Skip to main content
Erschienen in: BMC Neurology 1/2017

Open Access 01.12.2017 | Research article

Factors associated with improvement or decline in cognitive function after an ischemic stroke in Korea: the Korean stroke cohort for functioning and rehabilitation (KOSCO) study

verfasst von: Jin A. Yoon, Deog Young Kim, Min Kyun Sohn, Jongmin Lee, Sam-Gyu Lee, Yang-Soo Lee, Eun Young Han, Min Cheol Joo, Gyung-Jae Oh, Junhee Han, Minsu Park, Kyung Pil Park, Kyung-Ha Noh, Won Hyuk Chang, Yong-Il Shin, Yun-Hee Kim

Erschienen in: BMC Neurology | Ausgabe 1/2017

Abstract

Background

We conducted a prospective cohort study to investigate prevalence of poststroke cognitive impairment at 3 and 12 months after stroke onset and identify clinical and demographic factors associated with improvement or decline in cognitive function between 3 months and 12 months.

Methods

We analyzed the cognitive assessments of total patients and patients older than 65 years separately. All patients with an ischemic stroke were divided into normal cognitive group (NCG) and impaired cognition group (ICG) by using a cutoff score on the Korean Mini-Mental State Examination (K-MMSE). Patients were additionally classified into 3 subgroups according to the changes in their K-MMSE scores between 3 and 12 months: Stable group with K-MMSE scores changes ranging from −2 to +2 points (−2 ≤ △MMSE ≤ +2); converter group with increase more than 3 points (3 ≤ △MMSE); and reverter group with decrease more than 3 points (−3 ≤ △MMSE). We also analyzed factors affecting cognitive change from 3 months to 12 months among the 3 groups including baseline medical record, stroke and treatment characteristics, and various functional assessments after 3 months.

Results

This study included 2,625 patients with the first time ischemic stroke. Among these patients, 1,735 (66.1%) were classified as NCG, while 890 patients (33.9%) were belonged to the ICG at 3 month. Within the NCG, 1,460 patients (82.4%) were stable group, 93 patients (5.4%) were converter group, and 212 patients (12.2%) were reverter group at 12 months onset. Within the ICG group, 472 patients (53.0%) were stable group, 321 patients (36.1%) were converter group, and 97 patients (10.9%) were reverter group. When different factors were investigated, the three subgroups in NCG and ICG showed significant different factors affecting cognitive function from 3 to 12 month.

Conclusions

The prevalence of cognitive impairment showed difference between 3,12 months. To analyze the cognitive change from 3 month to 12 month, the proportion stable group was dominant in NCG and converter group was higher in ICG. By investigating the influencing factors from each group, we were able to identify the predictors including the age factor.
Abkürzungen
CG
Converter group
EQ-5D
Euro quality of Life
FAC
Functional ambulatory category
FIM
Functional independence measure
FMA
Fugl-meyer assessment
GDS-SF
Geriatric depression scale-short form
ICG
Impaired cognitive group
K-MBI
Korean modified Barthel index
K-MMSE
Korean mini-mental State examination
K-NIHSS
Korean national institute of health stroke scale
KOSCO
Korean stroke cohort for functioning and rehabilitation
mRS
Modified rankin scale
NCG
Normal cognitive group
RG
Reverter group
SG
Stable group

Background

Cerebrovascular stroke is considered one of the main causes of dementia [13]. It may decrease quality of life in addition to causing other neurological deficits [4]. Post-stroke dementia is defined as a presence of dementia identified at 3 months after an acute stroke [5]. Reasons for a stroke patient to develop dementia are still insufficiently understood. It is not always a direct consequence of cerebrovascular lesions, and, in some cases, post-stroke dementia has a progressive course, suggesting a degenerative rather than a vascular origin [6, 7]. In previous autopsy series, 10 to 15% of dementias occurring after a stroke were found to be due to a combination of vascular and Alzheimer’s disease [8, 9].
Despite consensus that strokes are associated with an increased risk of post-stroke dementia, the data regarding prevalence at 3 months post-stroke are still conflicting, with reports ranging from 6% to more than 50% [1014]. In addition, cognitive function may vary (either improve or decline) years after a stroke. Snaphaan et al. reported that post-stroke memory dysfunction varied from 23 to 55% at 3 months after a stroke, and this declined from 11 to 31% at 1 year after a stroke. Declined cognitive function may change. A previous cohort study showed 33% of patients with mild cognitive impairments diagnosed in the first 6 months after a stroke showed improvement at 1 year. Several prospective studies have identified delayed improvement in cognitive function after strokes using various diagnostic assessment tools for dementia [15-17].
The pathophysiology of delayed cognitive change after a stroke is multifactorial, and the prevalence rate of post-stroke dementia is higher among older patients [18, 19]. Previous studies have tracked cognitive changes to identify the factors associated with delayed improvement or a decline in cognitive function after stroke. However, no large-scale study has been conducted to investigate the pattern of post-stroke cognitive changes, identify the risk factors, or compare age-related differences using repeated administration of the most commonly used screening tool.
Therefore, we conducted a prospective cohort study in conjunction with the Korean Stroke Cohort for Functioning and Rehabilitation (KOSCO) to identify 1) the prevalence of delayed cognitive impairment; patients progress to either converter, stable, or reverter group after ischemic stroke and 2) clinical and demographic factors associated with improvement or decline in cognitive function between 3 months and 12 months after ischemic stroke. The present study is the first to involve a large and well-characterized Korean cohort, a battery of short cognitive and functional assessments, and a 1-year follow-up.

Methods

Study design

KOSCO is a large, multi-centered, prospective cohort study of all acute, first-time stroke patients admitted to participating hospitals in nine distinct areas of Korea. A written informed consent is obtained from all patients prior to inclusion in the study, and the study protocols were approved by the ethics committee of each hospital. The detailed rationale and protocols of KOSCO were described in a previous article [20].

Study subjects

All consecutive patients with an acute, first-time IS admitted to the representative hospitals were asked to participate in the study. The inclusion criteria were: 1) first-time ischemic stroke with corresponding lesion on a MRI/A scan, 2) age ≥19 years at stroke onset, and 3) onset of symptoms within 7 days prior to inclusion. Exclusion criteria were: 1) recurrent stroke; 2) hemorrhagic stroke; 3) traumatic intracerebral hemorrhage; 4) previously diagnosed dementia or cognitive impairment; 5) persistent aphasia; and 6) history of systemic diseases known to involve the central nervous system.

Procedure

All eligible patients were recruited from August 2012 to April 2015 at the time of stroke evaluation. After providing a written informed consent, patients were formally enrolled in the study. If a patient was unable to provide informed consent, the consent was obtained from the patient’s legally authorized representative.

Demographic and clinical characteristics

Baseline demographic and clinical characteristics of enrolled patients were evaluated at 3 months. A complete enumeration survey of all patients was performed using a review of medical records upon the first admission. Survey items included demographic data and presence of cerebrovascular risk factors using standardized, structured questionnaires. The items were classified according to the current guidelines of the American Heart Association [21]. Comorbidities were assessed using the Charlson comorbidity index [22]. Initial stroke severity was recorded at the time of hospital arrival using the Korean National Institute of Health Stroke Scale (K-NIHSS) for ischemic strokes [23]. Physical examination findings and laboratory measures were also recorded. The course of the disease during admission was documented including information on medication use, treatments such as intravenous or arterial thrombolysis, and complications. Patients that received rehabilitation at 3 months were transferred to the rehabilitation center to initiate active rehabilitation after acute management at the neuroscience center. The remaining patients that did not receive any rehabilitation treatments were discharged or transferred to other hospitals instead of being transferred to the Rehabilitation Medicine Department.

Classification of ischemic stroke; etiology, and neuroimaging

The etiologies of ischemic strokes were classified according to the TOAST criteria [24]. Etiology was determined based on neuro-imaging, medical history, and use of medication. MRI scans were reviewed by neuroimaging specialists in each institute. Ischemic strokes were classified according to arterial territory and as either lacunar or territorial.

Cognitive assessment

To identify influencing factors by age, we analyzed the Korean Mini-Mental State Examination (K-MMSE) at 3 months separately between total patients and patients older than 65 years. To analyze changes in cognitive function, all patients were divided into normal cognitive group (NCG) and impaired cognition group (ICG) by using standard deviation score after correcting raw scores by age, sex and education level of the patients [25]. Patients were again classified according to the changes in their K-MMSE scores between 3 and 12 months after stroke onset into stable groups (NCG-SG, ICG-SG) with K-MMSE changes ranging from −2 to +2 points (−2 ≤ △MMSE ≤ +2), converter groups (NCG-CG, ICG-CG) with increases of K-MMSE more than 3 points (3 ≤ △MMSE), and reverter groups (NCG-RG, ICG-RG) with score decreases of K-MMSE more than 3 points (−3 ≤ △MMSE). Factors affecting cognitive change from 3 months to 12 months including baseline medical record, stroke and treatment characteristics, and various functional assessments after 3 months were analyzed among the groups (Fig. 1).

Functional assessment battery

At 3 months after stroke onset, a face-to-face functional assessment was performed. Assessments included the K-NIHSS for stroke severity, Functional Independence Measure (FIM) [26], Korean modified Barthel Index (K-MBI) [27] for activities of daily living, Fugl-Meyer Assessment (FMA) [28] for motor function, Functional Ambulatory Category (FAC) [29] for mobility and gait, mRS (modified rankin scale) [30] for general functional level, Geriatric depression scale-short form (GDS-SF) [31] for mood, and Euro Quality of Life (EQ)-5D [32] for quality of life (Table 1).
Table 1
Functional assessments at 3 months
Domain
Assessment
Stroke severity
National Institute of Health Stroke Scale (NIHSS)
Activities of daily living
Korean modified Barthel Index (K-MBI)
Functional Independence Measure (FIM)
Cognition function
Korean Mini-Mental State Examination (K-MMSE)
Motor function
Fugl-Meyer Assessment (FMA)
Modified Ashworth scale (mRS)
Mobility function
Functional Ambulatory Category (FAC)
Mood
Geriatric depression scale-short form (GDS)
Quality of life
Euro Quality of Life-5D

Statistical analysis

For statistical analysis, we used descriptive statistics for the demographic and clinical characteristics, initial stroke features and treatment methods. Nominal and ordinal data obtained from a baseline review of medical records and initial stroke features were compared using frequency analysis. Scale factors were analyzed using average analysis. Chi-square test and one-way ANOVA were used to compare the influencing factors among groups. Bonferroni correction was done for post-hoc analysis of ANOVA. Statistical analysis was completed using SPSS for Windows version 21.0 (SPSS Inc., Chicago, IL). P < 0.05 is considered statistically significant.

Results

A total of 2,625 patients (older patients = 1,431) with first time ischemic stroke were included in this study. Among these patients, 1,735 (66.1%) (older patients = 835 (58.4%)) were classified as NCG, while 890 patients (33.9%) (older patients = 596 (41.6%)) were the ICG at 3 month K-MMSE assessment. Although, percentage of normal and declined cognitive function was similar for older patients at 3 months and 12 months, percentage of normal cognition group was slightly increased and percentage of declined cognition groups was decreased in total patients (Fig. 2). Among NCG, 1,460 (82.4%) (older patients = 612 (73.3%)) were stable group, 93 patients (5.4%) (older patients = 79 (9.5%)) were converter group, and 212 patients (12.2%) (older patients = 144(17.2%)) were reverter group at 12 months onset. Among ICG, 472 patients (53.0%) (older patients = 336 (56.4%)) were stable group, 321 patients (36.1%) (older patients = 183(30.7%)) were converter group, and 97 patients (10.9%) (older patients = 77 (12.9%)) were reverter group (Table 2) (Figs. 3, 4). To analyze the cognitive change from 3 month to 12 month, the proportion stable group was dominant in NCG and converter group was higher in ICG.
Table 2
Cognitive change divided by age from 3 months to 12 months
Age
Group
n (%)
Cognitive Change
3 months after onset
12 months after onset
n (%)
K-MMSE (mean ± SD)
K-MMSE (mean ± SD)
Total Subjects
(n = 2,625)
Normal Cognition
1,735
(66.1)
Stable
1,430 (82.4)
28.09 ± 2.66
28.14 ± 2.75
Converter
93 (5.4)
23.67 ± 3.60
27.41 ± 3.19
Reverter
212 (12.2)
26.81 ± 3.53
22.00 ± 4.80
Declined Cognition
890
(33.9)
Stable
472 (53.0)
16.14 ± 9.81
16.42 ± 10.09
Converter
321 (36.1)
17.87 ± 9.81
24.11 ± 5.69
Reverter
97 (10.9)
16.34 ± 7.27
11.03 ± 7.46
Older age
(n = 1,431)
Normal Cognition
835
(58.4)
Stable
612 (73.3)
26.86 ± 3.41
26.88 ± 3.50
Converter
79 (9.5)
23.18 ± 3.69
27.01 ± 3.30
Reverter
144 (17.2)
25.85 ± 3.82
20.66 ± 4.90
Declined Cognition
596
(41.6)
Stable
336 (56.4)
14.46 ± 9.71
14.68 ± 9.95
Converter
183 (30.7)
15.95 ± 7.64
22.46 ± 5.78
Reverter
77 (12.9)
16.08 ± 7.09
10.52 ± 7.21
n, Number; SD, Standard Deviation; K-MMSE, Korean Mini Mental State Examination
Among NCG of total patients, hypertension, and cortical or multiple level involvement was dominant in reverter group, male sex, lower onset age, higher education level were dominant in stable group. In addition, functional assessments in stable group including NIHSS, mRS, FIM, K-MBI, FAC, GDS, and EQ-5D at 3 months were significantly better in scores compared to other groups. For the tendency of ICG of total patients, onset age, hypertension history was higher, education level was lower in reverter group. All functional assessments at 3 months showed better scores in converter groups and worse scores in reverter group (Table 3). Among separated older patients, male sex, lower onset age were dominant in stable group, educational level was lower in reverter group. Functional assessments including NIHSS, mRS, FIM, K-MBI, FAC, GDS, and EQ-5D, at 3 months showed better scores in stable group compared to others. In addition, proportion of receiving rehabilitation therapy at 3 months was lower and all functional l assessments showed better scores in converter group compared to others (Table 4).
Table 3
Factors affecting cognitive change from 3 months to 12 months in total patients
Parameters
Normal Cognition (n = 1,735)
Declined Cognition (n = 890)
Stable (n = 1,430)
Converter (n = 93)
Reverter (n = 212)
P value
Stable (n = 472)
Converter (n = 321)
Reverter (n = 97)
P value
1) Baseline medical record assessments
Male, n (%)
991 (69.3)
46 (49.5)
107 (50.5)
.000 **
248 (52.5)
185 (57.6)
52 (53.6)
.362
Age, (mean ± SD)
61.52 ± 12.53 a
69.44 ± 11.16 b
73.75 ± 8.85 c
.000 **
70.32 ± 11.07 a
66.34 ± 11.54 b
72.32 ± 9.45 ab
.000 **
Education, n (%)
        
 Uneducated
114 (8.0)
25 (26.9)
44 (20.8)
.000 **
35 (7.4)
11 (3.4)
13 (13.4)
.000 **
 0–3 years
46 (3.2)
10 (10.8)
12 (5.7)
 
40 (8.5)
26 (8.1)
11 (11.3)
 
 4–6 years
189 (13.2)
25 (26.9)
52 (24.5)
 
117 (24.8)
73 (22.7)
27 (27.8)
 
 7–9 years
222 (15.5)
17 (18.3)
45 (21.2)
 
113 (23.9)
70 (21.8)
21 (21.6)
 
 10–12 years
468 (32.7)
8 (8.6)
36 (17.0)
 
135 (28.6)
93 (29.0)
19 (19.6)
 
 13 years–
391 (27.3)
8 (8.6)
23 (10.8)
 
32 (6.8)
48 (15.0)
6 (6.2)
 
BMI (kg/m2), (mean ± SD)
24.10 ± 3.28 a
23.59 ± 3.61 ab
23.49 ± 3.33 b
.023 *
23.35 ± 3.08
23.47 ± 3.30
22.62 ± 3.27
.071
Risk factors of stroke, n (%)
        
 Hypertension
779 (54.5)
63 (67.7)
118 (88.7)
.030 *
275 (58.3)
178 (55.5)
68 (70.1)
.037 *
 Diabetes Mellitus
206 (14.4)
15 (16.1)
24 (11.3)
.412
70 (14.8)
44 (13.7)
22 (22.7)
.091
 Coronary heart disease
98 (6.9)
9 (9.7)
15 (7.1)
.587
40 (8.5)
20 (6.2)
5 (5.2)
.339
 Atrial fibrillation
118 (8.3)
14 (15.1)
27 (12.7)
.014 *
68 (14.4)
37 (11.5)
11 (11.3)
.433
 Hyperlipidemia
246 (17.2)
12 (12.9)
39 (18.4)
.493
54 (11.4)
42 (13.1)
15 (15.5)
.505
 Obesity
190 (13.3)
14 (15.1)
23 (10.8)
.522
49 (10.4)
40 (12.5)
4 (4.1)
.063
 Family history
135 (9.4)
5 (5.4)
20 (9.4)
.420
48 (10.2)
26 (8.1)
7 (7.2)
.483
Smoking, n (%)
        
 Current smokers
462 (32.3)
17 (18.3)
44 (20.8)
.000 **
127 (26.9)
87 (27.1)
29 (29.9)
.859
 Former smokers
202 (14.1)
10 (10.8)
19 (9.0)
 
55 (11.7)
39 (12.1)
8 (8.2)
 
 Never smokers
766 (53.6)
66 (71.0)
149 (70.3)
 
290 (61.4)
195 (60.7)
60 (61.9)
 
Alcohol consumption, n (%)
        
 None
793 (55.5)
62 (66.7)
144 (67.9)
.002 **
327 (69.3)
202 (63.0)
67 (69.1)
.253
 Moderate
452 (31.6)
23 (24.7)
42 (19.8)
 
97 (20.6)
72 (22.4)
21 (21.6)
 
 Heavy
185 (12.9)
8 (8.6)
26 (12.3)
 
48 (10.2)
47 (14.6)
9 (9.3)
 
2) Stroke characteristics
        
Ischemic type (TOAST)
        
 Large–artery atherosclerosis
641 (44.8)
58 (62.4)
101 (47.6)
.062
229 (48.5)
173 (53.9)
56 (57.7)
.572
 Small-artery occlusion
373 (26.1)
14 (15.1)
53 (25.0)
 
85 (18.0)
57 (17.8)
15 (15.5)
 
 Cardioembolism
156 (10.9)
6 (6.5)
24 (11.3)
 
74 (15.7)
39 (12.1)
9 (9.3)
 
 Other determined
115 (8.0)
4 (4.3)
12 (5.7)
 
29 (6.1)
14 (4.4)
5 (5.2)
 
 Undetermined ischemic stroke
145 (10.1)
11 (11.8)
22 (10.4)
 
55 (11.7)
38 (11.8)
12 (12.4)
 
Ischemic location
        
 Rt. hemisphere
680 (47.6)
46 (49.5)
99 (46.7)
.580
178 (37.7)
117 (36.4)
41 (42.3)
.698
 Lt. hemisphere
648 (45.3)
37 (39.8)
94 (44.3)
 
262 (55.5)
185 (57.6)
48 (49.5)
 
 Both hemisphere
102 (7.1)
10 (10.8)
19 (9.0)
 
178 (37.7)
19 (5.9)
8 (8.2)
 
Affected level
        
 Cortical level
440 (30.8)
37 (39.8)
70 (33.0)
.007 **
191 (40.5)
139 (43.3)
41 (42.3)
.878
 Subcortical level
454 (31.7)
22 (23.7)
49 (23.1)
 
115 (24.4)
83 (25.9)
25 (25.8)
 
 Brainstem level
330 (23.1)
13 (14.0)
58 (27.4)
 
63 (13.3)
41 (12.8)
14 (14.4)
 
 Multiple level
206 (14.4)
21 (22.6)
35 (16.5)
 
103 (21.8)
58 (18.1)
17 (17.5)
 
3) Treatment characteristics
        
 IV thrombolysis
104 (7.3)
7 (7.5)
13 (6.1)
.826
43 (9.1)
29 (9.0)
15 (15.5)
.136
 IA thrombolysis
21 (1.5)
3 (3.2)
4 (1.9)
.404
23 (4.9)
9 (2.8)
2 (2.1)
.208
 IV heparin
121 (8.5)
5 (5.4)
17 (8.0)
.573
33 (7.0)
18 (5.6)
10 (10.3)
.271
 Antiplatelet agent
1,140 (79.7)
77 (82.8)
166 (78.3)
.668
333 (70.6)
240 (74.8)
65 (67.0)
.241
 Rehabilitation Therapy
386 (27.0)
29 (31.2)
59 (27.8)
.669
187 (60.4)
116 (36.1)
43 (44.3)
.311
 Cognitive Therapy
56 (3.9)
4 (4.3)
9 (4.2)
.961
28 (5.9)
33 (10.3)
11 (11.3)
.041 *
4) Functional assessments
        
Cognitive function (K-MMSE)
        
 3 months from onset
28.09 ± 2.66 a
23.67 ± 3.60 b
26.81 ± 3.53 c
.000 **
16.14 ± 9.81 a
17.87 ± 7.81 b
16.34 ± 7.27 ab
.024 *
 12 months from onset
28.14 ± 2.75 a
27.41 ± 3.19 a
22.00 ± 4.80 b
.000 **
16.42 ± 10.09 a
24.11 ± 5.69 b
11.03 ± 7.46 c
.000 **
 Variation (from 3 months to 12 months)
0.05 ± 1.07 a
3.41 ± 1.23 b
−4.81 ± 2.91 c
.000 **
0.29 ± 1.09 a
6.25 ± 4.19 b
−5.31 ± 2.81 c
.000 **
Stroke Severity, ADL, Motor, Gait, Depression, QoL (3 months from onset)
        
 NIHSS
0.77 ± 1.85 a
1.11 ± 2.03 ab
1.12 ± 2.02 b
.015 *
5.09 ± 6.86 a
3.12 ± 4.62 b
5.25 ± 4.63 a
.000 **
 mRS
0.99 ± 1.02 a
1.44 ± 1.28 b
1.43 ± 1.20 b
.000 **
2.57 ± 1.68 a
2.17 ± 1.52 b
3.15 ± 1.29 c
.000 **
 FIM
120.00 ± 12.73 a
114.16 ± 17.39 b
113.93 ± 18.05 b
.000 **
88.70 ± 38.13 a
100.18 ± 30.85 b
82.80 ± 30.61 a
.000 **
 K-MBI
95.44 ± 11.90 a
90.03 ± 16.88 b
89.88 ± 17.34 b
.000 **
69.11 ± 36.99 a
79.71 ± 28.65 b
63.41 ± 30.94 a
.000 **
 FMA
94.11 ± 15.80
91.19 ± 18.70
89.88 ± 17.34
.119
72.75 ± 35.71 a
81.68 ± 30.77 b
63.65 ± 35.07 c
.000 **
 FAC
4.66 ± 0.87 a
6.59 ± 4.07 b
6.74 ± 4.40 b
.000 **
3.10 ± 2.03 a
3.65 ± 1.77 b
2.66 ± 1.83 a
.000 **
 GDS
4.95 ± 3.79 a
6.59 ± 4.07 b
6.74 ± 4.40 b
.000 **
7.25 ± 4.11 a
7.30 ± 4.32 a
9.31 ± 3.92 b
.006 **
 EQ-5D
0.78 ± 0.28 a
0.69 ± 0.33 b
0.65 ± 0.36 b
.000 **
0.44 ± 0.41 a
0.53 ± 0.40 b
0.31 ± 0.37 c
.000 **
n, Number; SD, Standard Deviation; BMI, Body Mass Index; TOAST, Trial of Org 10172 in Acute Stroke Treatment; Rt, Right; Lt, Left; IV, Intra-Venous; IA, Intra-Artrial; K-MMSE, Korean Mini Mental State Examination; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; ADL, Activity of Daily Living; FIM, Functional Independence Measure; K-MBI, Korean version of Modified Barthel Index; FMA, Fugl-Meyer Assessment; FAC, Functional Ambulation Categories; GDS, Geriatric Depression Scale; QoL, Quality of Life; EQ-5D, EuroQol-5D
* p < 0.05; ** p < 0.01
abc Post HOC group
Table 4
Factors affecting cognitive change from 3 months to 12 months in older patients
Parameters
Normal Cognition (n = 835)
Declined Cognition (n = 596)
 
Stable (n = 612)
Converter (n = 79)
Reverter (n = 144)
P value
Stable (n = 336)
Converter (n = 183)
Reverter (n = 77)
P value
1) Baseline medical record assessments
Male, n (%)
375 (61.3)
37 (46.8)
66 (45.8)
.000 **
163 (48.5)
91 (49.7)
38 (49.4)
.963
Age, (mean ± SD)
73.15 ± 5.86 a
75.24 ± 6.84 b
76.53 ± 6.21 b
.000 **
76.06 ± 6.15
74.78 ± 5.55
75.95 ± 6.09
.059
Education, n (%)
 Uneducated
98 (16.0)
24 (30.4)
41 (28.5)
.000 **
33 (9.8)
10 (5.5)
12 (15.6)
.307
 0–3 years
34 (5.6)
9 (11.4)
10 (6.9)
 
36 (10.7)
20 (10.9)
9 (11.7)
 
 4–6 years
132 (21.6)
22 (27.8)
43 (29.9)
 
106 (31.5)
61 (33.3)
23 (29.9)
 
 7 - 9 years
103 (16.8)
12 (15.2)
25 (17.4)
 
74 (22.0)
35 (19.1)
17 (22.1)
 
 10 - 12 years
142 (23.2)
4 (5.1)
15 (10.4)
 
71 (21.1)
41 (22.4)
13 (16.9)
 
 13 years -
103 (16.8)
8 (10.1)
10 (6.9)
 
16 (4.8)
16 (8.7)
3 (3.9)
 
BMI (kg/m2), (mean ± SD)
23.72 ± 3.20
23.59 ± 3.61
23.11 ± 3.43
.115
23.00 ± 2.96
23.24 ± 3.15
22.26 ± 3.23
.066
Risk factors of stroke, n (%)
 Hypertension
414 (67.6)
54 (68.4)
91 (63.2)
.570
212 (63.1)
116 (63.4)
55 (71.4)
.371
 Diabetes Mellitus
102 (16.7)
12 (15.2)
15 (10.4)
.175
55 (16.4)
28 (15.3)
17 (22.1)
.392
 Coronary heart disease
60 (9.8)
8 (10.1)
11 (7.6)
.711
27 (8.0)
16 (8.7)
5 (6.5)
.831
 Atrial fibrillation
78 (12.7)
11 (13.9)
22 (15.3)
.712
59 (17.6)
27 (14.8)
10 (13.0)
.515
 Hyperlipidemia
110 (18.0)
11 (13.9)
31 (21.5)
.357
39 (11.6)
19 (10.4)
12 (15.6)
.489
 Obesity
79 (12.9)
12 (15.2)
11 (7.6)
.154
29 (8.6)
20 (10.9)
3 (3.9)
.185
 Family history
52 (8.5)
4 (5.1)
11 (7.6)
.562
30 (8.9)
12 (6.6)
6 (7.8)
.635
Smoking, n (%)
 Current smokers
105 (17.2)
11 (13.9)
23 (16.0)
.050
67 (19.9)
27 (14.8)
19 (24.7)
.285
 Former smokers
107 (17.4)
10 (12.7)
12 (8.3)
 
39 (11.6)
28 (15.3)
8 (10.4)
 
 Never smokers
400 (65.4)
58 (73.4)
109 (75.7)
 
230 (68.5)
128 (69.9)
50 (64.9)
 
Alcohol consumption, n (%)
 None
414 (67.6)
54 (68.4)
108 (75.0)
.322
249 (74.1)
133 (72.7)
56 (72.7)
.367
 Moderate
141 (23.0)
20 (25.3)
23 (16.0)
 
63 (18.8)
28 (15.3)
15 (19.5)
 
 Heavy
57 (9.3)
5 (6.3)
13 (9.0)
 
24 (7.1)
22 (12.0)
6 (7.8)
 
2) Stroke characteristics
Ischemic type (TOAST)
 Large-artery atherosclerosis
278 (45.4)
51 (64.6)
67 (46.5)
.052
167 (49.7)
94 (51.4)
46 (59.7)
.662
 Small-artery occlusion
155 (25.3)
11 (13.9)
39 (27.1)
 
60 (17.9)
34 (18.6)
12 (15.6)
 
 Cardioembolism
89 (14.5)
5 (6.3)
17 (11.8)
 
59 (17.6)
28 (15.3)
7 (9.1)
 
 Other determined
36 (5.9)
4 (5.1)
5 (3.5)
 
15 (4.5)
5 (2.7)
4 (5.2)
 
 Undetermined ischemic stroke
54 (8.8)
8 (10.1)
16 (11.1)
 
35 (10.4)
22 (12.0)
8 (10.4)
 
Ischemic location
 Rt. hemisphere
309 (50.5)
39 (49.4)
64 (44.4)
.394
135 (40.2)
68 (37.2)
33 (42.9)
.667
 Lt. hemisphere
247 (40.4)
31 (39.2)
70 (48.6)
 
178 (53.0)
106 (57.9)
38 (49.4)
 
 Both hemisphere
56 (9.2)
9 (11.4)
10 (6.9)
 
23 (6.8)
9 (4.9)
6 (7.8)
 
Affected level
 Cortical level
203 (33.2)
32 (40.5)
49 (34.0)
.047 *
143 (42.6)
75 (41.0)
32 (41.6)
.729
 Subcortical level
193 (31.5)
20 (25.3)
30 (20.8)
 
83 (24.7)
53 (29.0)
21 (27.3)
 
 Brainstem level
125 (20.4)
11 (13.9)
40 (27.8)
 
42 (12.5)
20 (10.9)
13 (16.9)
 
 Multiple level
91 (14.9)
16 (20.3)
25 (17.4)
 
68 (20.2)
35 (19.1)
11 (14.3)
 
3) Treatment characteristics
IV thrombolysis
40 (6.5)
5 (6.3)
9 (6.3)
.991
27 (8.0)
16 (8.7)
7 (9.1)
.935
IA thrombolysis
9 (1.5)
2 (2.5)
3 (2.1)
.722
20 (6.0)
4 (2.2)
1 (1.3)
.049 *
IV heparin
52 (8.5)
5 (6.3)
9 (6.3)
.575
29 (8.6)
10 (5.5)
8 (10.4)
.301
Antiplatelet agent
485 (79.2)
65 (82.3)
115 (79.9)
.818
239 (71.1)
131 (71.6)
53 (68.8)
.901
Rehabilitation Therapy
157 (25.7)
25 (31.6)
43 (29.9)
.363
133 (39.6)
54 (29.5)
36 (46.8)
.015 *
Cognitive Therapy
26 (4.2)
4 (5.1)
5 (3.5)
.844
19 (5.7)
11 (6.0)
10 (13.0)
.061
4) Neuropsychological assessments
Cognitive function (K-MMSE)
 3 months from onset
26.86 ± 3.41 a
23.18 ± 3.69 b
25.85 ± 3.82 c
.000 **
14.46 ± 9.71
15.95 ± 7.64
16.08 ± 7.09
.112
 12 months from onset
26.88 ± 3.50 a
27.01 ± 3.30 a
20.66 ± 4.90 b
.000 **
14.68 ± 9.95 a
22.46 ± 5.78 b
10.52 ± 7.21 c
.000 **
 Variation (from 3 months to 12 months)
0.03 ± 1.17 a
3.84 ± 1.31 b
−5.19 ± 3.05 c
.000 **
0.21 ± 1.10 a
6.51 ± 4.03 b
−5.56 ± 2.99 c
.000 **
Stroke Severity, ADL, Motor, Gait, Depression, QoL (3 months from onset)
 NIHSS
0.78 ± 1.98 a
1.15 ± 2.06 a
1.32 ± 2.15 b
.009 **
5.75 ± 7.43 a
3.17 ± 4.69 b
5.08 ± 4.68 b
.000 **
 mRS
1.12 ± 1.12 a
1.51 ± 1.32 b
1.63 ± 1.25 b
.000 **
2.79 ± 1.68 a
2.37 ± 1.54 b
3.26 ± 1.29 a
.000 **
 FIM
117.40 ± 15.58 a
113.08 ± 18.30 ab
111.16 ± 19.83 b
.000 **
83.68 ± 39.78 a
95.74 ± 32.33 b
81.34 ± 31.60 a
.001 **
 K-MBI
93.31 ± 16.11 a
89.09 ± 17.82 ab
87.34 ± 19.10 b
.000 **
64.13 ± 38.83 a
75.71 ± 30.51 b
61.61 ± 32.50 a
.001 **
 FMA (affected side)
93.92 ± 16.11
90.53 ± 19.31
91.44 ± 17.83
.094
70.49 ± 36.80 a
81.45 ± 30.54 b
65.90 ± 35.97 a
.000 **
 FAC
4.51 ± 1.05 a
4.15 ± 1.40 b
4.00 ± 1.35 b
.000 **
2.83 ± 2.10 a
3.45 ± 1.79 b
2.70 ± 1.87 a
.001 **
 GDS
5.40 ± 3.79 a
6.83 ± 4.19 b
7.41 ± 4.35 b
.000 **
7.63 ± 4.09 a
8.03 ± 4.27 ab
9.65 ± 4.04 b
.022 *
 EQ-5D
0.76 ± 0.29 a
0.67 ± 0.34 b
0.63 ± 0.36 b
.000 **
0.39 ± 0.41 a
0.49 ± 0.40 b
0.31 ± 0.37 a
.003 **
n, Number; SD, Standard Deviation; BMI, Body Mass Index; TOAST, Trial of Org 10172 in Acute Stroke Treatment; Rt, Right; Lt, Left; IV, Intra-Venous; IA, Intra-Artrial; K-MMSE, Korean Mini Mental State Examination; NIHSS, National Institutes of Health Stroke Scale; mRS, modified Rankin Scale; ADL, Activity of Daily Living; FIM, Functional Independence Measure; K-MBI, Korean version of Modified Barthel Index; FMA, Fugl-Meyer Assessment; FAC, Functional Ambulation Categories; GDS, Geriatric Depression Scale; QoL, Quality of Life; EQ-5D, EuroQol-5D
* p < 0.05; ** p < 0.01
abc Post HOC group

Discussion

In our study, total the percentage of cognitive impairment group did not change at 12 months compared to 3 months assessment. Otherwise, the percentage of cognitive impairment at 3 months, the percentage of patients in the reverter group, and the percentage of patients transferring from the NCG to the ICG at 12 months were higher in older patients compared to total group analysis (Table 2) (Fig. 2). Influencing factors for delayed cognitive change were discretely determined in the NCG and ICG of total and older patients. Hypertension history and onset age, sex, education level were somewhat repeated influencing factors. Although presence of atrial fibrillation, smoking, alcohol history showed statistical significance, large difference of number of patients between groups made it difficult to define it as meaningful result. Another unique aspect of our study is that we included functional assessment since it could influence on patients’ delayed cognitive function. Patients with better functional assessment scores not only in cognitive field but in all other domains including activities of daily living, motor function, mobility and gait, general functional level, quality of life at 3 month tend to have less cognitive decline and more cognitive improvement from 3 month to 12 month. Otherwise, stroke characteristics including ischemic type, location, treatment characteristics showed no significant difference between the groups. Patients in the ICG-RG that were aged >65 years received more rehabilitation therapy. Moreover, compared to the other patient groups, the patients in the ICG-SG received less cognitive therapy, which was a component of the rehabilitation therapy. We believe that unlike the other factors, the administration of rehabilitation treatment depended on the cognitive status of the patient; however, rehabilitation was not a factor that improved cognitive function.
Stroke severity, onset age, pre-stroke cognitive function, level of education, and bilateral lesions are well-known factors associated with development of post-stroke dementia [3336]. In contrast, a cohort study of younger stoke patients (mean age, 60 years) showed that more than 30% of the patients with mild cognitive impairments between 0 and 6 months were classified as cognitively intact by 12 to 18 months [16]. For older patients (mean age, 80.4 ± 3.8), about 50% of the patients experienced an improvement in MMSE at 15 months [17]. As the prognosis of stroke varies according to the patient’s age at onset, identifying the factors affecting cognitive changes by age might aid in both preventing secondary cognitive decline, and enhancing post-stroke cognitive function. In our study, separating patients by age, cognitive function at 3 month, and aspect of cognitive change to find the propensity of each prevalence and influencing factors was meaningful. Also, compared to other cross sectional studies, our study analyzed delayed post stroke cognitive function and focused on amount and aspect of cognitive change from 3 month to 12 month and its influencing factors.
To carry this analysis further, we examined the differences in the MMSE scores among the groups by using the cutoff score of <24 points, conventionally accepted for the diagnosis of significant cognitive impairment, i.e., dementia [37]. Previous studies have established more than 3 points of MMSE variability as a significant change for improvement or decline in cognitive function.
MMSE is the most frequently applied test for dementia screening. A systematic review and meta-analysis examining cognitive tests to detect dementia found 10,263 cases of dementia identified from 36,080 participants in 108 cohort studies. The result reported a sensitivity of 0.81 and a specificity of 0.89 for the MMSE [38]. The MMSE requires only 5–10 min to evaluate various cognitive domains (orientation, memory, language, attention, visuospatial) and is practical to use serially and routinely [39].
The overall prevalence of dementia in subjects aged greater than 65 in Korea is estimated to be 9.2%. In addition, the pooled age-specific prevalence of dementia is estimated to increase with each 5-year age band (65–69 years) [40]. This result is much higher than the estimated overall prevalence of dementia in Asian people [41]. We analyzed our data by separating patients older than 65 y/o to compare the age factors. The percentages of normal cognitive group and cognitive impaired patients and mean MMSE scores showed significant differences between total and older patient groups. In particular, the percentage of patients in the reverter group was higher and the converter group was lower at 12 months in older patient group, and their average MMSE showed differences by age. Otherwise, in older ICG, less factors were significant compared to other groups. This finding may be due to the lower percentage of patients when compared to the entire study population and NCG.

Limitations

First, we only used a MMSE to test cognitive function. Although there are 40 other more detailed tests for dementia diagnosis in healthcare settings, we required multi-domain, serial functional assessments for screening and detecting post stroke cognitive decline. Also, MMSE was optimal for our insurance benefits and medical policy which can be done consecutively for our large-scale cohort study [40].
Second, we excluded patients with pre-stroke cognitive decline, but we had no objective assessment data on which to base our exclusions. Instead, patients’ pre-stroke cognitive function was determined by administered questionnaires and face-to-face interviews. Additional studies, such as volumetric analysis by MRI/MRA scans, may be valuable to investigate and compare the severity of stroke among the groups.
Third, we excluded patients who are not capable of 1 year follow up examination including functional assessments which could make selection bias. However, it could be a strength of this cohort study which differs from others and it may suggest more objective data for stroke survivors.

Conclusions

The prevalence of cognitive impairment at 3 month showed difference between total and older patient groups. To analyze the cognitive change from 3 month to 12 month, the proportion stable group was dominant in NCG and converter group was higher in ICG. By investigating the influencing factors from each group, we were able to identify the early predictors including the age factor.

Funding

This study was supported by the research program funded by the Korea Centers for Disease Control and Prevention (2013-2013E3301702).

Availability of data and materials

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

JAY, YIS, KPP, MSP: contribution to conception and design; acquisition of data; involvement in drafting the manuscript; final approval of the version to be published. MKS, JL, DYK, SGL, YIS, GJO, KHN, WHC: contribution to conception and design; acquisition of data; final approval of the version to be published. YSL, MCJ, EYH, JHH: acquisition of data; final approval of the version to be published. YHK: contribution to conception and design; acquisition of data; revising the manuscript critically; final approval of the version to be published. All authors read and approved the final manuscript.

Competing interest

The authors declare that they have no competing interest.
Not applicable.
The study was approved by the Research Ethics Committee of the Pusan National University Yangsan Hospital and all patients provided written informed consent.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
2.
Zurück zum Zitat Leys D, Pasquier F, Parnetti L. Epidemiology of vascular dementia. Haemostasis. 1998;28:134–50.PubMed Leys D, Pasquier F, Parnetti L. Epidemiology of vascular dementia. Haemostasis. 1998;28:134–50.PubMed
3.
Zurück zum Zitat Skoog I, Nilsson L, Palmertz B, Andreasson LA, Svanborg A. A population-based study of dementia in 85-year-olds. N Engl J Med. 1993;328:153–8.CrossRefPubMed Skoog I, Nilsson L, Palmertz B, Andreasson LA, Svanborg A. A population-based study of dementia in 85-year-olds. N Engl J Med. 1993;328:153–8.CrossRefPubMed
4.
Zurück zum Zitat de Haan R, Limburg M, Van der Meulen J, Jacobs H, et al. Quality of life after stroke impact of stroke type and lesion location. Stroke. 1995;26:402–8.CrossRefPubMed de Haan R, Limburg M, Van der Meulen J, Jacobs H, et al. Quality of life after stroke impact of stroke type and lesion location. Stroke. 1995;26:402–8.CrossRefPubMed
5.
Zurück zum Zitat Pohjasvaara T, Erkinjuntti T, Ylikoski R, Hietanen M, et al. Clinical determinants of poststroke dementia. Stroke. 1998;29:75–81.CrossRefPubMed Pohjasvaara T, Erkinjuntti T, Ylikoski R, Hietanen M, et al. Clinical determinants of poststroke dementia. Stroke. 1998;29:75–81.CrossRefPubMed
6.
Zurück zum Zitat Tatemichi TK, Foulkes MA, Mohr JP, Hewitt JR, Hier DB, Price TR, Wolf PA. Dementia in stroke survivors in the stroke data bank cohort: prevalence, incidence, risk factors, and computed tomographic findings. Stroke. 1990;21:858–66.CrossRefPubMed Tatemichi TK, Foulkes MA, Mohr JP, Hewitt JR, Hier DB, Price TR, Wolf PA. Dementia in stroke survivors in the stroke data bank cohort: prevalence, incidence, risk factors, and computed tomographic findings. Stroke. 1990;21:858–66.CrossRefPubMed
7.
Zurück zum Zitat He’non H, Pasquier F, Durieu I, Godefroy O, Lucas C, Lebert F, Leys D. Preexisting dementia in stroke patients: baseline frequency, associated factors, and outcome. Stroke. 1997;28:2429–36.CrossRef He’non H, Pasquier F, Durieu I, Godefroy O, Lucas C, Lebert F, Leys D. Preexisting dementia in stroke patients: baseline frequency, associated factors, and outcome. Stroke. 1997;28:2429–36.CrossRef
8.
Zurück zum Zitat Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J Neurol Sci. 1970;11:205–42.CrossRefPubMed Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J Neurol Sci. 1970;11:205–42.CrossRefPubMed
9.
Zurück zum Zitat Katzman R. Vascular disease and dementia. In: Yahr MD, editor. H. Houston Merritt memorial volume. New York: Raven; 1983. p. 153–76. Katzman R. Vascular disease and dementia. In: Yahr MD, editor. H. Houston Merritt memorial volume. New York: Raven; 1983. p. 153–76.
10.
Zurück zum Zitat Madureira S, Guerreiro M, Ferro JM. Dementia and cognitive impairment three months after stroke. Eur J Neurol. 2001;8:621–27.CrossRefPubMed Madureira S, Guerreiro M, Ferro JM. Dementia and cognitive impairment three months after stroke. Eur J Neurol. 2001;8:621–27.CrossRefPubMed
11.
Zurück zum Zitat Henon H, Durieu I, Guerouaou D, Lebert F, Pasquier F, Leys D. Poststroke dementia: incidence and relationship to prestrike cognitive decline. Neurology. 2001;57:1216–22.CrossRefPubMed Henon H, Durieu I, Guerouaou D, Lebert F, Pasquier F, Leys D. Poststroke dementia: incidence and relationship to prestrike cognitive decline. Neurology. 2001;57:1216–22.CrossRefPubMed
12.
Zurück zum Zitat Inzitari D, Di Carlo A, Pracucci G, Lamassa M, Vanni P, Romanelli M, et al. Incidence and determinants of poststroke dementia as defined by an informant interview method in a hospital-based stroke registry. Stroke. 1998;29:2087-93. Inzitari D, Di Carlo A, Pracucci G, Lamassa M, Vanni P, Romanelli M, et al. Incidence and determinants of poststroke dementia as defined by an informant interview method in a hospital-based stroke registry. Stroke. 1998;29:2087-93.
13.
14.
Zurück zum Zitat Snaphaan L, de Leeuw FE. Poststroke memory function in nondemented patients: a systematic review on frequency and neuroimaging correlates. Stroke. 2007;38:198–203.CrossRefPubMed Snaphaan L, de Leeuw FE. Poststroke memory function in nondemented patients: a systematic review on frequency and neuroimaging correlates. Stroke. 2007;38:198–203.CrossRefPubMed
15.
Zurück zum Zitat Desmond DW, Moroney JT, Sano M, Stern Y. Recovery of cognitive function after stroke. Stroke. 1996;27:1798–803.CrossRefPubMed Desmond DW, Moroney JT, Sano M, Stern Y. Recovery of cognitive function after stroke. Stroke. 1996;27:1798–803.CrossRefPubMed
16.
Zurück zum Zitat Tham W, Auchus AP, Thong M, Goh M-L, Chang H-M, Wong M-C, Chen C. Progression of cognitive impairment after stroke: one year results from a longitudinal study of Singaporean stroke patients. J Neurol Sci. 2002;203–204:49–52.CrossRefPubMed Tham W, Auchus AP, Thong M, Goh M-L, Chang H-M, Wong M-C, Chen C. Progression of cognitive impairment after stroke: one year results from a longitudinal study of Singaporean stroke patients. J Neurol Sci. 2002;203–204:49–52.CrossRefPubMed
17.
Zurück zum Zitat Ballard C, Rowan E, Stephens S, Kalaria R, Kenny RA. Prospective follow-up study between 3 and 15 months after stroke improvements and decline in cognitive function among dementia-free stroke survivors >75 years of Age. Stroke. 2003;34:2440–5.CrossRefPubMed Ballard C, Rowan E, Stephens S, Kalaria R, Kenny RA. Prospective follow-up study between 3 and 15 months after stroke improvements and decline in cognitive function among dementia-free stroke survivors >75 years of Age. Stroke. 2003;34:2440–5.CrossRefPubMed
18.
Zurück zum Zitat Lowery K, Ballard C, Rodgers H, McLaren A, O’Brien J, Rowan E, Stephens S. Cognitive decline in a prospectively studied group of stroke survivors, with a particular emphasis on the 75’s. Age Ageing. 2002;31 suppl 3:24–7.CrossRefPubMed Lowery K, Ballard C, Rodgers H, McLaren A, O’Brien J, Rowan E, Stephens S. Cognitive decline in a prospectively studied group of stroke survivors, with a particular emphasis on the 75’s. Age Ageing. 2002;31 suppl 3:24–7.CrossRefPubMed
19.
Zurück zum Zitat Pohjasvaara T, Erkinjuntti T, Vataja R, Kaste M. Clinical determinants of post-stroke dementia in the Helsinki stroke aging memory study (SAM) cohort. Stroke. 1997;28:785–92.CrossRefPubMed Pohjasvaara T, Erkinjuntti T, Vataja R, Kaste M. Clinical determinants of post-stroke dementia in the Helsinki stroke aging memory study (SAM) cohort. Stroke. 1997;28:785–92.CrossRefPubMed
20.
Zurück zum Zitat Chang WH, Sohn MK, Lee J, et al. Korean stroke cohort for functioning and rehabilitation (KOSCO): study rationale and protocol of a multi-centre prospective cohort study. BMC Neurol. 2015;15:42.CrossRefPubMedPubMedCentral Chang WH, Sohn MK, Lee J, et al. Korean stroke cohort for functioning and rehabilitation (KOSCO): study rationale and protocol of a multi-centre prospective cohort study. BMC Neurol. 2015;15:42.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Goldstein LB, Adams R, Alberts MJ, Appel LJ, Brass LM, Bushnell CD, et al. Primary prevention of ischemic stroke. Stroke. 2006;37:1583–633.CrossRefPubMed Goldstein LB, Adams R, Alberts MJ, Appel LJ, Brass LM, Bushnell CD, et al. Primary prevention of ischemic stroke. Stroke. 2006;37:1583–633.CrossRefPubMed
22.
Zurück zum Zitat Bernardini J, Callen S, Fried L, Piraino B. Inter-rater reliability and annual rescoring of the Charlson comorbidity index. Adv Perit Dial. 2004;20:125–7.PubMed Bernardini J, Callen S, Fried L, Piraino B. Inter-rater reliability and annual rescoring of the Charlson comorbidity index. Adv Perit Dial. 2004;20:125–7.PubMed
23.
Zurück zum Zitat Oh MS, Yu KH, Lee JH, Jung S, Ko IS, Shin JH, et al. Validity and reliability of a Korean version of the national institutes of health stroke scale. J Clin Neurol. 2012;8:177–83.CrossRefPubMedPubMedCentral Oh MS, Yu KH, Lee JH, Jung S, Ko IS, Shin JH, et al. Validity and reliability of a Korean version of the national institutes of health stroke scale. J Clin Neurol. 2012;8:177–83.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Amarenco P, Bogousslavsky J, Caplan LR, Donnan GA, Hennerici MG. Classification of stroke subtypes. Cerebrovasc Dis. 2009;27:493–501.CrossRefPubMed Amarenco P, Bogousslavsky J, Caplan LR, Donnan GA, Hennerici MG. Classification of stroke subtypes. Cerebrovasc Dis. 2009;27:493–501.CrossRefPubMed
25.
Zurück zum Zitat Kang Y, Na DL, Hahn S. A validity study on the Korean mini-mental state examination (K-MMSE) in dementia patients. J Korean Neurol Assoc. 1997;15:300–8. Kang Y, Na DL, Hahn S. A validity study on the Korean mini-mental state examination (K-MMSE) in dementia patients. J Korean Neurol Assoc. 1997;15:300–8.
26.
Zurück zum Zitat Dodds TA, Martin DP, Stolov WC, Deyo RA. A validation of the functional independence measurement and its performance among rehabilitation inpatients. Arch Phys Med Rehabil. 1993;74:531–6.CrossRefPubMed Dodds TA, Martin DP, Stolov WC, Deyo RA. A validation of the functional independence measurement and its performance among rehabilitation inpatients. Arch Phys Med Rehabil. 1993;74:531–6.CrossRefPubMed
27.
Zurück zum Zitat Jung HY, Park BK, Shin HS, Kang YK, Pyun SB, Paik NJ, et al. Development of the Korean version of modified barthel index (K-MBI): multi-center study for subjects with stroke. J Korean Acad Rehabil Med. 2007;31:283–97. Jung HY, Park BK, Shin HS, Kang YK, Pyun SB, Paik NJ, et al. Development of the Korean version of modified barthel index (K-MBI): multi-center study for subjects with stroke. J Korean Acad Rehabil Med. 2007;31:283–97.
28.
Zurück zum Zitat Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13–31.PubMed Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7:13–31.PubMed
29.
Zurück zum Zitat Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness Phys Ther. 1984;64:35–40.PubMed Holden MK, Gill KM, Magliozzi MR, Nathan J, Piehl-Baker L. Clinical gait assessment in the neurologically impaired. Reliability and meaningfulness Phys Ther. 1984;64:35–40.PubMed
30.
Zurück zum Zitat Burn JP. Reliability of the modified Rankin scale. Stroke. 1992;23:438.PubMed Burn JP. Reliability of the modified Rankin scale. Stroke. 1992;23:438.PubMed
31.
Zurück zum Zitat Lesher EL, Berryhill JS. Validation of the geriatric depression scale–short form among inpatients. J Clin Psychol. 1994;50:256–60.CrossRefPubMed Lesher EL, Berryhill JS. Validation of the geriatric depression scale–short form among inpatients. J Clin Psychol. 1994;50:256–60.CrossRefPubMed
32.
Zurück zum Zitat Greiner W, Claes C, Busschbach JJ, von der Schulenburg JM. Validating the EQ-5D with time trade off for the German population. Eur J Health Econ. 2005;6:124–30.CrossRefPubMed Greiner W, Claes C, Busschbach JJ, von der Schulenburg JM. Validating the EQ-5D with time trade off for the German population. Eur J Health Econ. 2005;6:124–30.CrossRefPubMed
33.
Zurück zum Zitat Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associatted with pre-stroke and poststroke dementia: a systematic review and meta-analysis. Lancet Neurol 2009;8(11):1006–18. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associatted with pre-stroke and poststroke dementia: a systematic review and meta-analysis. Lancet Neurol 2009;8(11):1006–18.
34.
Zurück zum Zitat Inzitari D, Di Carlo A, Pracucci G, Lamassa M, Vanni P, Romanelli M, Spolveri S, Adriani P, Meucci I, Landini G, Ghetti A. Incidence and determinants of poststroke dementia as defined by an informant interview method in a hospital-based stroke registry. Stroke. 1998;29:2087–93.CrossRefPubMed Inzitari D, Di Carlo A, Pracucci G, Lamassa M, Vanni P, Romanelli M, Spolveri S, Adriani P, Meucci I, Landini G, Ghetti A. Incidence and determinants of poststroke dementia as defined by an informant interview method in a hospital-based stroke registry. Stroke. 1998;29:2087–93.CrossRefPubMed
35.
Zurück zum Zitat Desmond DW, Moroney JT, Paik MC. Frequency and clinical determinants of dementia after ischemic stroke. Neurology. 2000;54:1124–31.CrossRefPubMed Desmond DW, Moroney JT, Paik MC. Frequency and clinical determinants of dementia after ischemic stroke. Neurology. 2000;54:1124–31.CrossRefPubMed
36.
Zurück zum Zitat Barba R, Martinez ES, Rodriguez GE, Pondal M, Vivancos J, Del Ser T. Poststroke dementia: clinical features and risk factors. Stroke. 2000;31:1494–501.CrossRefPubMed Barba R, Martinez ES, Rodriguez GE, Pondal M, Vivancos J, Del Ser T. Poststroke dementia: clinical features and risk factors. Stroke. 2000;31:1494–501.CrossRefPubMed
37.
Zurück zum Zitat Tatemichi TK, Desmond DW, Paik M, et al. The mini-mental state examination as a screen for dementia following stroke [abstract]. J Clin Exp Neuropsychol. 1991;13:419. Tatemichi TK, Desmond DW, Paik M, et al. The mini-mental state examination as a screen for dementia following stroke [abstract]. J Clin Exp Neuropsychol. 1991;13:419.
38.
Zurück zum Zitat Tsoi K, Chan J, Hirai H, Wong S, Kwok T. Cognitive tests to detect dementia a systematic review and meta-analysis. JAMA Intern Med. 2015;175:1450–8.CrossRefPubMed Tsoi K, Chan J, Hirai H, Wong S, Kwok T. Cognitive tests to detect dementia a systematic review and meta-analysis. JAMA Intern Med. 2015;175:1450–8.CrossRefPubMed
39.
Zurück zum Zitat Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.CrossRefPubMed
40.
Zurück zum Zitat Kim YJ, Han JW, So YS, Seo JY, Kim KY, Kim KW. Prevalence and trends of dementia in Korea: a systematic review and meta-analysis. J Korean Med Sci. 2014;29:903–12.CrossRefPubMedPubMedCentral Kim YJ, Han JW, So YS, Seo JY, Kim KY, Kim KW. Prevalence and trends of dementia in Korea: a systematic review and meta-analysis. J Korean Med Sci. 2014;29:903–12.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Alzheimer’s Disease International. World Alzheimer’s report 2009. London: Alzheimer’s Disease International, 2009. p. 26. Alzheimer’s Disease International. World Alzheimer’s report 2009. London: Alzheimer’s Disease International, 2009. p. 26.
Metadaten
Titel
Factors associated with improvement or decline in cognitive function after an ischemic stroke in Korea: the Korean stroke cohort for functioning and rehabilitation (KOSCO) study
verfasst von
Jin A. Yoon
Deog Young Kim
Min Kyun Sohn
Jongmin Lee
Sam-Gyu Lee
Yang-Soo Lee
Eun Young Han
Min Cheol Joo
Gyung-Jae Oh
Junhee Han
Minsu Park
Kyung Pil Park
Kyung-Ha Noh
Won Hyuk Chang
Yong-Il Shin
Yun-Hee Kim
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Neurology / Ausgabe 1/2017
Elektronische ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-016-0780-3

Weitere Artikel der Ausgabe 1/2017

BMC Neurology 1/2017 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie