived extracellular vesical microRNAs. Journal of Translational Medicine, 17(1). Barberio, M. D., Kasselman, L. J., Playford, M. P., Epstein, S. B., Renna, H. A., Goldberg, M., et al. (2019). Cholesterol efflux alterations in adolescent obesity: role of adipose-derived extracellular vesical microRNAs. Journal of Translational Medicine, 17(1).
17.
Zurück zum Zitat Lovren, F., & Verma, S. (2013). Evolving role of microparticles in the pathophysiology of endothelial dysfunction. Clinical Chemistry, 59(8), 1166–1174.PubMed Lovren, F., & Verma, S. (2013). Evolving role of microparticles in the pathophysiology of endothelial dysfunction. Clinical Chemistry, 59(8), 1166–1174.PubMed
18.
Zurück zum Zitat Huang, C., Huang, Y., Zhou, Y., Nie, W., Pu, X., Xu, X., et al. (2018). Exosomes derived from oxidized LDL-stimulated macrophages attenuate the growth and tube formation of endothelial cells. Molecular Medicine Reports, 17(3), 4605–4610.PubMed Huang, C., Huang, Y., Zhou, Y., Nie, W., Pu, X., Xu, X., et al. (2018). Exosomes derived from oxidized LDL-stimulated macrophages attenuate the growth and tube formation of endothelial cells. Molecular Medicine Reports, 17(3), 4605–4610.PubMed
19.
Zurück zum Zitat Niu, C., Wang, X., Zhao, M., Cai, T., Liu, P., Li, J., et al. (2016). Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. Journal of the American Heart Association, 5(10). Niu, C., Wang, X., Zhao, M., Cai, T., Liu, P., Li, J., et al. (2016). Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. Journal of the American Heart Association, 5(10).
20.
Zurück zum Zitat Canault, M., Leroyer, A. S., Peiretti, F., Leseche, G., Tedgui, A., Bonardo, B., et al. (2007). Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. The American Journal of Pathology., 171(5), 1713–1723.PubMedPubMedCentral Canault, M., Leroyer, A. S., Peiretti, F., Leseche, G., Tedgui, A., Bonardo, B., et al. (2007). Microparticles of human atherosclerotic plaques enhance the shedding of the tumor necrosis factor-alpha converting enzyme/ADAM17 substrates, tumor necrosis factor and tumor necrosis factor receptor-1. The American Journal of Pathology., 171(5), 1713–1723.PubMedPubMedCentral
21.
Zurück zum Zitat Rautou, P. E., Leroyer, A. S., Ramkhelawon, B., Devue, C., Duflaut, D., Vion, A. C., et al. (2011). Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circulation Research, 108(3), 335–343.PubMed Rautou, P. E., Leroyer, A. S., Ramkhelawon, B., Devue, C., Duflaut, D., Vion, A. C., et al. (2011). Microparticles from human atherosclerotic plaques promote endothelial ICAM-1-dependent monocyte adhesion and transendothelial migration. Circulation Research, 108(3), 335–343.PubMed
22.
Zurück zum Zitat Fu, Z., Zhou, E., Wang, X., Tian, M., Kong, J., Li, J., et al. (2017). Oxidized low-density lipoprotein-induced microparticles promote endothelial monocyte adhesion via intercellular adhesion molecule 1. American Journal of Physiology. Cell Physiology, 313(5), C567–CC74.PubMed Fu, Z., Zhou, E., Wang, X., Tian, M., Kong, J., Li, J., et al. (2017). Oxidized low-density lipoprotein-induced microparticles promote endothelial monocyte adhesion via intercellular adhesion molecule 1. American Journal of Physiology. Cell Physiology, 313(5), C567–CC74.PubMed
23.
Zurück zum Zitat Hoyer, F. F., Giesen, M. K., Nunes Franca, C., Lutjohann, D., Nickenig, G., & Werner, N. (2012). Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice. Journal of Cellular and Molecular Medicine, 16(11), 2777–2788.PubMedPubMedCentral Hoyer, F. F., Giesen, M. K., Nunes Franca, C., Lutjohann, D., Nickenig, G., & Werner, N. (2012). Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice. Journal of Cellular and Molecular Medicine, 16(11), 2777–2788.PubMedPubMedCentral
24.
Zurück zum Zitat Wadey, R. M., Connolly, K. D., Mathew, D., Walters, G., Rees, D. A., & James, P. E. (2019). Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis., 283, 19–27.PubMed Wadey, R. M., Connolly, K. D., Mathew, D., Walters, G., Rees, D. A., & James, P. E. (2019). Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis., 283, 19–27.PubMed
25.
Zurück zum Zitat Suades, R., Padro, T., Vilahur, G., & Badimon, L. (2012). Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thrombosis and Haemostasis, 108(6), 1208–1219.PubMed Suades, R., Padro, T., Vilahur, G., & Badimon, L. (2012). Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thrombosis and Haemostasis, 108(6), 1208–1219.PubMed
26.
Zurück zum Zitat Hutcheson, J. D., Goettsch, C., Bertazzo, S., Maldonado, N., Ruiz, J. L., Goh, W., et al. (2016). Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nature Materials, 15(3), 335–343.PubMedPubMedCentral Hutcheson, J. D., Goettsch, C., Bertazzo, S., Maldonado, N., Ruiz, J. L., Goh, W., et al. (2016). Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nature Materials, 15(3), 335–343.PubMedPubMedCentral
27.
Zurück zum Zitat Wang, F., Chen, F. F., Shang, Y. Y., Li, Y., Wang, Z. H., Han, L., et al. (2018). Insulin resistance adipocyte-derived exosomes aggravate atherosclerosis by increasing vasa vasorum angiogenesis in diabetic ApoE(-/-) mice. International Journal of Cardiology, 265, 181–187.PubMed Wang, F., Chen, F. F., Shang, Y. Y., Li, Y., Wang, Z. H., Han, L., et al. (2018). Insulin resistance adipocyte-derived exosomes aggravate atherosclerosis by increasing vasa vasorum angiogenesis in diabetic ApoE(-/-) mice. International Journal of Cardiology, 265, 181–187.PubMed
28.
Zurück zum Zitat Cai, J., Guan, W., Tan, X., Chen, C., Li, L., Wang, N., et al. (2015). SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clinical Science, 129(3), 259–269.PubMed Cai, J., Guan, W., Tan, X., Chen, C., Li, L., Wang, N., et al. (2015). SRY gene transferred by extracellular vesicles accelerates atherosclerosis by promotion of leucocyte adherence to endothelial cells. Clinical Science, 129(3), 259–269.PubMed
29.
Zurück zum Zitat Li, C., Li, S., Zhang, F., Wu, M., Liang, H., Song, J., et al. (2018). Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE(-/-) mice. Biochemical and Biophysical Research Communications, 495(2), 1922–1929.PubMed Li, C., Li, S., Zhang, F., Wu, M., Liang, H., Song, J., et al. (2018). Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE(-/-) mice. Biochemical and Biophysical Research Communications, 495(2), 1922–1929.PubMed
30.
Zurück zum Zitat Liu, Y., Li, Q., Hosen, M. R., Zietzer, A., Flender, A., Levermann, P., et al. (2018). Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circulation Research. Liu, Y., Li, Q., Hosen, M. R., Zietzer, A., Flender, A., Levermann, P., et al. (2018). Atherosclerotic conditions promote the packaging of functional microRNA-92a-3p into endothelial microvesicles. Circulation Research.
31.
Zurück zum Zitat Nguyen, M. A., Karunakaran, D., Geoffrion, M., Cheng, H. S., Tandoc, K., Perisic Matic, L., et al. (2018). Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 1524–4636 (Electronic). Nguyen, M. A., Karunakaran, D., Geoffrion, M., Cheng, H. S., Tandoc, K., Perisic Matic, L., et al. (2018). Extracellular vesicles secreted by atherogenic macrophages transfer microRNA to inhibit cell migration. Arteriosclerosis, Thrombosis, and Vascular Biology, 1524–4636 (Electronic).
32.
Zurück zum Zitat Chen, L., Yang, W., Guo, Y., Chen, W., Zheng, P., Zeng, J., et al. (2017). Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One, 12(9), e0185406.PubMedPubMedCentral Chen, L., Yang, W., Guo, Y., Chen, W., Zheng, P., Zeng, J., et al. (2017). Exosomal lncRNA GAS5 regulates the apoptosis of macrophages and vascular endothelial cells in atherosclerosis. PLoS One, 12(9), e0185406.PubMedPubMedCentral
33.
Zurück zum Zitat Chevillet, J. R., Kang, Q., Ruf, I. K., Briggs, H. A., Vojtech, L. N., Hughes, S. M., et al. (2014). Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proceedings of the National Academy of Sciences of the United States of America, 111(41), 14888–14893.PubMedPubMedCentral Chevillet, J. R., Kang, Q., Ruf, I. K., Briggs, H. A., Vojtech, L. N., Hughes, S. M., et al. (2014). Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proceedings of the National Academy of Sciences of the United States of America, 111(41), 14888–14893.PubMedPubMedCentral
34.
Zurück zum Zitat Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., et al. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling, 2(100), ra81.PubMed Zernecke, A., Bidzhekov, K., Noels, H., Shagdarsuren, E., Gan, L., Denecke, B., et al. (2009). Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling, 2(100), ra81.PubMed
35.
Zurück zum Zitat Gu, J., Zhang, H., Ji, B., Jiang, H., Zhao, T., Jiang, R., et al. (2017). Vesicle miR-195 derived from endothelial cells inhibits expression of serotonin transporter in vessel smooth muscle cells. Scientific Reports, 7, 43546.PubMedPubMedCentral Gu, J., Zhang, H., Ji, B., Jiang, H., Zhao, T., Jiang, R., et al. (2017). Vesicle miR-195 derived from endothelial cells inhibits expression of serotonin transporter in vessel smooth muscle cells. Scientific Reports, 7, 43546.PubMedPubMedCentral
36.
Zurück zum Zitat Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A. J., Zeiher, A. M., et al. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 14(3), 249–256.PubMed Hergenreider, E., Heydt, S., Treguer, K., Boettger, T., Horrevoets, A. J., Zeiher, A. M., et al. (2012). Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology, 14(3), 249–256.PubMed
37.
Zurück zum Zitat Huang, C., Han, J., Wu, Y., Li, S., Wang, Q., Lin, W., et al. (2018). Exosomal MALAT1 derived from oxidized low-density lipoprotein-treated endothelial cells promotes M2 macrophage polarization. Molecular Medicine Reports, 18(1), 509–515.PubMed Huang, C., Han, J., Wu, Y., Li, S., Wang, Q., Lin, W., et al. (2018). Exosomal MALAT1 derived from oxidized low-density lipoprotein-treated endothelial cells promotes M2 macrophage polarization. Molecular Medicine Reports, 18(1), 509–515.PubMed
38.
Zurück zum Zitat Li, L., Wang, Z., Hu, X., Wan, T., Wu, H., Jiang, W., et al. (2016). Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 479(2), 343–350.PubMed Li, L., Wang, Z., Hu, X., Wan, T., Wu, H., Jiang, W., et al. (2016). Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 479(2), 343–350.PubMed
39.
Zurück zum Zitat Li, J., Tan, M., Xiang, Q., Zhou, Z., & Yan, H. (2017). Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thrombosis Research, 154, 96–105.PubMed Li, J., Tan, M., Xiang, Q., Zhou, Z., & Yan, H. (2017). Thrombin-activated platelet-derived exosomes regulate endothelial cell expression of ICAM-1 via microRNA-223 during the thrombosis-inflammation response. Thrombosis Research, 154, 96–105.PubMed
40.
Zurück zum Zitat Jansen, F., Yang, X., Proebsting, S., Hoelscher, M., Przybilla, D., Baumann, K., et al. (2014). MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. Journal of the American Heart Association, 3(6), e001249.PubMedPubMedCentral Jansen, F., Yang, X., Proebsting, S., Hoelscher, M., Przybilla, D., Baumann, K., et al. (2014). MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. Journal of the American Heart Association, 3(6), e001249.PubMedPubMedCentral
41.
Zurück zum Zitat Zhu, J. J., Liu, Y. F., Zhang, Y. P., Zhao, C. R., Yao, W. J., Li, Y. S., et al. (2017). VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia. Proceedings of the National Academy of Sciences of the United States of America. Zhu, J. J., Liu, Y. F., Zhang, Y. P., Zhao, C. R., Yao, W. J., Li, Y. S., et al. (2017). VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia. Proceedings of the National Academy of Sciences of the United States of America.
42.
Zurück zum Zitat Boon, R. A., & Horrevoets, A. J. (2009). Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie., 29(1), 39–40 1-3.PubMed Boon, R. A., & Horrevoets, A. J. (2009). Key transcriptional regulators of the vasoprotective effects of shear stress. Hamostaseologie., 29(1), 39–40 1-3.PubMed
43.
Zurück zum Zitat Climent, M., Quintavalle, M., Miragoli, M., Chen, J., Condorelli, G., & Elia, L. (2015). TGFbeta triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circulation Research, 116(11), 1753–1764.PubMed Climent, M., Quintavalle, M., Miragoli, M., Chen, J., Condorelli, G., & Elia, L. (2015). TGFbeta triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circulation Research, 116(11), 1753–1764.PubMed
44.
Zurück zum Zitat Vion, A. C., Ramkhelawon, B., Loyer, X., Chironi, G., Devue, C., Loirand, G., et al. (2013). Shear stress regulates endothelial microparticle release. Circulation Research, 112(10), 1323–1333.PubMed Vion, A. C., Ramkhelawon, B., Loyer, X., Chironi, G., Devue, C., Loirand, G., et al. (2013). Shear stress regulates endothelial microparticle release. Circulation Research, 112(10), 1323–1333.PubMed
45.
Zurück zum Zitat Suades, R., Padro, T., Alonso, R., Lopez-Miranda, J., Mata, P., & Badimon, L. (2014). Circulating CD45+/CD3+ lymphocyte-derived microparticles map lipid-rich atherosclerotic plaques in familial hypercholesterolaemia patients. Thrombosis and Haemostasis, 111(1), 111–121.PubMed Suades, R., Padro, T., Alonso, R., Lopez-Miranda, J., Mata, P., & Badimon, L. (2014). Circulating CD45+/CD3+ lymphocyte-derived microparticles map lipid-rich atherosclerotic plaques in familial hypercholesterolaemia patients. Thrombosis and Haemostasis, 111(1), 111–121.PubMed
46.
Zurück zum Zitat Sarlon-Bartoli, G., Bennis, Y., Lacroix, R., Piercecchi-Marti, M. D., Bartoli, M. A., Arnaud, L., et al. (2013). Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. Journal of the American College of Cardiology, 62(16), 1436–1441.PubMed Sarlon-Bartoli, G., Bennis, Y., Lacroix, R., Piercecchi-Marti, M. D., Bartoli, M. A., Arnaud, L., et al. (2013). Plasmatic level of leukocyte-derived microparticles is associated with unstable plaque in asymptomatic patients with high-grade carotid stenosis. Journal of the American College of Cardiology, 62(16), 1436–1441.PubMed
47.
Zurück zum Zitat Wekesa, A. L., Cross, K. S., O'Donovan, O., Dowdall, J. F., O'Brien, O., Doyle, M., et al. (2014). Predicting carotid artery disease and plaque instability from cell-derived microparticles. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery., 48(5), 489–495. Wekesa, A. L., Cross, K. S., O'Donovan, O., Dowdall, J. F., O'Brien, O., Doyle, M., et al. (2014). Predicting carotid artery disease and plaque instability from cell-derived microparticles. European journal of vascular and endovascular surgery : the official journal of the European Society for Vascular Surgery., 48(5), 489–495.
48.
Zurück zum Zitat Christersson, C., Thulin, A., & Siegbahn, A. (2017). Microparticles during long-term follow-up after acute myocardial infarction. Association to atherosclerotic burden and risk of cardiovascular events. Thrombosis and Haemostasis, 117(8), 1571–1581.PubMed Christersson, C., Thulin, A., & Siegbahn, A. (2017). Microparticles during long-term follow-up after acute myocardial infarction. Association to atherosclerotic burden and risk of cardiovascular events. Thrombosis and Haemostasis, 117(8), 1571–1581.PubMed
49.
Zurück zum Zitat Sinning, J. M., Losch, J., Walenta, K., Bohm, M., Nickenig, G., & Werner, N. (2011). Circulating CD31+/annexin V+ microparticles correlate with cardiovascular outcomes. European Heart Journal, 32(16), 2034–2041.PubMed Sinning, J. M., Losch, J., Walenta, K., Bohm, M., Nickenig, G., & Werner, N. (2011). Circulating CD31+/annexin V+ microparticles correlate with cardiovascular outcomes. European Heart Journal, 32(16), 2034–2041.PubMed
50.
Zurück zum Zitat Kanhai, D. A., Visseren, F. L., van der Graaf, Y., Schoneveld, A. H., Catanzariti, L. M., Timmers, L., et al. (2013). Microvesicle protein levels are associated with increased risk for future vascular events and mortality in patients with clinically manifest vascular disease. International Journal of Cardiology, 168(3), 2358–2363.PubMed Kanhai, D. A., Visseren, F. L., van der Graaf, Y., Schoneveld, A. H., Catanzariti, L. M., Timmers, L., et al. (2013). Microvesicle protein levels are associated with increased risk for future vascular events and mortality in patients with clinically manifest vascular disease. International Journal of Cardiology, 168(3), 2358–2363.PubMed
51.
Zurück zum Zitat Vrijenhoek, J. E., Pasterkamp, G., Moll, F. L., de Borst, G. J., Bots, M. L., Catanzariti, L., et al. (2015). Extracellular vesicle-derived CD14 is independently associated with the extent of cardiovascular disease burden in patients with manifest vascular disease. European Journal of Preventive Cardiology, 22(4), 451–457.PubMed Vrijenhoek, J. E., Pasterkamp, G., Moll, F. L., de Borst, G. J., Bots, M. L., Catanzariti, L., et al. (2015). Extracellular vesicle-derived CD14 is independently associated with the extent of cardiovascular disease burden in patients with manifest vascular disease. European Journal of Preventive Cardiology, 22(4), 451–457.PubMed
52.
Zurück zum Zitat Eikendal, A. L., den Ruijter, H. M., Uiterwaal, C. S., Pasterkamp, G., Hoefer, I. E., de Kleijn, D. P., et al. (2014). Extracellular vesicle protein CD14 relates to common carotid intima-media thickness in eight-year-old children. Atherosclerosis., 236(2), 270–276.PubMed Eikendal, A. L., den Ruijter, H. M., Uiterwaal, C. S., Pasterkamp, G., Hoefer, I. E., de Kleijn, D. P., et al. (2014). Extracellular vesicle protein CD14 relates to common carotid intima-media thickness in eight-year-old children. Atherosclerosis., 236(2), 270–276.PubMed
53.
Zurück zum Zitat Finn, N. A., Eapen, D., Manocha, P., Al Kassem, H., Lassegue, B., Ghasemzadeh, N., et al. (2013). Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Letters, 587(21), 3456–3463.PubMedPubMedCentral Finn, N. A., Eapen, D., Manocha, P., Al Kassem, H., Lassegue, B., Ghasemzadeh, N., et al. (2013). Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Letters, 587(21), 3456–3463.PubMedPubMedCentral
54.
Zurück zum Zitat Miller, V. M., Lahr, B. D., Bailey, K. R., Hodis, H. N., Mulvagh, S. L., & Jayachandran, M. (2016). Specific cell-derived microvesicles: linking endothelial function to carotid artery intima-media thickness in low cardiovascular risk menopausal women. Atherosclerosis., 246, 21–28.PubMed Miller, V. M., Lahr, B. D., Bailey, K. R., Hodis, H. N., Mulvagh, S. L., & Jayachandran, M. (2016). Specific cell-derived microvesicles: linking endothelial function to carotid artery intima-media thickness in low cardiovascular risk menopausal women. Atherosclerosis., 246, 21–28.PubMed
55.
Zurück zum Zitat Suades, R., Padro, T., Alonso, R., Mata, P., & Badimon, L. (2015). High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis. Thrombosis and Haemostasis, 114(6), 1310–1321.PubMed Suades, R., Padro, T., Alonso, R., Mata, P., & Badimon, L. (2015). High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis. Thrombosis and Haemostasis, 114(6), 1310–1321.PubMed
56.
Zurück zum Zitat Chiva-Blanch, G., Padro, T., Alonso, R., Crespo, J., Perez de Isla, L., Mata, P., et al. (2019). Liquid biopsy of extracellular microvesicles maps coronary calcification and atherosclerotic plaque in asymptomatic patients with familial hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(5), 945–955.PubMed Chiva-Blanch, G., Padro, T., Alonso, R., Crespo, J., Perez de Isla, L., Mata, P., et al. (2019). Liquid biopsy of extracellular microvesicles maps coronary calcification and atherosclerotic plaque in asymptomatic patients with familial hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(5), 945–955.PubMed
57.
Zurück zum Zitat de Gonzalo-Calvo, D., Cenarro, A., Garlaschelli, K., Pellegatta, F., Vilades, D., Nasarre, L., et al. (2017). Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease. Journal of Molecular and Cellular Cardiology, 106, 55–67.PubMed de Gonzalo-Calvo, D., Cenarro, A., Garlaschelli, K., Pellegatta, F., Vilades, D., Nasarre, L., et al. (2017). Translating the microRNA signature of microvesicles derived from human coronary artery smooth muscle cells in patients with familial hypercholesterolemia and coronary artery disease. Journal of Molecular and Cellular Cardiology, 106, 55–67.PubMed
58.
Zurück zum Zitat Goetzl, E. J., Schwartz, J. B., Mustapic, M., Lobach, I. V., Daneman, R., Abner, E. L., et al. (2017). Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 31(8), 3689–3694. Goetzl, E. J., Schwartz, J. B., Mustapic, M., Lobach, I. V., Daneman, R., Abner, E. L., et al. (2017). Altered cargo proteins of human plasma endothelial cell-derived exosomes in atherosclerotic cerebrovascular disease. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 31(8), 3689–3694.
59.
Zurück zum Zitat Suades, R., Padro, T., Alonso, R., Mata, P., & Badimon, L. (2013). Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets and inflammatory cells. Thrombosis and Haemostasis, 110(2), 366–377.PubMed Suades, R., Padro, T., Alonso, R., Mata, P., & Badimon, L. (2013). Lipid-lowering therapy with statins reduces microparticle shedding from endothelium, platelets and inflammatory cells. Thrombosis and Haemostasis, 110(2), 366–377.PubMed
60.
Zurück zum Zitat Wang, Z., Zhang, J., Zhang, S., Yan, S., Wang, Z., Wang, C., et al. (2019). MiR30e and miR92a are related to atherosclerosis by targeting ABCA1. Molecular Medicine Reports, 19(4), 3298–3304.PubMed Wang, Z., Zhang, J., Zhang, S., Yan, S., Wang, Z., Wang, C., et al. (2019). MiR30e and miR92a are related to atherosclerosis by targeting ABCA1. Molecular Medicine Reports, 19(4), 3298–3304.PubMed
61.
Zurück zum Zitat Ohno, S., Drummen, G. P., & Kuroda, M. (2016). Focus on extracellular vesicles: development of extracellular vesicle-based therapeutic systems. International Journal of Molecular Sciences, 17(2), 172.PubMedPubMedCentral Ohno, S., Drummen, G. P., & Kuroda, M. (2016). Focus on extracellular vesicles: development of extracellular vesicle-based therapeutic systems. International Journal of Molecular Sciences, 17(2), 172.PubMedPubMedCentral
62.
Zurück zum Zitat Alexandru, N., Andrei, E., Niculescu, L., Dragan, E., Ristoiu, V., & Georgescu, A. (2017). Microparticles of healthy origins improve endothelial progenitor cell dysfunction via microRNA transfer in an atherosclerotic hamster model. Acta Physiologica, 221(4), 230–249.PubMed Alexandru, N., Andrei, E., Niculescu, L., Dragan, E., Ristoiu, V., & Georgescu, A. (2017). Microparticles of healthy origins improve endothelial progenitor cell dysfunction via microRNA transfer in an atherosclerotic hamster model. Acta Physiologica, 221(4), 230–249.PubMed
63.
Zurück zum Zitat Yi, S., Allen, S. D., Liu, Y. G., Ouyang, B. Z., Li, X., Augsornworawat, P., et al. (2016). Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis. ACS Nano, 10(12), 11290–11303.PubMedPubMedCentral Yi, S., Allen, S. D., Liu, Y. G., Ouyang, B. Z., Li, X., Augsornworawat, P., et al. (2016). Tailoring nanostructure morphology for enhanced targeting of dendritic cells in atherosclerosis. ACS Nano, 10(12), 11290–11303.PubMedPubMedCentral
64.
Zurück zum Zitat Ma, S., Tian, X. Y., Zhang, Y., Mu, C., Shen, H., Bismuth, J., et al. (2016). E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Scientific Reports, 6, 22910.PubMedPubMedCentral Ma, S., Tian, X. Y., Zhang, Y., Mu, C., Shen, H., Bismuth, J., et al. (2016). E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Scientific Reports, 6, 22910.PubMedPubMedCentral
65.
Zurück zum Zitat Elahi, F. M., Farwell, D. G., Nolta, J. A., & Anderson, J. D. (2019). Concise review: preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem cells (Dayton, Ohio). Elahi, F. M., Farwell, D. G., Nolta, J. A., & Anderson, J. D. (2019). Concise review: preclinical translation of exosomes derived from mesenchymal stem/stromal cells. Stem cells (Dayton, Ohio).
66.
Zurück zum Zitat Branscome, H., Paul, S., Khatkar, P., Kim, Y., Barclay, R. A., Pinto, D. O., et al. (2019). Stem cell extracellular vesicles and their potential to contribute to the repair of damaged CNS cells. Journal of Neuroimmune Pharmacology. Branscome, H., Paul, S., Khatkar, P., Kim, Y., Barclay, R. A., Pinto, D. O., et al. (2019). Stem cell extracellular vesicles and their potential to contribute to the repair of damaged CNS cells. Journal of Neuroimmune Pharmacology.
67.
Zurück zum Zitat Vazquez-Rios, A. J., Molina-Crespo, A., Bouzo, B. L., Lopez-Lopez, R., Moreno-Bueno, G., & de la Fuente, M. (2019). Exosome-mimetic nanoplatforms for targeted cancer drug delivery. Journal of Nanobiotechnology, 17(1), 85.PubMedPubMedCentral Vazquez-Rios, A. J., Molina-Crespo, A., Bouzo, B. L., Lopez-Lopez, R., Moreno-Bueno, G., & de la Fuente, M. (2019). Exosome-mimetic nanoplatforms for targeted cancer drug delivery. Journal of Nanobiotechnology, 17(1), 85.PubMedPubMedCentral
Metadaten
Titel
Extracellular Vesicles as Messengers in Atherosclerosis
verfasst von
Mengna Peng
Xinfeng Liu
Gelin Xu
Publikationsdatum
29.10.2019
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 2/2020
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-019-09923-z

Weitere Artikel der Ausgabe 2/2020

Journal of Cardiovascular Translational Research 2/2020 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.