Skip to main content
Erschienen in: Brain Topography 3/2018

09.11.2017 | Original Paper

Fast Neural Dynamics of Proactive Cognitive Control in a Task-Switching Analogue of the Wisconsin Card Sorting Test

verfasst von: Gema Díaz-Blancat, Juan García-Prieto, Fernando Maestú, Francisco Barceló

Erschienen in: Brain Topography | Ausgabe 3/2018

Einloggen, um Zugang zu erhalten

Abstract

One common assumption has been that prefrontal executive control is mostly required for target detection (Posner and Petersen in Ann Rev Neurosci 13:25–42, 1990). Alternatively, cognitive control has also been related to anticipatory updating of task-set (contextual) information, a view that highlights proactive control processes. Frontoparietal cortical networks contribute to both proactive control and reactive target detection, although their fast dynamics are still largely unexplored. To examine this, we analyzed rapid magnetoencephalographic (MEG) source activations elicited by task cues and target cards in a task-cueing analogue of the Wisconsin Card Sorting Test. A single-task (color sorting) condition with equivalent perceptual and motor demands was used as a control. Our results revealed fast, transient and largely switch-specific MEG activations across frontoparietal and cingulo-opercular regions in anticipation of target cards, including (1) early (100–200 ms) cue-locked MEG signals at visual, temporo-parietal and prefrontal cortices of the right hemisphere (i.e., calcarine sulcus, precuneus, inferior frontal gyrus, anterior insula and supramarginal gyrus); and (2) later cue-locked MEG signals at the right anterior and posterior insula (200–300 ms) and the left temporo-parietal junction (300–500 ms). In all cases larger MEG signal intensity was observed in switch relative to repeat cueing conditions. Finally, behavioral restart costs and test scores of working memory capacity (forward digit span) correlated with cue-locked MEG activations at key nodes of the frontoparietal network. Together, our findings suggest that proactive cognitive control of task rule updating can be fast and transiently implemented within less than a second and in anticipation of target detection.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Switch-specific and transient (200–300 ms post-cue) MEG activations did reach significance in the ACC bilaterally when using a less strict double-threshold approach combining voxel-based with minimum cluster size (cf., Stelzel et al. 2011).
 
2
Even using a less strict double-threshold approach (Stelzel et al. 2011), only one task-level contrast (repeat > standard) reached significance for MEG activations at the middle frontal gyrus 300–400 post-target onset.
 
Literatur
Zurück zum Zitat Adrover-Roig D, Barceló F (2010) Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching. Cortex 46:434–450CrossRefPubMed Adrover-Roig D, Barceló F (2010) Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching. Cortex 46:434–450CrossRefPubMed
Zurück zum Zitat Allport A, Wylie G (2000) Task-switching, stimulus-response bindings and negative priming. In: Monsell S, Driver J (eds) Control of cognitive processes: attention and performance XVIII. MIT Press, Cambridge, pp 35–70 Allport A, Wylie G (2000) Task-switching, stimulus-response bindings and negative priming. In: Monsell S, Driver J (eds) Control of cognitive processes: attention and performance XVIII. MIT Press, Cambridge, pp 35–70
Zurück zum Zitat Altmann EM (2007) Comparing switch costs: alternating runs and explicit cuing. J Exp Psychol 33(3):475–483 Altmann EM (2007) Comparing switch costs: alternating runs and explicit cuing. J Exp Psychol 33(3):475–483
Zurück zum Zitat Altmann EM, Gray WD (2008) An integrated model of cognitive control in task switching. Psychol Rev 115(3):602–639CrossRefPubMed Altmann EM, Gray WD (2008) An integrated model of cognitive control in task switching. Psychol Rev 115(3):602–639CrossRefPubMed
Zurück zum Zitat Barber AD, Carter CS (2005) Cognitive control involved in overcoming prepotent response tendencies and switching between tasks. Cereb Cortex 15:899–912CrossRefPubMed Barber AD, Carter CS (2005) Cognitive control involved in overcoming prepotent response tendencies and switching between tasks. Cereb Cortex 15:899–912CrossRefPubMed
Zurück zum Zitat Barceló F (2003) The Madrid card sorting test (MCST): a task switching paradigm to study executive attention with event-related potentials. Brain Res Protoc 11:27–37CrossRef Barceló F (2003) The Madrid card sorting test (MCST): a task switching paradigm to study executive attention with event-related potentials. Brain Res Protoc 11:27–37CrossRef
Zurück zum Zitat Barceló F, Cooper PS (in press) An information theory account of late frontoparietal ERP positivities in cognitive control. Psychophysiology, in press Barceló F, Cooper PS (in press) An information theory account of late frontoparietal ERP positivities in cognitive control. Psychophysiology, in press
Zurück zum Zitat Barceló F, Knight RT (2007) An information-theoretical approach to contextual processing in the human brain: evidence from prefrontal lesions. Cereb Cortex 17(Suppl 1):i51-60PubMed Barceló F, Knight RT (2007) An information-theoretical approach to contextual processing in the human brain: evidence from prefrontal lesions. Cereb Cortex 17(Suppl 1):i51-60PubMed
Zurück zum Zitat Barceló F, Suwazono S, Knight RT (2000) Prefrontal modulation of visual processing in humans. Nat Neurosci 3:399–403CrossRefPubMed Barceló F, Suwazono S, Knight RT (2000) Prefrontal modulation of visual processing in humans. Nat Neurosci 3:399–403CrossRefPubMed
Zurück zum Zitat Barceló F, Escera C, Corral MJ, Periáñez JA (2006) Task switching and novelty processing activate a common neural network for cognitive control. J Cogn Neurosci 18:1734–1748CrossRefPubMed Barceló F, Escera C, Corral MJ, Periáñez JA (2006) Task switching and novelty processing activate a common neural network for cognitive control. J Cogn Neurosci 18:1734–1748CrossRefPubMed
Zurück zum Zitat Bayless SJ, Gaetz WC, Cheyne DO, Taylor MJ (2006) Spatiotemporal analysis of feedback processing during a card sorting task using spatially filtered MEG. Neurosci Lett 410:31 – 6CrossRefPubMed Bayless SJ, Gaetz WC, Cheyne DO, Taylor MJ (2006) Spatiotemporal analysis of feedback processing during a card sorting task using spatially filtered MEG. Neurosci Lett 410:31 – 6CrossRefPubMed
Zurück zum Zitat Benjamini Y, Hochberg Y (1995) Controlling the false Discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false Discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300
Zurück zum Zitat Braver TS, Barch DM (2002) A theory of cognitive control, aging cognition, and neuromodulation. Neurosci Biobehav Rev 26:809 – 17CrossRefPubMed Braver TS, Barch DM (2002) A theory of cognitive control, aging cognition, and neuromodulation. Neurosci Biobehav Rev 26:809 – 17CrossRefPubMed
Zurück zum Zitat Braver TS, Reynolds JR, Donaldson DI (2003) Neural mechanisms of transient and sustained cognitive control during task switching. Neuron 39:713 – 26CrossRefPubMed Braver TS, Reynolds JR, Donaldson DI (2003) Neural mechanisms of transient and sustained cognitive control during task switching. Neuron 39:713 – 26CrossRefPubMed
Zurück zum Zitat Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17:463–468CrossRefPubMed Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17:463–468CrossRefPubMed
Zurück zum Zitat Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews in Neuroscience 3(3):201–215CrossRefPubMed Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews in Neuroscience 3(3):201–215CrossRefPubMed
Zurück zum Zitat Derrfuss J, Brass M, Neumann J, von Cramon DY (2005) Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 25:22–34CrossRefPubMed Derrfuss J, Brass M, Neumann J, von Cramon DY (2005) Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum Brain Mapp 25:22–34CrossRefPubMed
Zurück zum Zitat Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50:799–812CrossRefPubMedPubMedCentral Dosenbach NU, Visscher KM, Palmer ED, Miezin FM, Wenger KK, Kang HC, Burgund ED, Grimes AL, Schlaggar BL, Petersen SE (2006) A core system for the implementation of task sets. Neuron 50:799–812CrossRefPubMedPubMedCentral
Zurück zum Zitat Forstmann BU, Brass M, Koch I (2007) Methodological and empirical issues when dissociating cue-related from task-related processes in the explicit task-cuing procedure. Psychol Res 71(4):393–400CrossRefPubMed Forstmann BU, Brass M, Koch I (2007) Methodological and empirical issues when dissociating cue-related from task-related processes in the explicit task-cuing procedure. Psychol Res 71(4):393–400CrossRefPubMed
Zurück zum Zitat Henaff MA, Bayle D, Krolak-Salmon P, Fonlupt P (2010) Cortical dynamics of a self driven choice: a MEG study during a card sorting task. Clin Neurophysiol 121:508 – 15CrossRefPubMed Henaff MA, Bayle D, Krolak-Salmon P, Fonlupt P (2010) Cortical dynamics of a self driven choice: a MEG study during a card sorting task. Clin Neurophysiol 121:508 – 15CrossRefPubMed
Zurück zum Zitat Huang MX, Mosher JC, Leahy RM (1999) A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. Phys Med Biol 44:423 – 40CrossRefPubMed Huang MX, Mosher JC, Leahy RM (1999) A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. Phys Med Biol 44:423 – 40CrossRefPubMed
Zurück zum Zitat Jost K, Mayr U, Rosler F (2008) Is task switching nothing but cue priming? Evidence from ERPs. Cogn Affect Behav Neurosci 8:74–84CrossRefPubMed Jost K, Mayr U, Rosler F (2008) Is task switching nothing but cue priming? Evidence from ERPs. Cogn Affect Behav Neurosci 8:74–84CrossRefPubMed
Zurück zum Zitat Karayanidis F, Coltheart M, Michie PT, Murphy K (2003) Electrophysiological correlates of anticipatory and poststimulus components of task switching. Psychophysiology 40:329 – 48CrossRefPubMed Karayanidis F, Coltheart M, Michie PT, Murphy K (2003) Electrophysiological correlates of anticipatory and poststimulus components of task switching. Psychophysiology 40:329 – 48CrossRefPubMed
Zurück zum Zitat Karayanidis F, Mansfield EL, Galloway KL, Smith JL, Provost A, Heathcote A (2009) Anticipatory reconfiguration elicited by fully and partially informative cues that validly predict a switch in task. Cogn Affect Behav Neurosci 9:202–215CrossRefPubMed Karayanidis F, Mansfield EL, Galloway KL, Smith JL, Provost A, Heathcote A (2009) Anticipatory reconfiguration elicited by fully and partially informative cues that validly predict a switch in task. Cogn Affect Behav Neurosci 9:202–215CrossRefPubMed
Zurück zum Zitat Kim C, Cilles SE, Johnson NF, Gold BT (2012) Domain general and domain preferential brain regions associated with different types of task switching: a meta-analysis. Hum Brain Mapp 33:130 – 42CrossRefPubMed Kim C, Cilles SE, Johnson NF, Gold BT (2012) Domain general and domain preferential brain regions associated with different types of task switching: a meta-analysis. Hum Brain Mapp 33:130 – 42CrossRefPubMed
Zurück zum Zitat Konishi S, Nakajima K, Uchida I, Kameyama M, Nakahara K, Sekihara K, Miyashita Y (1998) Transient activation of inferior prefrontal cortex during cognitive set shifting. Nat Neurosci 1:80–84CrossRefPubMed Konishi S, Nakajima K, Uchida I, Kameyama M, Nakahara K, Sekihara K, Miyashita Y (1998) Transient activation of inferior prefrontal cortex during cognitive set shifting. Nat Neurosci 1:80–84CrossRefPubMed
Zurück zum Zitat Lezak MD, Howieson DB, Bigler ED, Tranel D (2012) Neuropsychological assessment. Oxford University Press, New York Lezak MD, Howieson DB, Bigler ED, Tranel D (2012) Neuropsychological assessment. Oxford University Press, New York
Zurück zum Zitat Meiran N (2000) Modeling cognitive control in task-switching. Psychol Res 63(3–4):234–249CrossRefPubMed Meiran N (2000) Modeling cognitive control in task-switching. Psychol Res 63(3–4):234–249CrossRefPubMed
Zurück zum Zitat Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Ann Rev Neurosci 24:167–202CrossRefPubMed Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Ann Rev Neurosci 24:167–202CrossRefPubMed
Zurück zum Zitat Monchi O, Petrides M, Petre V, Worsley K, Dagher A (2001) Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21:7733–7741CrossRefPubMed Monchi O, Petrides M, Petre V, Worsley K, Dagher A (2001) Wisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. J Neurosci 21:7733–7741CrossRefPubMed
Zurück zum Zitat Monsell S (2017) Task set regulation. In: Egner T (ed) The Wiley handbook of cognitive control. Wiley, Chichester, pp 29–49CrossRef Monsell S (2017) Task set regulation. In: Egner T (ed) The Wiley handbook of cognitive control. Wiley, Chichester, pp 29–49CrossRef
Zurück zum Zitat Oh A, Vidal J, Taylor MJ, Pang EW (2014) Neuromagnetic correlates of intra- and extra-dimensional set-shifting. Brain Cogn 86:90 – 7CrossRefPubMed Oh A, Vidal J, Taylor MJ, Pang EW (2014) Neuromagnetic correlates of intra- and extra-dimensional set-shifting. Brain Cogn 86:90 – 7CrossRefPubMed
Zurück zum Zitat Periáñez JA, Barceló F (2009) Updating sensory versus task representations during task-switching: insights from cognitive brain potentials in humans. Neuropsychologia 47(4):1160–1172CrossRefPubMed Periáñez JA, Barceló F (2009) Updating sensory versus task representations during task-switching: insights from cognitive brain potentials in humans. Neuropsychologia 47(4):1160–1172CrossRefPubMed
Zurück zum Zitat Periáñez JA, Maestu F, Barceló F, Fernandez A, Amo C, Ortiz Alonso T (2004) Spatiotemporal brain dynamics during preparatory set shifting: MEG evidence. Neuroimage, 21:687–695CrossRefPubMed Periáñez JA, Maestu F, Barceló F, Fernandez A, Amo C, Ortiz Alonso T (2004) Spatiotemporal brain dynamics during preparatory set shifting: MEG evidence. Neuroimage, 21:687–695CrossRefPubMed
Zurück zum Zitat Poljac E, Koch I, Bekkering H (2009) Dissociating restart cost and mixing cost in task switching. Psychol Res 73:407–416CrossRefPubMed Poljac E, Koch I, Bekkering H (2009) Dissociating restart cost and mixing cost in task switching. Psychol Res 73:407–416CrossRefPubMed
Zurück zum Zitat Posner MI, Petersen SE (1990) The attention system of the human brain. Ann Rev Neurosci 13:25–42CrossRefPubMed Posner MI, Petersen SE (1990) The attention system of the human brain. Ann Rev Neurosci 13:25–42CrossRefPubMed
Zurück zum Zitat Rushworth MF, Passingham RE, Nobre AC (2002) Components of switching intentional set. J Cogn Neurosci 14:1139–1150CrossRefPubMed Rushworth MF, Passingham RE, Nobre AC (2002) Components of switching intentional set. J Cogn Neurosci 14:1139–1150CrossRefPubMed
Zurück zum Zitat Schneider DW, Logan GD (2006) Hierarchical control of cognitive processes: switching tasks in sequences. J Exp Psychol Gen 135(4):623–640CrossRefPubMed Schneider DW, Logan GD (2006) Hierarchical control of cognitive processes: switching tasks in sequences. J Exp Psychol Gen 135(4):623–640CrossRefPubMed
Zurück zum Zitat Stelzel C, Basten U, Fiebach CJ (2011) Functional connectivity separates switching operations in the posterior lateral frontal cortex. J Cogn Neurosci 23:3529–3539CrossRefPubMed Stelzel C, Basten U, Fiebach CJ (2011) Functional connectivity separates switching operations in the posterior lateral frontal cortex. J Cogn Neurosci 23:3529–3539CrossRefPubMed
Zurück zum Zitat Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:879716CrossRefPubMedPubMedCentral Tadel F, Baillet S, Mosher JC, Pantazis D, Leahy RM (2011) Brainstorm: a user-friendly application for MEG/EEG analysis. Comput Intell Neurosci 2011:879716CrossRefPubMedPubMedCentral
Zurück zum Zitat Taulu S, Kajola M (2005) Presentation of electromagnetic multichannel data: the signal space separation method. J Appl Phys. 97:124905CrossRef Taulu S, Kajola M (2005) Presentation of electromagnetic multichannel data: the signal space separation method. J Appl Phys. 97:124905CrossRef
Zurück zum Zitat Van Loy B, Liefooghe B, Vandierendonck A (2010). Cognitive control in cued task switching with transition cues: Cue processing, task processing, and cue-task transition congruency. Q J Exp Psychol 63:1–20 Van Loy B, Liefooghe B, Vandierendonck A (2010). Cognitive control in cued task switching with transition cues: Cue processing, task processing, and cue-task transition congruency. Q J Exp Psychol 63:1–20
Zurück zum Zitat Wang L, Kakigi R, Hoshiyama M (2001) Neural activities during Wisconsin Card Sorting Test—MEG observation. Cog Brain Res 12:19–31CrossRef Wang L, Kakigi R, Hoshiyama M (2001) Neural activities during Wisconsin Card Sorting Test—MEG observation. Cog Brain Res 12:19–31CrossRef
Metadaten
Titel
Fast Neural Dynamics of Proactive Cognitive Control in a Task-Switching Analogue of the Wisconsin Card Sorting Test
verfasst von
Gema Díaz-Blancat
Juan García-Prieto
Fernando Maestú
Francisco Barceló
Publikationsdatum
09.11.2017
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 3/2018
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-017-0607-6

Weitere Artikel der Ausgabe 3/2018

Brain Topography 3/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Neu im Fachgebiet Neurologie

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.