Skip to main content
Erschienen in: BMC Psychiatry 1/2019

Open Access 01.12.2019 | Research article

Family-based association study of ZNF804A polymorphisms and autism in a Han Chinese population

verfasst von: Ziqi Wang, Tian Zhang, Jing Liu, Han Wang, Tianlan Lu, Meixiang Jia, Dai Zhang, Lifang Wang, Jun Li

Erschienen in: BMC Psychiatry | Ausgabe 1/2019

Abstract

Background

Autism is a complex neurodevelopmental disorder with high heritability. Zinc finger protein 804A (ZNF804A) was suggested to play important roles in neurodevelopment. Previous studies indicated that single-nucleotide polymorphism (SNP) rs1344706 in ZNF804A was strongly associated with schizophrenia and might influence social interaction. Only one study explored the significance of ZNF804A polymorphisms in autism, which discovered that rs7603001 was nominally associated with autism. Moreover, no previous study investigated the association between ZNF804A and autism in a Han Chinese population. Here, we investigated whether these two SNPs (rs1344706 and rs7603001) in ZNF804A contribute to the risk of autism in a Han Chinese population.

Methods

We performed a family-based association study in 640 Han Chinese autism trios. Sanger sequencing was used for sample genotyping. Then, single marker association analyses were conducted using the family-based association test (FBAT) program.

Results

No significant association was found between the two SNPs (rs1344706 and rs7603001) in ZNF804A and autism (P > 0.05).

Conclusions

Our findings suggested that rs1344706 and rs7603001 in ZNF804A might not be associated with autism in a Han Chinese population.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12888-019-2144-1) contains supplementary material, which is available to authorized users.
Ziqi Wang, Tian Zhang and Jing Liu contributed equally to this work.
Abkürzungen
ACG
Anterior cingulate gyrus
AGRE
Autism Genetic Resource Exchange
ASD
Autism spectrum disorder
CEU
Utah residents with Northern and Western European ancestry from the CEPH collection
CHB
Han Chinese in Beijing, China
CNVs
Copy number variations
FBAT
Family-based association test
GTEx
Genotype-Tissue Expression
HBAT
Haplotype-based association test
HWE
Hardy–Weinberg equilibrium
iPSYCH-PGC GWAS 2017
Integrative Psychiatric Research and the Psychiatric Genomics Consortium released in 2017
JPT
Japanese in Tokyo
MAF
Minor allele frequency
NCBI
National Center for Biotechnology Information
PCR
Polymerase chain reaction
SCZ
Schizophrenia
SNP
Single-nucleotide polymorphism
TF
Transcription factor
ToM
Theory of mind
ZNF804A
Zinc finger protein 804A

Background

Autism is a complex neurodevelopmental disorder, characterized by early-onset impairments in social interaction and communication, repetitive behaviors, and restricted interests. The worldwide prevalence of autism was estimated to about 1% with a male-to-female ratio of 3–4:1 [1, 2]. The high concordance between identical twins (nearly 90%) indicated the critical role of genetic factors in the pathogenesis of autism [3, 4]. Despite the research progress made over the past few decades, the genetic pathogenesis of autism remains largely unclear [58].
Zinc finger protein 804A (ZNF804A) is located in 2q32.1 and encodes a protein containing a C2H2-type zinc finger domain, which participates in DNA binding and transcription regulation [911]. ZNF804A is highly expressed in the human brain with a subcellular distribution in somatodendritic compartments [12]. Besides, high expression of Znf804a was found in developing brains of mice, especially during the late developmental stages (> 20 weeks) [13]. Furthermore, functional studies suggested that ZNF804A might affect the expression of the genes involved in neurite outgrowth, synapse formation, and dopaminergic transmission [11, 14]. Postmortem studies of autistic individuals detected reduced expression of ZNF804A in the anterior cingulate gyrus (ACG), which was implicated in social behaviors and cognition [15, 16]. Altogether, these findings suggested that ZNF804A might play important roles in neurodevelopment.
Previous studies indicated that single-nucleotide polymorphism (SNP) rs1344706 in ZNF804A was strongly associated with schizophrenia (SCZ) [13, 1721]. This disorder was suggested to overlap with autism partially in clinical phenotypes and susceptibility genes [22]. A neuroimaging study reported that the risk allele A of rs1344706 exerted a significant allele-dose effect in parts of the theory of mind (ToM) network, such as the left inferior prefrontal cortex, which was associated with social impairments in autism [23, 24]. ToM refers to the ability of understanding the feelings or thoughts of others, which is crucial for social interaction [25, 26]. Impairments of this ability represent a core deficit of autism [2729]. In addition, rs7603001 in ZNF804A was nominally associated with autism (P = 0.018) in 841 autistic families from the Autism Genetic Resource Exchange (AGRE), most of whom were white [15].
Given the important roles of ZNF804A in neurodevelopment and the lack of studies exploring the association between ZNF804A polymorphisms and autism in the Han Chinese population, we conducted a family-based association study of two SNPs (rs1344706 and rs7603001) in ZNF804A with 640 autism trios of Han Chinese ancestry.

Material and methods

Participants

A total of 640 autistic nuclear trios (autistic children and their biological parents) were included in the study. All participants were of Han Chinese ancestry and recruited at Peking University Sixth Hospital, China. The median age of diagnosis for autistic children was 4.75 (range 3–16) years. The sex ratio (male:female) was approximately 7:1, including 563 male and 77 female children.
The autistic children were independently evaluated by two senior psychiatrists according to the Diagnostic and Statistical Manual of Mental Disorders, fourth edition criteria for autism. Additional criteria for patient inclusion were Autism Behavior Checklist score ≥ 53 and Childhood Autism Rating Scale ≥35 [30, 31]. Children diagnosed with Asperger syndrome, Rett syndrome, pervasive development disorder not otherwise specified, fragile X syndrome, tuberous sclerosis, a previously identified chromosomal abnormality, dysmorphic features, or any other neurological conditions were excluded from the present study. All the parents were evaluated through unstructured interviews by two psychiatrists to confirm that they were not affected with autism spectrum disorder (ASD). Any individuals with familial (inherited) diseases (such as congenital deaf-mutism, hemophilia, and familial adenomatous polyposis) or severe mental disorders (such as SCZ, schizoaffective disorder and bipolar disorder) were excluded in the study.

SNPs selection

Two polymorphisms in ZNF804A (rs1344706 and rs7603001) were selected in the present study. The criteria for SNPs selection were as follows: (1) SNPs reported association with autism or ASD were selected; (2) risk variants of other mental disorders (such as SCZ, depression, and bipolar disorder) were also taken into account; (3) The minor allele frequencies (MAF) of selected SNPs should be greater than 0.05 in the Han Chinese in Beijing, China (CHB). The genotyping data of SNPs were downloaded from the databases Ensembl GRCh37 Release 93 (http://​grch37.​ensembl.​org/​index.​html) and dbSNP in National Center for Biotechnology Information (NCBI) (https://​www.​ncbi.​nlm.​nih.​gov/​snp) [32].

DNA extraction and genotyping

Peripheral blood samples were collected from all participants in the morning. Genomic DNA was extracted using the Qiagen QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. NanoDrop Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) was used to confirm that the concentrations of the extracted DNA were greater than 40 ng/uL.
Genotyping for rs1344706 and rs7603001 was performed by Sanger DNA sequencing. All primers for the polymerase chain reaction (PCR) were designed through the Primer-BLAST tool of the NCBI (https://​www.​ncbi.​nlm.​nih.​gov/​tools/​primer-blast/​) according to the sequence of the forward strands provided by the NCBI human reference genome GRCh38 (hg38). The primers used for rs1344706 were as follows: forward, 5′-ATTGGGACGAGGAGAAAA-3′; and reverse, 5′-GTCAAATAAGCCTGAGGAAT-3′. The primers for rs7603001 were the following: forward, 5′-TTCCAGAAAGCCATTCGTGTGTA-3′; and reverse, 5′-GAGCACCAGGAGAAACCAGT-3′. The PCR amplification for the Sanger sequencing was performed in a 15-μL mixture consisting of 1 μL of genomic DNA, 7.5 μL of 2× Easy Tag SuperMix (TransGen Biotech, Beijing, China), and 1.5 μL of each primers. The reaction was initiated with an initial denaturation at 95 °C for 5 min, followed by 38 cycles of denaturation at 95 °C for 30 s, annealing at 60 °C for rs1344706 and 64 °C for rs7603001 for 30 s, and extension at 72 °C for 42 s, followed by a final extension at 72 °C for 7 min. Then, Sanger sequencing of the amplified products was outsourced to BGI (Beijing, China). DNA sequencing was performed using the BigDye Terminator Cycle Sequencing Ready Reaction Kit with Ampli Taq DNA polymerase (PE Biosystem) and the ABI PRISM 377–96 DNA Sequencer (Applied Biosystem, Foster city, USA).

Data analysis

Quanto, version 1.2.4 (http://​biostats.​usc.​edu/​software), was employed to evaluate the statistical power for risk allele detection [33]. The parameters were set to a population risk of 0.01, an estimated relative risk for common variants of 1.1 to 1.2, and a type I error rate of 0.05 (two-sided) under the log-additive model [15, 34]. The chi-square goodness-of-fit test was conducted to analyze the deviation from the Hardy–Weinberg equilibrium (HWE) for the genotype frequency distributions.
The family-based association test (FBAT) program, version 2.0.3, was used to check the Mendelian errors and reset the genotypes of the families with Mendelian errors to zero [35]. Then, single marker association analyses were conducted by the FBAT program under the additive and recessive inheritance models, respectively. All P-values calculated by the FBAT were two-sided. Bonferroni correction was applied to decrease the type I errors with a significance level of P < α/n (α = 0.05) [36]. The ratio of transmission to untransmission (T:U) for the alleles of each SNP was calculated using Haploview software, version 4.2 (http://​www.​broad.​mit.​edu/​mpg/​haploview/​).
Linkage disequilibrium analyses were conducted by both FBAT and Haploview software. The pairwise linkage between two SNPs was estimated by the normalized disequilibrium coefficient (D’) and the squared correlation coefficient (r2). Then the global and individual haplotype tests of association were performed under multiallelic and biallelic mode in haplotype-based association test (HBAT) using FBAT software. The permutation test (n = 10,000) was used for multiple testing correction in HBAT. All P-values involved in HBAT were two-sided.

In silico analyses of ZNF804A polymorphisms

Some online tools were used to predict the functions of SNPs in ZNF804A. HaploReg v4.1 (https://​pubs.​broadinstitute.​org/​mammals/​haploreg/​haploreg.​php) was a tool for exploring the variants on haplotype blocks about their chromatin state and protein binding annotation, sequence conservation and effect on regulatory motifs and expression [37]. Genotype-Tissue Expression (GTEx) database (http://​www.​gtexportal.​org/​) provided the eQTL data to study relationship between genetic variation and gene expression in multiple human tissues. rVarBase (http://​rv.​psych.​ac.​cn/​) and miRNASNP (http://​bioinfo.​life.​hust.​edu.​cn/​miRNASNP2/​) were used to detected whether the associated SNPs were in the transcription factor (TF) binding regions, miRNA target regions, or miRNA seed regions [38, 39].

Results

Quality control

The MAF in CHB for rs1344706 and rs7603001 were greater than 0.05 (MAF = 0.476 and 0.204, respectively) in the Ensembl GRCh37 Release 93 database. In the present study, the MAF for these two SNPs were equal to 0.499 and 0.176, respectively. The call rates, determined by Sanger sequencing, were 97.7% for rs1344706 and 100% for rs7603001. The power to detect a true risk variant was 23%–63% for rs1344706 and 15%–40% for rs7603001 under the log-additive model. The genotypic distributions of these two SNPs in both unaffected parents and affected offspring did not derive from the HWE (P > 0.05, Table 1).
Table 1
Genotypic distributions of rs1344706 and rs7603001 in ZNF804A in 640 Han Chinese autism trios
SNP ID
Position
Genotype frequencies in children
P HWEa
Genotype frequencies in parents
P HWEb
rs1344706
chr2:184913701
CC
CA
AA
 
CC
CA
AA
 
165
316
144
0.758
326
600
324
0.157
rs7603001
chr2:184902089
GG
GA
AA
 
GG
GA
AA
 
444
174
22
0.336
865
380
35
0.380
a Hardy–Weinberg equilibrium (HWE) P value for genotypic distributions in autistic children
b HWE P value for genotypic distributions in parents

SNP association and haplotype analyses

The results from the single-SNP association analyses revealed that neither of the SNPs (rs1344706 and rs7603001) was significantly associated with autism under the additive or recessive inheritance model (Table 2). The value of D’ and r2 between rs1344706 and rs7603001 were 0.984 and 0.207, respectively (Fig. 1). Haplotype-based association analyses showed that no haplotypes were associated with autism (Table 3).
Table 2
Association analyses results of rs1344706 and rs7603001 in ZNF804A in 640 Han Chinese autism trios
SNP ID
Allele
Afreq
T:Ua
Additive model
Recessive model
Dominant model
S-E(S)
Var(S)
Z
P
S-E(S)
Var(S)
Z
P
S-E(S)
Var(S)
Z
P
rs1344706
A
0.499
269:307
−19.00
144.00
−1.583
0.113
−11.75
62.19
−1.490
0.136
−7.25
63.19
−0.912
0.362
C
0.501
307:269
19.00
144.00
1.583
0.113
7.25
63.19
0.912
0.362
11.75
62.19
1.490
0.136
rs7603001
A
0.176
173:201
−14.00
93.50
−1.448
0.148
−4.75
13.56
−1.290
0.197
−9.25
72.56
−1.086
0.278
G
0.824
201:173
14.00
93.50
1.448
0.148
9.25
72.56
1.086
0.278
4.75
13.56
1.290
0.197
Abbreviations: Afreq, allele frequency; S, test statistics for the observed number of transmitted alleles; E(S), expected value of S under the null hypothesis (i.e., no linkage and no association)
a The ratio of transmission to untransmission (T:U) for each selected SNP was calculated by the Haploview version 4.2
Table 3
Haplotype-based association analyses between rs1344706 and rs7603001 in ZNF804A in 640 Han Chinese autism trios
Marker
Haplotype
Freq
Fam
S-E(S)
Var(S)
Z
P
Global P
Ppermutationa
rs7603001-rs1344706
G-C
0.414
212
15.92
72.89
1.864
0.062
0.100
0.089
A-A
0.305
285
−14.08
83.76
−1.539
0.124
  
G-A
0.276
207
−0.42
65.90
−0.051
0.959
  
A-C
0.006
4
n/a
n/a
n/a
n/a
  
Abbreviations: Freq, Estimation of haplotype frequencies; Fam, number of informative families; S, test statistics for the observed number of transmitted alleles; E(S), expected value of S under the null hypothesis (i.e., no linkage and no association); n/a: not applicable
a Whole marker permutation test was performed using chisq sum P value (n = 10,000)

Putative regulatory function and eQTL of selected SNPs

The function prediction using HaploReg showed that both rs1344706 and rs7603001 might alter the regulatory motifs (Additional file 1: Table S1). However, eQTL data from GTEx database demonstrated that both rs1344706 and rs7603001 were not associated with the expression of ZNF804A in human brain. Online databases rVarbase and miRNASNP revealed that neither of these two variants might be in TF binding regions, miRNA target regions, or miRNA seed regions.

Discussion

This family-based association study was performed in 640 Han Chinese autism trios to investigate the relationships between two SNPs (rs1344706 and rs7603001) in ZNF804A and autism. Our results indicated that these two SNPs were not associated with autism in a Han Chinese population.
Our findings were inconsistent with those of a previous study. Using data of 841 autistic families from AGRE, Anitha et al. found that rs7603001 in ZNF804A was nominally associated with autism (P = 0.018), especially in the subgroup of autistic individuals with verbal deficit (P = 0.008). Another SNP, rs1344706, which was frequently reported in SCZ, showed no association with autism [15]. In addition, no association of rs1344706 (OR for A allele = 0.9805, P = 0.1597) or rs7603001 (OR for A allele = 0.9848, P = 0.2666) was found using genome-wide association data from the Integrative Psychiatric Research and the Psychiatric Genomics Consortium released in 2017 (iPSYCH-PGC GWAS 2017, available at: http://​www.​med.​unc.​edu/​pgc/​results-and-downloads), which included data of 18,381 autistic individuals and 27,969 controls [40].
Although this study detected no association between ZNF804A and autism, certain factors should be considered for further studies. First, autism is a complex heterogeneous disorder. Susceptibility genes might contribute to different subgroups of autism [4145]. Concerning ZNF804A, a nominal association was detected between rs7603001 and autism, especially in autism individuals with verbal deficit. Hence, the relationship between candidate genes and specific phenotypes of autism should be further explored. Second, other SNPs or structural abnormalities such as copy number variations (CNVs) in ZNF804A might be involved in the etiology of autism. In the dataset of iPSYCH-PGC GWAS 2017, a few SNPs, including rs146362735, rs114385979, and rs77076543, were nominally associated with ASD (P < 0.01). However, these SNPs showed no polymorphism in the CHB population. Recently, one study found that rs10497655 in ZNF804A was significantly associated with ASD (OR = 1.20 (95%CI 1.05–1.37), P = 0.007851) in a Han Chinese cohort (854 cases and 926 controls) and the T risk allele homozygotes of rs10497655 could reduce ZNF804A expression [46]. On the other hand, Griswold et al. found duplications of CNVs in ZNF804A only in autistic individuals [47]. In another study, an excess of CNVs in ZNF804A was detected in 19,556 patients with neurodevelopmental disorders compared with 13,991 controls (P = 0.047) [48]. Therefore, the association between autism and other SNPs, and/or structural abnormalities in ZNF804A should be further investigated. Third, differences in ethnic genetic background might contribute to the result inconsistencies. For instance, r2 between rs1344706 and rs7603001 were 0.637, 0.232 and 0.353 in CEU (Utah residents with Northern and Western European ancestry from the CEPH collection), CHB and JPT (Japanese in Tokyo), respectively (Additional file 1: Figure S1). Besides, rs1344706 was reported to confer risk of SCZ in the European populations. However, a meta-analysis study found only nominal association between this variant and SCZ in the Asian population (13,452 cases, 17,826 healthy controls, and 680 families). No association was showed between rs1344706 and SCZ in samples from the Chinese population [49]. Association studies in other populations are required to assess the involvement of ZNF804A in autism. Fourth, the present sample size was limited. More autism patients and families of Han Chinese ancestry need to be involved in further researches to increase the statistical power and might help indicate new susceptibility variants.

Conclusions

In summary, this study suggested that rs1344706 and rs7603001 in ZNF804A were not associated with autism in a Han Chinese population. Further research is needed to comprehensively explore the relationships between ZNF804A and autism.

Acknowledgements

We thank all of the participants for their cooperation in this study.

Funding

This work was supported by grants from the National Key R&D Program of China (grant number 2017YFC1309901) and the National Natural Science Foundation of China (grant numbers 81671363, 81730037, and 81871077).

Availability of data and materials

For access to the data in this paper, interested researchers may contact the corresponding author via email: lifangwang@bjmu.​edu.​cn (L. Wang).
This study was approved by the Ethics Committee of Peking University Sixth Hospital (Beijing, China). Written informed consent was obtained from each participant/legal guardian included in the study.
Not applicable.

Competing interests

The authors declare that they have no conflict of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896–910.CrossRef Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383(9920):896–910.CrossRef
2.
Zurück zum Zitat Volkmar FR, Lord C, Bailey A, Schultz RT, Klin A. Autism and pervasive developmental disorders. J Child Psychol Psychiatry. 2004;45(1):135–70.CrossRef Volkmar FR, Lord C, Bailey A, Schultz RT, Klin A. Autism and pervasive developmental disorders. J Child Psychol Psychiatry. 2004;45(1):135–70.CrossRef
3.
Zurück zum Zitat Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics. 2004;113(5):e472–86.CrossRef Muhle R, Trentacoste SV, Rapin I. The genetics of autism. Pediatrics. 2004;113(5):e472–86.CrossRef
4.
Zurück zum Zitat Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufmann WE, Law PA. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med. 2009;163(10):907–14.CrossRef Rosenberg RE, Law JK, Yenokyan G, McGready J, Kaufmann WE, Law PA. Characteristics and concordance of autism spectrum disorders among 277 twin pairs. Arch Pediatr Adolesc Med. 2009;163(10):907–14.CrossRef
5.
Zurück zum Zitat Weiss LA, Arking DE, Daly MJ, Chakravarti A. A genome-wide linkage and association scan reveals novel loci for autism. Nature. 2009;461(7265):802–8.CrossRef Weiss LA, Arking DE, Daly MJ, Chakravarti A. A genome-wide linkage and association scan reveals novel loci for autism. Nature. 2009;461(7265):802–8.CrossRef
6.
Zurück zum Zitat Geschwind DH. Genetics of autism spectrum disorders. Trends Cogn Sci. 2011;15(9):409–16.CrossRef Geschwind DH. Genetics of autism spectrum disorders. Trends Cogn Sci. 2011;15(9):409–16.CrossRef
7.
Zurück zum Zitat Murdoch JD, State MW. Recent developments in the genetics of autism spectrum disorders. Curr Opin Genet Dev. 2013;23(3):310–5.CrossRef Murdoch JD, State MW. Recent developments in the genetics of autism spectrum disorders. Curr Opin Genet Dev. 2013;23(3):310–5.CrossRef
8.
Zurück zum Zitat Schaaf CP, Zoghbi HY. Solving the autism puzzle a few pieces at a time. Neuron. 2011;70(5):806–8.CrossRef Schaaf CP, Zoghbi HY. Solving the autism puzzle a few pieces at a time. Neuron. 2011;70(5):806–8.CrossRef
9.
Zurück zum Zitat Hess JL, Glatt SJ. How might ZNF804A variants influence risk for schizophrenia and bipolar disorder? A literature review, synthesis, and bioinformatic analysis. Am J Med Genet B Neuropsychiatr Genet. 2014;165b(1):28–40.CrossRef Hess JL, Glatt SJ. How might ZNF804A variants influence risk for schizophrenia and bipolar disorder? A literature review, synthesis, and bioinformatic analysis. Am J Med Genet B Neuropsychiatr Genet. 2014;165b(1):28–40.CrossRef
10.
Zurück zum Zitat Brayer KJ, Segal DJ. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys. 2008;50(3):111–31.CrossRef Brayer KJ, Segal DJ. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys. 2008;50(3):111–31.CrossRef
11.
Zurück zum Zitat Girgenti MJ, LoTurco JJ, Maher BJ. ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One. 2012;7(2):e32404.CrossRef Girgenti MJ, LoTurco JJ, Maher BJ. ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS One. 2012;7(2):e32404.CrossRef
12.
Zurück zum Zitat Deans PJM, Raval P, Sellers KJ, Gatford NJF, Halai S, Duarte RRR, Shum C, Warre-Cornish K, Kaplun VE, Cocks G, et al. Psychosis risk candidate ZNF804A localizes to synapses and regulates neurite formation and dendritic spine structure. Biol Psychiatry. 2017;82(1):49–61.CrossRef Deans PJM, Raval P, Sellers KJ, Gatford NJF, Halai S, Duarte RRR, Shum C, Warre-Cornish K, Kaplun VE, Cocks G, et al. Psychosis risk candidate ZNF804A localizes to synapses and regulates neurite formation and dendritic spine structure. Biol Psychiatry. 2017;82(1):49–61.CrossRef
13.
Zurück zum Zitat Rao S, Yao Y, Ryan J, Jin C, Xu Y, Huang X, Guo J, Wen Y, Mao C, Meyre D, et al. Genetic association of rs1344706 in ZNF804A with bipolar disorder and schizophrenia susceptibility in Chinese populations. Sci Rep. 2017;7:41140.CrossRef Rao S, Yao Y, Ryan J, Jin C, Xu Y, Huang X, Guo J, Wen Y, Mao C, Meyre D, et al. Genetic association of rs1344706 in ZNF804A with bipolar disorder and schizophrenia susceptibility in Chinese populations. Sci Rep. 2017;7:41140.CrossRef
14.
Zurück zum Zitat Hill MJ, Jeffries AR, Dobson RJ, Price J, Bray NJ. Knockdown of the psychosis susceptibility gene ZNF804A alters expression of genes involved in cell adhesion. Hum Mol Genet. 2012;21(5):1018–24.CrossRef Hill MJ, Jeffries AR, Dobson RJ, Price J, Bray NJ. Knockdown of the psychosis susceptibility gene ZNF804A alters expression of genes involved in cell adhesion. Hum Mol Genet. 2012;21(5):1018–24.CrossRef
15.
Zurück zum Zitat Anitha A, Thanseem I, Nakamura K, Vasu MM, Yamada K, Ueki T, Iwayama Y, Toyota T, Tsuchiya KJ, Iwata Y, et al. Zinc finger protein 804A (ZNF804A) and verbal deficits in individuals with autism. J Psychiatry Neurosci. 2014;39(5):294–303.CrossRef Anitha A, Thanseem I, Nakamura K, Vasu MM, Yamada K, Ueki T, Iwayama Y, Toyota T, Tsuchiya KJ, Iwata Y, et al. Zinc finger protein 804A (ZNF804A) and verbal deficits in individuals with autism. J Psychiatry Neurosci. 2014;39(5):294–303.CrossRef
16.
Zurück zum Zitat Apps MA, Rushworth MF, Chang SW. The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron. 2016;90(4):692–707.CrossRef Apps MA, Rushworth MF, Chang SW. The anterior cingulate gyrus and social cognition: tracking the motivation of others. Neuron. 2016;90(4):692–707.CrossRef
17.
Zurück zum Zitat O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L, Georgieva L, et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet. 2008;40(9):1053–5.CrossRef O'Donovan MC, Craddock N, Norton N, Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L, Georgieva L, et al. Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nat Genet. 2008;40(9):1053–5.CrossRef
18.
Zurück zum Zitat Riley B, Thiselton D, Maher BS, Bigdeli T, Wormley B, McMichael GO, Fanous AH, Vladimirov V, O'Neill FA, Walsh D, et al. Replication of association between schizophrenia and ZNF804A in the Irish case-control study of schizophrenia sample. Mol Psychiatry. 2010;15(1):29–37.CrossRef Riley B, Thiselton D, Maher BS, Bigdeli T, Wormley B, McMichael GO, Fanous AH, Vladimirov V, O'Neill FA, Walsh D, et al. Replication of association between schizophrenia and ZNF804A in the Irish case-control study of schizophrenia sample. Mol Psychiatry. 2010;15(1):29–37.CrossRef
19.
Zurück zum Zitat Li M, Luo XJ, Xiao X, Shi L, Liu XY, Yin LD, Diao HB, Su B. Allelic differences between Han Chinese and Europeans for functional variants in ZNF804A and their association with schizophrenia. Am J Psychiatry. 2011;168(12):1318–25.CrossRef Li M, Luo XJ, Xiao X, Shi L, Liu XY, Yin LD, Diao HB, Su B. Allelic differences between Han Chinese and Europeans for functional variants in ZNF804A and their association with schizophrenia. Am J Psychiatry. 2011;168(12):1318–25.CrossRef
20.
Zurück zum Zitat Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, Georgieva L, Williams NM, Morris DW, Quinn EM, et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry. 2011;16(4):429–41.CrossRef Williams HJ, Norton N, Dwyer S, Moskvina V, Nikolov I, Carroll L, Georgieva L, Williams NM, Morris DW, Quinn EM, et al. Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Mol Psychiatry. 2011;16(4):429–41.CrossRef
21.
Zurück zum Zitat Ou J, Li M, Xiao X. The schizophrenia susceptibility gene ZNF804A confers risk of major mood disorders. World J Biol Psychiatry. 2017;18(7):557–62.CrossRef Ou J, Li M, Xiao X. The schizophrenia susceptibility gene ZNF804A confers risk of major mood disorders. World J Biol Psychiatry. 2017;18(7):557–62.CrossRef
22.
Zurück zum Zitat Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381(9875):1371–9.CrossRef Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381(9875):1371–9.CrossRef
23.
Zurück zum Zitat Walter H, Schnell K, Erk S, Arnold C, Kirsch P, Esslinger C, Mier D, Schmitgen MM, Rietschel M, Witt SH, et al. Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol Psychiatry. 2011;16(4):462–70.CrossRef Walter H, Schnell K, Erk S, Arnold C, Kirsch P, Esslinger C, Mier D, Schmitgen MM, Rietschel M, Witt SH, et al. Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Mol Psychiatry. 2011;16(4):462–70.CrossRef
24.
Zurück zum Zitat Enticott PG, Kennedy HA, Rinehart NJ, Tonge BJ, Bradshaw JL, Taffe JR, Daskalakis ZJ, Fitzgerald PB. Mirror neuron activity associated with social impairments but not age in autism spectrum disorder. Biol Psychiatry. 2012;71(5):427–33.CrossRef Enticott PG, Kennedy HA, Rinehart NJ, Tonge BJ, Bradshaw JL, Taffe JR, Daskalakis ZJ, Fitzgerald PB. Mirror neuron activity associated with social impairments but not age in autism spectrum disorder. Biol Psychiatry. 2012;71(5):427–33.CrossRef
25.
Zurück zum Zitat Dvash J, Shamay-Tsoory SG. Theory of mind and empathy as multidimensional constructs neurological foundations. Top Lang Disord. 2014;34(4):282–95.CrossRef Dvash J, Shamay-Tsoory SG. Theory of mind and empathy as multidimensional constructs neurological foundations. Top Lang Disord. 2014;34(4):282–95.CrossRef
26.
Zurück zum Zitat Wellman HM, Cross D, Watson J. Meta-analysis of theory-of-mind development: the truth about false belief. Child Dev. 2001;72(3):655–84.CrossRef Wellman HM, Cross D, Watson J. Meta-analysis of theory-of-mind development: the truth about false belief. Child Dev. 2001;72(3):655–84.CrossRef
27.
Zurück zum Zitat Yirmiya N, Erel O, Shaked M, Solomonica-Levi D. Meta-analyses comparing theory of mind abilities of individuals with autism, individuals with mental retardation, and normally developing individuals. Psychol Bull. 1998;124(3):283–307.CrossRef Yirmiya N, Erel O, Shaked M, Solomonica-Levi D. Meta-analyses comparing theory of mind abilities of individuals with autism, individuals with mental retardation, and normally developing individuals. Psychol Bull. 1998;124(3):283–307.CrossRef
28.
Zurück zum Zitat Cheng W, Rolls ET, Gu H, Zhang J, Feng J. Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self. Brain. 2015;138(Pt 5:1382–93.CrossRef Cheng W, Rolls ET, Gu H, Zhang J, Feng J. Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self. Brain. 2015;138(Pt 5:1382–93.CrossRef
29.
Zurück zum Zitat Hoogenhout M, Malcolm-Smith S. Theory of mind predicts severity level in autism. Autism. 2017;21(2):242–52.CrossRef Hoogenhout M, Malcolm-Smith S. Theory of mind predicts severity level in autism. Autism. 2017;21(2):242–52.CrossRef
30.
Zurück zum Zitat Krug DA, Arick J, Almond P. Behavior checklist for identifying severely handicapped individuals with high levels of autistic behavior. J Child Psychol Psychiatry. 1980;21(3):221–9.CrossRef Krug DA, Arick J, Almond P. Behavior checklist for identifying severely handicapped individuals with high levels of autistic behavior. J Child Psychol Psychiatry. 1980;21(3):221–9.CrossRef
31.
Zurück zum Zitat Schopler E, Reichler RJ, DeVellis RF, Daly K. Toward objective classification of childhood autism: childhood autism rating scale (CARS). J Autism Dev Disord. 1980;10(1):91–103.CrossRef Schopler E, Reichler RJ, DeVellis RF, Daly K. Toward objective classification of childhood autism: childhood autism rating scale (CARS). J Autism Dev Disord. 1980;10(1):91–103.CrossRef
32.
Zurück zum Zitat Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, et al. Ensembl 2018. Nucleic Acids Res. 2018;46(D1):D754–61.CrossRef Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, et al. Ensembl 2018. Nucleic Acids Res. 2018;46(D1):D754–61.CrossRef
33.
Zurück zum Zitat Gauderman A. QUANTO 1.1: a computer program for power and sample size calculations for genetic-epidemiology studies. http://hydrauscedu/gxe. 2016. Gauderman A. QUANTO 1.1: a computer program for power and sample size calculations for genetic-epidemiology studies. http://​hydrauscedu/​gxe.​ 2016.
34.
Zurück zum Zitat Buxbaum JD, Baron-Cohen S, Devlin B. Genetics in psychiatry: common variant association studies. Mol Autism. 2010;1(1):6.CrossRef Buxbaum JD, Baron-Cohen S, Devlin B. Genetics in psychiatry: common variant association studies. Mol Autism. 2010;1(1):6.CrossRef
35.
Zurück zum Zitat Family-based association test (FBAT). In: Encyclopedia of Genetics, Genomics, Proteomics and Informatics. Edn. Dordrecht: Springer Netherlands; 2008. p. 671–1. Family-based association test (FBAT). In: Encyclopedia of Genetics, Genomics, Proteomics and Informatics. Edn. Dordrecht: Springer Netherlands; 2008. p. 671–1.
36.
Zurück zum Zitat Ranstam J. Multiple P-values and Bonferroni correction. Osteoarthr Cartil. 2016;24(5):763–4.CrossRef Ranstam J. Multiple P-values and Bonferroni correction. Osteoarthr Cartil. 2016;24(5):763–4.CrossRef
37.
Zurück zum Zitat Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, De T, Consortium UKBE. North American brain expression C, coin L et al. genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci. 2014;17(10):1418–28.CrossRef Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, De T, Consortium UKBE. North American brain expression C, coin L et al. genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci. 2014;17(10):1418–28.CrossRef
38.
Zurück zum Zitat Guo L, Du Y, Qu S, Wang J. rVarBase: an updated database for regulatory features of human variants. Nucleic Acids Res. 2016;44(D1):D888–93.CrossRef Guo L, Du Y, Qu S, Wang J. rVarBase: an updated database for regulatory features of human variants. Nucleic Acids Res. 2016;44(D1):D888–93.CrossRef
39.
Zurück zum Zitat Gong J, Tong Y, Zhang HM, AYJBB G. miRNASNP: a database of miRNA related SNPs and their effects on miRNA function. 2012;13(Suppl 18):A2–2. Gong J, Tong Y, Zhang HM, AYJBB G. miRNASNP: a database of miRNA related SNPs and their effects on miRNA function. 2012;13(Suppl 18):A2–2.
40.
Zurück zum Zitat Grove J, Ripke S, Als TD, Mattheisen M, Walters R, Won H, Pallesen J, Agerbo E, Andreassen OA, Anney R, et al. Common risk variants identified in autism spectrum disorder. BioRxiv. 2017:224774. Grove J, Ripke S, Als TD, Mattheisen M, Walters R, Won H, Pallesen J, Agerbo E, Andreassen OA, Anney R, et al. Common risk variants identified in autism spectrum disorder. BioRxiv. 2017:224774.
41.
Zurück zum Zitat Bartlett CW, Flax JF, Logue MW, Smith BJ, Vieland VJ, Tallal P, Brzustowicz LM. Examination of potential overlap in autism and language loci on chromosomes 2, 7, and 13 in two independent samples ascertained for specific language impairment. Hum Hered. 2004;57(1):10–20.CrossRef Bartlett CW, Flax JF, Logue MW, Smith BJ, Vieland VJ, Tallal P, Brzustowicz LM. Examination of potential overlap in autism and language loci on chromosomes 2, 7, and 13 in two independent samples ascertained for specific language impairment. Hum Hered. 2004;57(1):10–20.CrossRef
42.
Zurück zum Zitat Talebizadeh Z, Arking DE, Hu VW. A novel stratification method in linkage studies to address inter- and intra-family heterogeneity in autism. PLoS One. 2013;8(6):e67569.CrossRef Talebizadeh Z, Arking DE, Hu VW. A novel stratification method in linkage studies to address inter- and intra-family heterogeneity in autism. PLoS One. 2013;8(6):e67569.CrossRef
43.
Zurück zum Zitat Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcon M, Oliver PL, Davies KE, Geschwind DH, et al. A functional genetic link between distinct developmental language disorders. N Engl J Med. 2008;359(22):2337–45.CrossRef Vernes SC, Newbury DF, Abrahams BS, Winchester L, Nicod J, Groszer M, Alarcon M, Oliver PL, Davies KE, Geschwind DH, et al. A functional genetic link between distinct developmental language disorders. N Engl J Med. 2008;359(22):2337–45.CrossRef
44.
Zurück zum Zitat Whitehouse AJ, Bishop DV, Ang QW, Pennell CE, Fisher SE. CNTNAP2 variants affect early language development in the general population. Genes Brain Behav. 2011;10(4):451–6.CrossRef Whitehouse AJ, Bishop DV, Ang QW, Pennell CE, Fisher SE. CNTNAP2 variants affect early language development in the general population. Genes Brain Behav. 2011;10(4):451–6.CrossRef
45.
Zurück zum Zitat Ross LA, Del Bene VA, Molholm S, Jae Woo Y, Andrade GN, Abrahams BS, Foxe JJ. Common variation in the autism risk gene CNTNAP2, brain structural connectivity and multisensory speech integration. Brain Lang. 2017;174:50–60.CrossRef Ross LA, Del Bene VA, Molholm S, Jae Woo Y, Andrade GN, Abrahams BS, Foxe JJ. Common variation in the autism risk gene CNTNAP2, brain structural connectivity and multisensory speech integration. Brain Lang. 2017;174:50–60.CrossRef
46.
Zurück zum Zitat Zhang L, Qin Y, Gong X, Peng R, Cai C, Zheng Y, Du Y, Wang H. A promoter variant in ZNF804A decreasing its expression increases the risk of autism spectrum disorder in the Han Chinese population. Transl Psychiatry. 2019;9(1):31.CrossRef Zhang L, Qin Y, Gong X, Peng R, Cai C, Zheng Y, Du Y, Wang H. A promoter variant in ZNF804A decreasing its expression increases the risk of autism spectrum disorder in the Han Chinese population. Transl Psychiatry. 2019;9(1):31.CrossRef
47.
Zurück zum Zitat Griswold AJ, Ma D, Cukier HN, Nations LD, Schmidt MA, Chung RH, Jaworski JM, Salyakina D, Konidari I, Whitehead PL, et al. Evaluation of copy number variations reveals novel candidate genes in autism spectrum disorder-associated pathways. Hum Mol Genet. 2012;21(15):3513–23.CrossRef Griswold AJ, Ma D, Cukier HN, Nations LD, Schmidt MA, Chung RH, Jaworski JM, Salyakina D, Konidari I, Whitehead PL, et al. Evaluation of copy number variations reveals novel candidate genes in autism spectrum disorder-associated pathways. Hum Mol Genet. 2012;21(15):3513–23.CrossRef
48.
Zurück zum Zitat Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, Ernst C, Hanscom C, Rossin E, Lindgren AM, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell. 2012;149(3):525–37.CrossRef Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, Ernst C, Hanscom C, Rossin E, Lindgren AM, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell. 2012;149(3):525–37.CrossRef
49.
Zurück zum Zitat Huang L, Ohi K, Chang H, Yu H, Wu L, Yue W, Zhang D, Gao L. Li M. a comprehensive meta-analysis of ZNF804A SNPs in the risk of schizophrenia among Asian populations. Am J Med Genet B Neuropsychiatr Genet. 2016;171b(3):437–46.CrossRef Huang L, Ohi K, Chang H, Yu H, Wu L, Yue W, Zhang D, Gao L. Li M. a comprehensive meta-analysis of ZNF804A SNPs in the risk of schizophrenia among Asian populations. Am J Med Genet B Neuropsychiatr Genet. 2016;171b(3):437–46.CrossRef
Metadaten
Titel
Family-based association study of ZNF804A polymorphisms and autism in a Han Chinese population
verfasst von
Ziqi Wang
Tian Zhang
Jing Liu
Han Wang
Tianlan Lu
Meixiang Jia
Dai Zhang
Lifang Wang
Jun Li
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Psychiatry / Ausgabe 1/2019
Elektronische ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-019-2144-1

Weitere Artikel der Ausgabe 1/2019

BMC Psychiatry 1/2019 Zur Ausgabe