Skip to main content
Erschienen in: Diabetologia 1/2008

01.01.2008 | Article

Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells

verfasst von: S. Perrini, L. Laviola, A. Cignarelli, M. Melchiorre, F. De Stefano, C. Caccioppoli, A. Natalicchio, M. R. Orlando, G. Garruti, M. De Fazio, G. Catalano, V. Memeo, R. Giorgino, F. Giorgino

Erschienen in: Diabetologia | Ausgabe 1/2008

Einloggen, um Zugang zu erhalten

Abstract

Aim/hypothesis

The distinct metabolic properties of visceral and subcutaneous adipocytes may be due to inherent characteristics of the cells that are resident in each fat depot. To test this hypothesis, human adipocytes were differentiated in vitro from precursor stromal cells obtained from visceral and subcutaneous fat depots and analysed for genetic, biochemical and metabolic endpoints.

Methods

Stromal cells were isolated from adipose tissue depots of nondiabetic individuals. mRNA levels of adipocyte-specific proteins were determined by real-time RT-PCR. Insulin signalling was evaluated by immunoblotting with specific antibodies. Glucose transport was measured by a 2-deoxy-glucose uptake assay. Adiponectin secretion in the adipocyte-conditioned medium was determined by a specific RIA.

Results

With cell differentiation, mRNA levels of PPARG, C/EBPα (also known as CEBPA), AP2 (also known as GTF3A), GLUT4 (also known as SLC2A4) were markedly upregulated, whereas GLUT1 (also known as SLC2A1) mRNA did not change. However, expression of C/EBPα, AP2 and adiponectin was higher in subcutaneous than in visceral adipocytes. By contrast, adiponectin was secreted at threefold higher rates by visceral than by subcutaneous adipocytes while visceral adipocytes also showed two- to threefold higher insulin-stimulated glucose uptake. Insulin-induced phosphorylation of the insulin receptor, IRS proteins, Akt and extracellular signal-regulated kinase-1/2 was more rapid and tended to decrease at earlier time-points in visceral than in subcutaneous adipocytes.

Conclusions/interpretation

Subcutaneous and visceral adipocytes, also when differentiated in vitro from precursor stromal cells, retain differences in gene expression, adiponectin secretion, and insulin action and signalling. Thus, the precursor cells that reside in the visceral and subcutaneous fat depots may already possess inherent and specific metabolic characteristics that will be expressed upon completion of the differentiation programme.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Evans DJ, Hoffmann RG, Kalkhoff RK, Kissebah AH (2001) Relationship of body fat topography to insulin sensitivity and metabolic profiles in premenopausal women. Metabolism 33:68–75CrossRef Evans DJ, Hoffmann RG, Kalkhoff RK, Kissebah AH (2001) Relationship of body fat topography to insulin sensitivity and metabolic profiles in premenopausal women. Metabolism 33:68–75CrossRef
3.
Zurück zum Zitat Gastaldelli A, Miyazaki Y, Pettiti M et al (2001) Metabolic effects of visceral fat accumulation in type 2 diabetes. J Clin Endocrinol Metab 87:5098–5103CrossRef Gastaldelli A, Miyazaki Y, Pettiti M et al (2001) Metabolic effects of visceral fat accumulation in type 2 diabetes. J Clin Endocrinol Metab 87:5098–5103CrossRef
4.
Zurück zum Zitat Gabriely I, Ma XH, Yang XM et al (2002) Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes 51:2951–2958PubMedCrossRef Gabriely I, Ma XH, Yang XM et al (2002) Removal of visceral fat prevents insulin resistance and glucose intolerance of aging: an adipokine-mediated process? Diabetes 51:2951–2958PubMedCrossRef
5.
Zurück zum Zitat Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P (2002) A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord 26:193–199PubMedCrossRef Thorne A, Lonnqvist F, Apelman J, Hellers G, Arner P (2002) A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. Int J Obes Relat Metab Disord 26:193–199PubMedCrossRef
6.
Zurück zum Zitat Cases JA, Barzilai N (2000) The regulation of body fat distribution and the modulation of insulin action. Int J Obes Relat Metab Disord 24:S63–S66PubMedCrossRef Cases JA, Barzilai N (2000) The regulation of body fat distribution and the modulation of insulin action. Int J Obes Relat Metab Disord 24:S63–S66PubMedCrossRef
7.
Zurück zum Zitat Klein S, Fontana L, Young VL et al (2004) Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 350:2549–2557PubMedCrossRef Klein S, Fontana L, Young VL et al (2004) Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. N Engl J Med 350:2549–2557PubMedCrossRef
8.
Zurück zum Zitat Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738PubMedCrossRef Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738PubMedCrossRef
9.
Zurück zum Zitat Giorgino F, Laviola L, Eriksson JW (2005) Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand 183:13–30PubMedCrossRef Giorgino F, Laviola L, Eriksson JW (2005) Regional differences of insulin action in adipose tissue: insights from in vivo and in vitro studies. Acta Physiol Scand 183:13–30PubMedCrossRef
10.
Zurück zum Zitat Zierath JR, Livingston JN, Thorne A et al (1998) Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia 41:1343–1354PubMedCrossRef Zierath JR, Livingston JN, Thorne A et al (1998) Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia 41:1343–1354PubMedCrossRef
11.
Zurück zum Zitat Sjoholm K, Palming J, Olofsson LE et al (2005) A microarray search for genes predominantly expressed in human omental adipocytes: adipose tissue as a major production site of serum amyloid A. J Clin Endocrinol Metab 90:2233–2239PubMedCrossRef Sjoholm K, Palming J, Olofsson LE et al (2005) A microarray search for genes predominantly expressed in human omental adipocytes: adipose tissue as a major production site of serum amyloid A. J Clin Endocrinol Metab 90:2233–2239PubMedCrossRef
12.
Zurück zum Zitat Laviola L, Perrini S, Cignarelli A et al (2006) Insulin signaling in human visceral and subcutaneous adipose tissue in vivo. Diabetes 55:952–961PubMedCrossRef Laviola L, Perrini S, Cignarelli A et al (2006) Insulin signaling in human visceral and subcutaneous adipose tissue in vivo. Diabetes 55:952–961PubMedCrossRef
13.
Zurück zum Zitat Virtanen KA, Lonnroth P, Parkkola R et al (2002) Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab 87:3902–3910PubMedCrossRef Virtanen KA, Lonnroth P, Parkkola R et al (2002) Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab 87:3902–3910PubMedCrossRef
14.
Zurück zum Zitat Lundgren M, Buren J, Ruge T, Myrnas T, Eriksson JW (2004) Glucocorticoids down-regulate glucose uptake capacity and insulin-signaling proteins in omental but not subcutaneous human adipocytes. J Clin Endocrinol Metab 89:2989–2997PubMedCrossRef Lundgren M, Buren J, Ruge T, Myrnas T, Eriksson JW (2004) Glucocorticoids down-regulate glucose uptake capacity and insulin-signaling proteins in omental but not subcutaneous human adipocytes. J Clin Endocrinol Metab 89:2989–2997PubMedCrossRef
15.
Zurück zum Zitat Rodbell M (1964) Metabolism of isolated fat cells. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380PubMed Rodbell M (1964) Metabolism of isolated fat cells. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380PubMed
16.
Zurück zum Zitat Tchkonia T, Giorgadze N, Pirtskhalava T et al (2006) Fat depot-specific characteristics are retained in strains derived from single human preadipocytes. Diabetes 55:2571–2578PubMedCrossRef Tchkonia T, Giorgadze N, Pirtskhalava T et al (2006) Fat depot-specific characteristics are retained in strains derived from single human preadipocytes. Diabetes 55:2571–2578PubMedCrossRef
17.
Zurück zum Zitat Kramer DK, Al-Khalili L, Perrini S et al (2005) Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator-activated receptor delta. Diabetes 54:1157–1163PubMedCrossRef Kramer DK, Al-Khalili L, Perrini S et al (2005) Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator-activated receptor delta. Diabetes 54:1157–1163PubMedCrossRef
18.
Zurück zum Zitat Perrini S, Natalicchio A, Laviola L et al (2004) Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane. Diabetes 53:41–52PubMedCrossRef Perrini S, Natalicchio A, Laviola L et al (2004) Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane. Diabetes 53:41–52PubMedCrossRef
19.
Zurück zum Zitat Motoshima H, Wu X, Sinha MK et al (2000) Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clin Endocrinol Metab 87:5662–5667CrossRef Motoshima H, Wu X, Sinha MK et al (2000) Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clin Endocrinol Metab 87:5662–5667CrossRef
20.
Zurück zum Zitat Hausman GJ, Hausman DB (2006) Search for the preadipocyte progenitor cell. J Clin Invest 116:3103–3106PubMedCrossRef Hausman GJ, Hausman DB (2006) Search for the preadipocyte progenitor cell. J Clin Invest 116:3103–3106PubMedCrossRef
21.
Zurück zum Zitat Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307PubMed Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14:1293–1307PubMed
22.
Zurück zum Zitat Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809PubMed Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809PubMed
23.
Zurück zum Zitat Tang QQ, Zhang JW, Lane DM (2004) Sequential gene promoter interactions by C/EBPbeta, C/EBPalpha, and PPARgamma during adipogenesis. Biochem Biophys Res Commun 318:213–218PubMedCrossRef Tang QQ, Zhang JW, Lane DM (2004) Sequential gene promoter interactions by C/EBPbeta, C/EBPalpha, and PPARgamma during adipogenesis. Biochem Biophys Res Commun 318:213–218PubMedCrossRef
24.
Zurück zum Zitat Degawa-Yamauchi M, Moss KA, Bovenkerk JE et al (2005) Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor alpha. Obes Res 13:662–669PubMedCrossRef Degawa-Yamauchi M, Moss KA, Bovenkerk JE et al (2005) Regulation of adiponectin expression in human adipocytes: effects of adiposity, glucocorticoids, and tumor necrosis factor alpha. Obes Res 13:662–669PubMedCrossRef
25.
Zurück zum Zitat Qiao L, Maclean PS, Schaack J et al (2005) C/EBPalpha regulates human adiponectin gene transcription through an intronic enhancer. Diabetes 54:1744–1754PubMedCrossRef Qiao L, Maclean PS, Schaack J et al (2005) C/EBPalpha regulates human adiponectin gene transcription through an intronic enhancer. Diabetes 54:1744–1754PubMedCrossRef
26.
Zurück zum Zitat Quinkler M, Bujalska IJ, Tomlinson JW, Smith DM, Stewart PM (2006) Depot-specific prostaglandin synthesis in human adipose tissue: a novel possible mechanism of adipogenesis. Gene 380:137–143PubMedCrossRef Quinkler M, Bujalska IJ, Tomlinson JW, Smith DM, Stewart PM (2006) Depot-specific prostaglandin synthesis in human adipose tissue: a novel possible mechanism of adipogenesis. Gene 380:137–143PubMedCrossRef
27.
Zurück zum Zitat Bower JF, Davis JM, Hao E, Barakat HA (2006) Differences in transport of fatty acids and expression of fatty acid transporting proteins in adipose tissue of obese black and white women. Am J Physiol Endocrinol Metab 290:E87–E91PubMedCrossRef Bower JF, Davis JM, Hao E, Barakat HA (2006) Differences in transport of fatty acids and expression of fatty acid transporting proteins in adipose tissue of obese black and white women. Am J Physiol Endocrinol Metab 290:E87–E91PubMedCrossRef
28.
Zurück zum Zitat Montague CT, Prins JB, Sanders L et al (1998) Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47:1384–1391PubMedCrossRef Montague CT, Prins JB, Sanders L et al (1998) Depot-related gene expression in human subcutaneous and omental adipocytes. Diabetes 47:1384–1391PubMedCrossRef
29.
Zurück zum Zitat Marette A, Mauriege P, Marcotte B et al (1997) Regional variation in adipose tissue insulin action and GLUT4 glucose transporter expression in severely obese premenopausal women. Diabetologia 40:590–598PubMedCrossRef Marette A, Mauriege P, Marcotte B et al (1997) Regional variation in adipose tissue insulin action and GLUT4 glucose transporter expression in severely obese premenopausal women. Diabetologia 40:590–598PubMedCrossRef
30.
Zurück zum Zitat Weiland M, Schermann A, Schmidt WE et al (1990) Development of the hormone-sensitive glucose transport activity in differentiating 3T3 L1 murine fibroblasts. Role of the two transporter species and their subcellular localization. Biochem J 270:331–336PubMed Weiland M, Schermann A, Schmidt WE et al (1990) Development of the hormone-sensitive glucose transport activity in differentiating 3T3 L1 murine fibroblasts. Role of the two transporter species and their subcellular localization. Biochem J 270:331–336PubMed
31.
Zurück zum Zitat Scherer PE, Williams S, Fogliano M et al (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746–26749PubMedCrossRef Scherer PE, Williams S, Fogliano M et al (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746–26749PubMedCrossRef
32.
Zurück zum Zitat Bogan JS, Lodish HF (1999) Two compartments for insulin-stimulated exocytosis in 3T3-L1 adipocytes defined by endogenous ACRP30 and GLUT4. J Cell Biol 146:609–620PubMedCrossRef Bogan JS, Lodish HF (1999) Two compartments for insulin-stimulated exocytosis in 3T3-L1 adipocytes defined by endogenous ACRP30 and GLUT4. J Cell Biol 146:609–620PubMedCrossRef
33.
Zurück zum Zitat Qiao L, Shao J (2006) SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 281:39915–39924PubMedCrossRef Qiao L, Shao J (2006) SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. J Biol Chem 281:39915–39924PubMedCrossRef
34.
Zurück zum Zitat Qiang L, Wang H, Farmer SR (2007) Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol Cell Biol 27:4698–4707PubMedCrossRef Qiang L, Wang H, Farmer SR (2007) Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-L alpha. Mol Cell Biol 27:4698–4707PubMedCrossRef
Metadaten
Titel
Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells
verfasst von
S. Perrini
L. Laviola
A. Cignarelli
M. Melchiorre
F. De Stefano
C. Caccioppoli
A. Natalicchio
M. R. Orlando
G. Garruti
M. De Fazio
G. Catalano
V. Memeo
R. Giorgino
F. Giorgino
Publikationsdatum
01.01.2008
Verlag
Springer-Verlag
Erschienen in
Diabetologia / Ausgabe 1/2008
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-007-0841-7

Weitere Artikel der Ausgabe 1/2008

Diabetologia 1/2008 Zur Ausgabe

List of Referees

List of Referees

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.