Skip to main content
Erschienen in:

06.01.2022 | Original Article

F-18 meta-fluorobenzylguanidine PET imaging of myocardial sympathetic innervation

verfasst von: Milan Grkovski, PhD, Pat B. Zanzonico, PhD, Shakeel Modak, MD, John L. Humm, PhD, Jagat Narula, MD, PhD, Neeta Pandit-Taskar, MD

Erschienen in: Journal of Nuclear Cardiology | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

I-123 meta-iodobenzylguanidine (MIBG) imaging has long been employed to noninvasively assess the integrity of human norepinephrine transporter-1 and, hence, myocardial sympathetic innervation. Positron-emitting F-18 meta-fluorobenzylguanidine (MFBG) has recently been developed for potentially superior quantitative characterization. We assessed the feasibility of MFBG imaging of myocardial sympathetic innervation.

Methods

16 patients were imaged with MFBG PET (30-minute dynamic imaging of chest, followed by 3 whole-body acquisitions between 30 minutes and 4-hour post-injection). Blood kinetics were assessed from multiple samples. Pharmacokinetic modeling with reversible 1- and 2-compartment models was performed. Kinetic rate constants were re-calculated from truncated datasets. All patients underwent concurrent MIBG SPECT.

Results

MFBG myocardial uptake was rapid and sustained; the mean standardized uptake value (SUV (mean ± standard deviation)) was 5.1 ± 2.2 and 3.4 ± 1.9 at 1 hour and 3-4-hour post-injection, respectively. The mean K1 and distribution volume (VT) were 1.1 ± 0.6 mL/min/g and 34 ± 22 mL/cm3, respectively. Both were reproducible when re-calculated from truncated 1-hour datasets (Intraclass Correlation Coefficient of 0.99 and 0.91, respectively). Spearman’s ϱ = 0.86 between MFBG SUV and VT and 0.80 between MFBG PET-derived VT and MIBG SPECT-derived heart-to-mediastinum activity concentration ratio.

Conclusion

MFBG is a promising PET radiotracer for the assessment of myocardial sympathetic innervation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Carrio I, et al. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging 2010;3:92‐100.CrossRef Carrio I, et al. Cardiac sympathetic imaging with mIBG in heart failure. JACC Cardiovasc Imaging 2010;3:92‐100.CrossRef
2.
Zurück zum Zitat Chirumamilla A, Travin MI. Cardiac applications of 123I-mIBG imaging. Semin Nucl Med 2011;41:374‐87.CrossRef Chirumamilla A, Travin MI. Cardiac applications of 123I-mIBG imaging. Semin Nucl Med 2011;41:374‐87.CrossRef
3.
Zurück zum Zitat Zelt JGE, et al. Nuclear imaging of the cardiac sympathetic nervous system: a disease-specific interpretation in heart failure. JACC Cardiovasc Imaging 2020;13:1036‐54.CrossRef Zelt JGE, et al. Nuclear imaging of the cardiac sympathetic nervous system: a disease-specific interpretation in heart failure. JACC Cardiovasc Imaging 2020;13:1036‐54.CrossRef
4.
Zurück zum Zitat Haider N, et al. Adrenergic excess, hNET1 down-regulation, and compromised mIBG uptake in heart failure poverty in the presence of plenty. JACC Cardiovasc Imaging 2010;3:71‐5.CrossRef Haider N, et al. Adrenergic excess, hNET1 down-regulation, and compromised mIBG uptake in heart failure poverty in the presence of plenty. JACC Cardiovasc Imaging 2010;3:71‐5.CrossRef
5.
Zurück zum Zitat Gerson MC, et al. Activity of the uptake-1 norepinephrine transporter as measured by I-123 MIBG in heart failure patients with a loss-of-function polymorphism of the presynaptic alpha2C-adrenergic receptor. J Nucl Cardiol 2003;10:583‐9.CrossRef Gerson MC, et al. Activity of the uptake-1 norepinephrine transporter as measured by I-123 MIBG in heart failure patients with a loss-of-function polymorphism of the presynaptic alpha2C-adrenergic receptor. J Nucl Cardiol 2003;10:583‐9.CrossRef
6.
Zurück zum Zitat Verberne HJ, et al. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J 2008;29:1147‐59.CrossRef Verberne HJ, et al. Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J 2008;29:1147‐59.CrossRef
7.
Zurück zum Zitat Jacobson AF, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55:2212‐21.CrossRef Jacobson AF, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55:2212‐21.CrossRef
8.
Zurück zum Zitat Nakata T, et al. A pooled analysis of multicenter cohort studies of (123)I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging 2013;6:772‐84.CrossRef Nakata T, et al. A pooled analysis of multicenter cohort studies of (123)I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. JACC Cardiovasc Imaging 2013;6:772‐84.CrossRef
9.
Zurück zum Zitat Boutagy NE, Sinusas AJ. Recent advances and clinical applications of PET cardiac autonomic nervous system imaging. Curr Cardiol Rep 2017;19:33.CrossRef Boutagy NE, Sinusas AJ. Recent advances and clinical applications of PET cardiac autonomic nervous system imaging. Curr Cardiol Rep 2017;19:33.CrossRef
10.
Zurück zum Zitat Pandit-Taskar N, et al. Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med 2018;59:147‐53.CrossRef Pandit-Taskar N, et al. Biodistribution and dosimetry of (18)F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med 2018;59:147‐53.CrossRef
11.
Zurück zum Zitat Chen J, et al. Quantitative I-123 mIBG SPECT in differentiating abnormal and normal mIBG myocardial uptake. J Nucl Cardiol 2012;19:92‐9.CrossRef Chen J, et al. Quantitative I-123 mIBG SPECT in differentiating abnormal and normal mIBG myocardial uptake. J Nucl Cardiol 2012;19:92‐9.CrossRef
12.
Zurück zum Zitat Hagelberg N, et al. Alfentanil increases cortical dopamine D2/D3 receptor binding in healthy subjects. Pain 2004;109:86‐93.CrossRef Hagelberg N, et al. Alfentanil increases cortical dopamine D2/D3 receptor binding in healthy subjects. Pain 2004;109:86‐93.CrossRef
13.
Zurück zum Zitat Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies. J R Stat Soc Ser D 1983;32:307‐17. Altman DG, Bland JM. Measurement in medicine: the analysis of method comparison studies. J R Stat Soc Ser D 1983;32:307‐17.
14.
Zurück zum Zitat Zhang H, et al. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res 2014;20:2182‐91.CrossRef Zhang H, et al. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res 2014;20:2182‐91.CrossRef
15.
Zurück zum Zitat Wu J, et al. Quantitative analysis of dynamic 123I-mIBG SPECT imaging data in healthy humans with a population-based metabolite correction method. J Nucl Med 2016;57:1226‐32.CrossRef Wu J, et al. Quantitative analysis of dynamic 123I-mIBG SPECT imaging data in healthy humans with a population-based metabolite correction method. J Nucl Med 2016;57:1226‐32.CrossRef
16.
Zurück zum Zitat Wang T, et al. Reproducible quantification of cardiac sympathetic innervation using graphical modeling of carbon-11-meta-hydroxyephedrine kinetics with dynamic PET-CT imaging. EJNMMI Res 2018;8:63.CrossRef Wang T, et al. Reproducible quantification of cardiac sympathetic innervation using graphical modeling of carbon-11-meta-hydroxyephedrine kinetics with dynamic PET-CT imaging. EJNMMI Res 2018;8:63.CrossRef
17.
Zurück zum Zitat Zelt JG, Britt D, Mair BA, Rotstein BH, Quigley S, Walter O, et al. Regional distribution of fluorine-18-flubrobenguane and carbon-11-hydroxyephedrine for cardiac PET imaging of sympathetic innervation. JACC Cardiovasc Imaging. 2021;14:1425‐36.CrossRef Zelt JG, Britt D, Mair BA, Rotstein BH, Quigley S, Walter O, et al. Regional distribution of fluorine-18-flubrobenguane and carbon-11-hydroxyephedrine for cardiac PET imaging of sympathetic innervation. JACC Cardiovasc Imaging. 2021;14:1425‐36.CrossRef
18.
Zurück zum Zitat Bengel FM, et al. Kinetics of 123I-MIBG after acute myocardial infarction and reperfusion therapy. J Nucl Med 1999;40:904‐10. Bengel FM, et al. Kinetics of 123I-MIBG after acute myocardial infarction and reperfusion therapy. J Nucl Med 1999;40:904‐10.
19.
Zurück zum Zitat Tobes MC, et al. Effect of uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine. J Nucl Med 1985;26:897‐907. Tobes MC, et al. Effect of uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine. J Nucl Med 1985;26:897‐907.
20.
Zurück zum Zitat Nakajo M, et al. Iodine-131 metaiodobenzylguanidine intra- and extravesicular accumulation in the rat heart. J Nucl Med 1986;27:84‐9. Nakajo M, et al. Iodine-131 metaiodobenzylguanidine intra- and extravesicular accumulation in the rat heart. J Nucl Med 1986;27:84‐9.
21.
Zurück zum Zitat Henderson EB, et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation 1988;78:1192‐9.CrossRef Henderson EB, et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation 1988;78:1192‐9.CrossRef
22.
Zurück zum Zitat Wakasugi S, Inoue M, Tazawa S. Assessment of adrenergic neuron function altered with progression of heart failure. J Nucl Med 1995;36:2069‐74. Wakasugi S, Inoue M, Tazawa S. Assessment of adrenergic neuron function altered with progression of heart failure. J Nucl Med 1995;36:2069‐74.
23.
Zurück zum Zitat Kurata C, et al. Comparison of [123I]metaiodobenzylguanidine kinetics with heart rate variability and plasma norepinephrine level. J Nucl Cardiol 1997;4:515‐23.CrossRef Kurata C, et al. Comparison of [123I]metaiodobenzylguanidine kinetics with heart rate variability and plasma norepinephrine level. J Nucl Cardiol 1997;4:515‐23.CrossRef
24.
Zurück zum Zitat Wacker CM, et al. Determination of regional blood volume and intra-extracapillary water exchange in human myocardium using Feruglose: first clinical results in patients with coronary artery disease. Magn Reson Med 2002;47:1013‐6.CrossRef Wacker CM, et al. Determination of regional blood volume and intra-extracapillary water exchange in human myocardium using Feruglose: first clinical results in patients with coronary artery disease. Magn Reson Med 2002;47:1013‐6.CrossRef
25.
Zurück zum Zitat Wu J, et al. Simplified quantification and acquisition protocol for (123)I-MIBG dynamic SPECT. J Nucl Med 2018;59:1574‐80.CrossRef Wu J, et al. Simplified quantification and acquisition protocol for (123)I-MIBG dynamic SPECT. J Nucl Med 2018;59:1574‐80.CrossRef
26.
Zurück zum Zitat Slomka PJ, et al. Dual-gated motion-frozen cardiac PET with flurpiridaz F 18. J Nucl Med 2015;56:1876‐81.CrossRef Slomka PJ, et al. Dual-gated motion-frozen cardiac PET with flurpiridaz F 18. J Nucl Med 2015;56:1876‐81.CrossRef
27.
Zurück zum Zitat Hunter CR, et al. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging. Med Phys 2016;43:1829.CrossRef Hunter CR, et al. Patient motion effects on the quantification of regional myocardial blood flow with dynamic PET imaging. Med Phys 2016;43:1829.CrossRef
Metadaten
Titel
F-18 meta-fluorobenzylguanidine PET imaging of myocardial sympathetic innervation
verfasst von
Milan Grkovski, PhD
Pat B. Zanzonico, PhD
Shakeel Modak, MD
John L. Humm, PhD
Jagat Narula, MD, PhD
Neeta Pandit-Taskar, MD
Publikationsdatum
06.01.2022
Verlag
Springer International Publishing
Erschienen in
Journal of Nuclear Cardiology / Ausgabe 6/2022
Print ISSN: 1071-3581
Elektronische ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-021-02813-5

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Kardiologie

Dank Nasenspray seltener in die Notaufnahme

Durch die intranasale Applikation von Etripamil lassen sich paroxysmale supraventrikuläre Tachykardien (PSVT) oft in Eigenregie beenden. Das erspart den Betroffenen das Aufsuchen von Notfallambulanzen.

Vorhofflimmern: So häufig kommt es bei Katheterablation zu Embolien

Arterielle Embolien – insbesondere Hirnembolien - sind eine mögliche periprozedurale Komplikation bei Katheterablation von Vorhofflimmern. Wie hoch ist das Risiko? Eine Analyse von weltweit mehr als 300.000 Ablationsprozeduren gibt darüber Auskunft.

Extrakorporale Reanimation: Wechsel des EKG-Musters verschlechtert Prognose

Patientinnen und Patienten im Herzstillstand mit schockbarem Rhythmus, deren EKG-Muster sich später ändert, haben schlechtere Chancen. Eine Studiengruppe hat die Bedeutung eines solchen Rhythmuswechsels mit Blick auf die extrakorporale Reanimation genauer untersucht.

Leben retten dank Erste-Hilfe-App

Bei einem Herzstillstand zählt jede Minute bis eine Reanimation begonnen wird. Notfallmediziner Prof. Dr. med. Michael Müller erklärt im Interview, wie medizinisch geschulte Ersthelfende mittels App alarmiert werden können – und warum digitale Lösungen die Notfallversorgung revolutionieren könnten.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.