Skip to main content
Erschienen in: Inflammation Research 4/2019

28.02.2019 | Original Research Paper

EZH2 plays a crucial role in ischemia/reperfusion-induced acute kidney injury by regulating p38 signaling

verfasst von: Hua Liang, Qiong Huang, Mei-juan Liao, Feng Xu, Tao Zhang, Jian He, Lei Zhang, Hong-zhen Liu

Erschienen in: Inflammation Research | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective and design

Renal ischemia–reperfusion (IR)-induced acute kidney injury (AKI) remains a major challenge in clinic. The histone methyltransferases enhancer of zest homolog-2 (EZH2) is associated with the development of renal injury. However, the molecular mechanism has not been fully elucidated.

Materials

AKI in C57BL/6 mice was generated by renal IR.

Treatments

The 3-deazaneplanocin A (DZNeP), a selective EZH2 inhibitor, or vehicle was administrated in mice after IR. HK-2 cells were exposed to hypoxia-reoxygenation (H/R) stress.

Methods

Apoptosis was detected by TUNEL assay or flow cytometry. EZH2, caspase-3, p38, F4/80+ macrophages, and CD3+ T cells were examined by immunohistochemistry or Western blot. Tumor necrosis factor (TNF)-α, monocyte chemoattractant protein (MCP)-1, IL-6, and IL-18 were measured using RT-PCR.

Results

Mice treated with DZNeP exhibited less severe renal dysfunction and tubular injury following IR. EZH2 inhibition decreased apoptotic cells while reducing activation of caspase-3 in kidneys under IR condition. Moreover, EZH2 inhibition impaired the recruitment of CD3+ T cells and F4/80+ cells in kidneys with IR. Administration of DZNeP suppressed the production of TNF-α, MCP-1, IL-6, and IL-18 in IR-treated kidneys. Of note, EZH2 inhibition reduced p38 phosphorylation in kidneys after IR. In H/R-treated HK-2 cells, DZNeP treatment or EZH2 knockdown reduced apoptosis. EZH2 inhibition inactivated p38 resulting in reduction of active caspase-3 and proinflammatory molecules. By contrast, EZH2 overexpression induced p38 phosphorylation, caspase-3 activation, and production of proinflammatory molecules, which was reversed by SB203580.

Conclusions

EZH2 plays a crucial role in IR-induced AKI via modulation of p38 signaling. Targeting EZH2/p38 signaling pathway may offer novel strategies to protect kidneys from acute kidney injury induced by ischemia–reperfusion.
Literatur
1.
2.
Zurück zum Zitat Meersch M, Schmidt C, Zarbock A. Perioperative Acute kidney injury: an under-recognized problem. Anesth Analg. 2017;125(4):1223–32.CrossRefPubMed Meersch M, Schmidt C, Zarbock A. Perioperative Acute kidney injury: an under-recognized problem. Anesth Analg. 2017;125(4):1223–32.CrossRefPubMed
3.
Zurück zum Zitat Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol. 2014;10(4):193–207.CrossRefPubMed Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol. 2014;10(4):193–207.CrossRefPubMed
4.
Zurück zum Zitat He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 2017;92(5):1071–83.CrossRefPubMedPubMedCentral He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, et al. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int. 2017;92(5):1071–83.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Thurman JM. Triggers of inflammation after renal ischemia/reperfusion. Clin Immunol. 2007;123(1):7–13.CrossRefPubMed Thurman JM. Triggers of inflammation after renal ischemia/reperfusion. Clin Immunol. 2007;123(1):7–13.CrossRefPubMed
7.
Zurück zum Zitat Ying Y, Kim J, Westphal SN, Long KE, Padanilam BJ. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol. 2014;25(12):2707–16.CrossRefPubMedPubMedCentral Ying Y, Kim J, Westphal SN, Long KE, Padanilam BJ. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol. 2014;25(12):2707–16.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200.CrossRefPubMed Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200.CrossRefPubMed
9.
Zurück zum Zitat Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011;17(11):1391–401.CrossRefPubMed Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011;17(11):1391–401.CrossRefPubMed
10.
Zurück zum Zitat Wang Y, Yan L, Zhang Z, Prado E, Fu L, Xu X, Du L. Epigenetic regulation and its therapeutic potential in pulmonary hypertension. Front Pharmacol. 2018;9:241.CrossRefPubMedPubMedCentral Wang Y, Yan L, Zhang Z, Prado E, Fu L, Xu X, Du L. Epigenetic regulation and its therapeutic potential in pulmonary hypertension. Front Pharmacol. 2018;9:241.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Stoll S, Wang C, Qiu H. DNA Methylation and Histone modification in hypertension. Int J Mol Sci. 2018; 19(4). Stoll S, Wang C, Qiu H. DNA Methylation and Histone modification in hypertension. Int J Mol Sci. 2018; 19(4).
12.
Zurück zum Zitat Mar D, Gharib SA, Zager RA, Johnson A, Denisenko O, Bomsztyk K. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes. Kidney Int. 2015;88(4):734–44.CrossRefPubMedPubMedCentral Mar D, Gharib SA, Zager RA, Johnson A, Denisenko O, Bomsztyk K. Heterogeneity of epigenetic changes at ischemia/reperfusion- and endotoxin-induced acute kidney injury genes. Kidney Int. 2015;88(4):734–44.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Jones BA, Varambally S, Arend RC. Histone methyltransferase EZH2: a therapeutic target for ovarian cancer. Mol Cancer Ther. 2018;17(3):591–602.CrossRefPubMedPubMedCentral Jones BA, Varambally S, Arend RC. Histone methyltransferase EZH2: a therapeutic target for ovarian cancer. Mol Cancer Ther. 2018;17(3):591–602.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Zhou X, Zang X, Guan Y, Tolbert T, Zhao TC, Bayliss G, Zhuang S. Targeting enhancer of zeste homolog 2 protects against acute kidney injury. Cell death disease. 2018;9(11):1067.CrossRefPubMedPubMedCentral Zhou X, Zang X, Guan Y, Tolbert T, Zhao TC, Bayliss G, Zhuang S. Targeting enhancer of zeste homolog 2 protects against acute kidney injury. Cell death disease. 2018;9(11):1067.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Moore HM, Gonzalez ME, Toy KA, Cimino-Mathews A, Argani P, Kleer CG. EZH2 inhibition decreases p38 signaling and suppresses breast cancer motility and metastasis. Breast Cancer Res Treat. 2013;138(3):741–52.CrossRefPubMedPubMedCentral Moore HM, Gonzalez ME, Toy KA, Cimino-Mathews A, Argani P, Kleer CG. EZH2 inhibition decreases p38 signaling and suppresses breast cancer motility and metastasis. Breast Cancer Res Treat. 2013;138(3):741–52.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Cascio S, Faylo JL, Sciurba JC, Xue J, Ranganathan S, Lohmueller JJ, Beatty PL, Finn OJ. Abnormally glycosylated MUC1 establishes a positive feedback circuit of inflammatory cytokines, mediated by NF-kappaB p65 and EzH2, in colitis-associated cancer. Oncotarget. 2017;8(62):105284–98.CrossRefPubMedPubMedCentral Cascio S, Faylo JL, Sciurba JC, Xue J, Ranganathan S, Lohmueller JJ, Beatty PL, Finn OJ. Abnormally glycosylated MUC1 establishes a positive feedback circuit of inflammatory cytokines, mediated by NF-kappaB p65 and EzH2, in colitis-associated cancer. Oncotarget. 2017;8(62):105284–98.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Zhang X, Wang Y, Yuan J, Li N, Pei S, Xu J, Luo X, Mao C, Liu J, Yu T, et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med. 2018;215(5):1365–82.CrossRefPubMedPubMedCentral Zhang X, Wang Y, Yuan J, Li N, Pei S, Xu J, Luo X, Mao C, Liu J, Yu T, et al. Macrophage/microglial Ezh2 facilitates autoimmune inflammation through inhibition of Socs3. J Exp Med. 2018;215(5):1365–82.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Liang H, Liao M, Zhao W, Zheng X, Xu F, Wang H, Huang J. CXCL16/ROCK1 signaling pathway exacerbates acute kidney injury induced by ischemia–reperfusion. Biomed Pharmacother. 2018;98:347–56.CrossRefPubMed Liang H, Liao M, Zhao W, Zheng X, Xu F, Wang H, Huang J. CXCL16/ROCK1 signaling pathway exacerbates acute kidney injury induced by ischemia–reperfusion. Biomed Pharmacother. 2018;98:347–56.CrossRefPubMed
19.
20.
Zurück zum Zitat Liang H, Xu F, Wen XJ, Liu HZ, Wang HB, Zhong JY, Yang CX, Zhang B. Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion. Eur J Pharmacol. 2017;812:18–27.CrossRefPubMed Liang H, Xu F, Wen XJ, Liu HZ, Wang HB, Zhong JY, Yang CX, Zhang B. Interleukin-33 signaling contributes to renal fibrosis following ischemia reperfusion. Eur J Pharmacol. 2017;812:18–27.CrossRefPubMed
21.
Zurück zum Zitat Liang H, Zhang Z, Yan J, Wang Y, Hu Z, Mitch WE, Wang Y. The IL-4 receptor alpha has a critical role in bone marrow-derived fibroblast activation and renal fibrosis. Kidney Int. 2017;92(6):1433–43.CrossRefPubMedPubMedCentral Liang H, Zhang Z, Yan J, Wang Y, Hu Z, Mitch WE, Wang Y. The IL-4 receptor alpha has a critical role in bone marrow-derived fibroblast activation and renal fibrosis. Kidney Int. 2017;92(6):1433–43.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Zhou X, Zang X, Ponnusamy M, Masucci MV, Tolbert E, Gong R, Zhao TC, Liu N, Bayliss G, Dworkin LD, et al. Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining Smad7 and phosphatase and tensin homolog expression. J Am Soc Nephrol. 2016;27(7):2092–108.CrossRefPubMed Zhou X, Zang X, Ponnusamy M, Masucci MV, Tolbert E, Gong R, Zhao TC, Liu N, Bayliss G, Dworkin LD, et al. Enhancer of zeste homolog 2 inhibition attenuates renal fibrosis by maintaining Smad7 and phosphatase and tensin homolog expression. J Am Soc Nephrol. 2016;27(7):2092–108.CrossRefPubMed
23.
Zurück zum Zitat Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A, Danesi R. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev. 2012;31(3–4):753–61.CrossRefPubMed Crea F, Fornaro L, Bocci G, Sun L, Farrar WL, Falcone A, Danesi R. EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev. 2012;31(3–4):753–61.CrossRefPubMed
24.
Zurück zum Zitat Momparler RL, Cote S. Targeting of cancer stem cells by inhibitors of DNA and histone methylation. Expert Opin Investig Drugs. 2015;24(8):1031–43.CrossRefPubMed Momparler RL, Cote S. Targeting of cancer stem cells by inhibitors of DNA and histone methylation. Expert Opin Investig Drugs. 2015;24(8):1031–43.CrossRefPubMed
25.
Zurück zum Zitat Yang Y, Zhang ZX, Lian D, Haig A, Bhattacharjee RN, Jevnikar AM. IL-37 inhibits IL-18-induced tubular epithelial cell expression of pro-inflammatory cytokines and renal ischemia–reperfusion injury. Kidney Int. 2015;87(2):396–408.CrossRefPubMed Yang Y, Zhang ZX, Lian D, Haig A, Bhattacharjee RN, Jevnikar AM. IL-37 inhibits IL-18-induced tubular epithelial cell expression of pro-inflammatory cytokines and renal ischemia–reperfusion injury. Kidney Int. 2015;87(2):396–408.CrossRefPubMed
26.
Zurück zum Zitat Yamagishi M, Uchimaru K. Targeting EZH2 in cancer therapy. Curr Opin Oncol. 2017;29(5):375–81.CrossRefPubMed Yamagishi M, Uchimaru K. Targeting EZH2 in cancer therapy. Curr Opin Oncol. 2017;29(5):375–81.CrossRefPubMed
27.
Zurück zum Zitat Italiano A. Role of the EZH2 histone methyltransferase as a therapeutic target in cancer. Pharmacol Ther. 2016;165:26–31.CrossRefPubMed Italiano A. Role of the EZH2 histone methyltransferase as a therapeutic target in cancer. Pharmacol Ther. 2016;165:26–31.CrossRefPubMed
28.
Zurück zum Zitat Safaei S, Baradaran B, Hagh MF, Alivand MR, Talebi M, Gharibi T, Solali S. Double sword role of EZH2 in leukemia. Biomed Pharmacother. 2018;98:626–35.CrossRefPubMed Safaei S, Baradaran B, Hagh MF, Alivand MR, Talebi M, Gharibi T, Solali S. Double sword role of EZH2 in leukemia. Biomed Pharmacother. 2018;98:626–35.CrossRefPubMed
29.
Zurück zum Zitat Yan KS, Lin CY, Liao TW, Peng CM, Lee SC, Liu YJ, Chan WP, Chou RH. EZH2 in cancer progression and potential application in cancer therapy: a friend or foe? Int J Mol Sci. 2017; 18(6). Yan KS, Lin CY, Liao TW, Peng CM, Lee SC, Liu YJ, Chan WP, Chou RH. EZH2 in cancer progression and potential application in cancer therapy: a friend or foe? Int J Mol Sci. 2017; 18(6).
30.
Zurück zum Zitat Zhou X, Xiong C, Tolbert E, Zhao TC, Bayliss G, Zhuang S. Targeting histone methyltransferase enhancer of zeste homolog-2 inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis. FASEB J. 2018:fj201800237R. Zhou X, Xiong C, Tolbert E, Zhao TC, Bayliss G, Zhuang S. Targeting histone methyltransferase enhancer of zeste homolog-2 inhibits renal epithelial-mesenchymal transition and attenuates renal fibrosis. FASEB J. 2018:fj201800237R.
31.
Zurück zum Zitat Ortiz A, Justo P, Sanz A, Lorz C, Egido J. Targeting apoptosis in acute tubular injury. Biochem Pharmacol. 2003;66(8):1589–94.CrossRefPubMed Ortiz A, Justo P, Sanz A, Lorz C, Egido J. Targeting apoptosis in acute tubular injury. Biochem Pharmacol. 2003;66(8):1589–94.CrossRefPubMed
32.
Zurück zum Zitat Saikumar P, Venkatachalam MA. Role of apoptosis in hypoxic/ischemic damage in the kidney. Semin Nephrol. 2003;23(6):511–21.CrossRefPubMed Saikumar P, Venkatachalam MA. Role of apoptosis in hypoxic/ischemic damage in the kidney. Semin Nephrol. 2003;23(6):511–21.CrossRefPubMed
33.
Zurück zum Zitat Jang HR, Rabb H. Immune cells in experimental acute kidney injury. Nat Rev Nephrol. 2015;11(2):88–101.CrossRefPubMed Jang HR, Rabb H. Immune cells in experimental acute kidney injury. Nat Rev Nephrol. 2015;11(2):88–101.CrossRefPubMed
34.
35.
Zurück zum Zitat Nishikawa H, Taniguchi Y, Matsumoto T, Arima N, Masaki M, Shimamura Y, Inoue K, Horino T, Fujimoto S, Ohko K, et al. Knockout of the interleukin-36 receptor protects against renal ischemia–reperfusion injury by reduction of proinflammatory cytokines. Kidney Int. 2018;93(3):599–614.CrossRefPubMed Nishikawa H, Taniguchi Y, Matsumoto T, Arima N, Masaki M, Shimamura Y, Inoue K, Horino T, Fujimoto S, Ohko K, et al. Knockout of the interleukin-36 receptor protects against renal ischemia–reperfusion injury by reduction of proinflammatory cytokines. Kidney Int. 2018;93(3):599–614.CrossRefPubMed
36.
Zurück zum Zitat Wu H, Craft ML, Wang P, Wyburn KR, Chen G, Ma J, Hambly B, Chadban SJ. IL-18 contributes to renal damage after ischemia–reperfusion. J Am Soc Nephrol. 2008;19(12):2331–41.CrossRefPubMedPubMedCentral Wu H, Craft ML, Wang P, Wyburn KR, Chen G, Ma J, Hambly B, Chadban SJ. IL-18 contributes to renal damage after ischemia–reperfusion. J Am Soc Nephrol. 2008;19(12):2331–41.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs. 2009;18(12):1893–905.CrossRefPubMed Yong HY, Koh MS, Moon A. The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs. 2009;18(12):1893–905.CrossRefPubMed
Metadaten
Titel
EZH2 plays a crucial role in ischemia/reperfusion-induced acute kidney injury by regulating p38 signaling
verfasst von
Hua Liang
Qiong Huang
Mei-juan Liao
Feng Xu
Tao Zhang
Jian He
Lei Zhang
Hong-zhen Liu
Publikationsdatum
28.02.2019
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 4/2019
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-019-01221-3

Weitere Artikel der Ausgabe 4/2019

Inflammation Research 4/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.