Skip to main content
Erschienen in: Acta Diabetologica 4/2010

01.12.2010 | Original Article

Fatty acids inhibit insulin-mediated glucose transport associated with actin remodeling in rat L6 muscle cells

verfasst von: Hai-Lu Zhao, Li-Zhong Liu, Yi Sui, Stanley K. S. Ho, Shuk-Kuen Tam, Fernand M. M. Lai, Juliana C. N. Chan, Peter C. Y. Tong

Erschienen in: Acta Diabetologica | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

In skeletal muscle cells, insulin stimulates cytoskeleton actin remodeling to facilitate the translocation of glucose transporter GLUT4 to plasma membrane. Defect of insulin-induced GLUT4 translocation and actin remodeling may cause insulin resistance. Free fatty acids cause insulin resistance in skeletal muscle. The aim of this study was to investigate the effects of fatty acids on glucose transport and actin remodeling. Differentiated L6 muscle cells expressing c-myc epitope-tagged GLUT4 were treated with palmitic acid, linoleic acid and oleic acid. Surface GLUT4 and 2-deoxyglucose uptake were measured in parallel with the morphological imaging of actin remodeling and GLUT4 immunoreactivity with fluorescence, confocal and transmission electron microscopy. Differentiated L6 cells showed concentration responses of insulin-induced actin remodeling and glucose uptake. The ultrastructure of insulin-induced actin remodeling was cell projections clustered with actin and GLUT4. Acute and chronic treatment with the 3 fatty acids had no effect on insulin-induced actin remodeling and GLUT4 immunoreactivity. However, insulin-mediated glucose uptake significantly decreased by palmitic acid (25, 50, 75, 100 μmol/L), oleic acid (180, 300 μmol/L) and linoleic acid (120, 180, 300 μmol/L). Oleic acid (120, 300 μmol/L) and linoleic acid (300 μmol/L), but not palmitic acid, significantly decreased insulin-mediated GLUT4 translocation. These data suggest that fatty acids inhibit insulin-induced glucose transport associated with actin remodeling in L6 muscle cells.
Literatur
1.
2.
Zurück zum Zitat Cheatham B, Kahn CR (1995) Insulin action and the insulin signaling network. Endocr Rev 16:117–142PubMed Cheatham B, Kahn CR (1995) Insulin action and the insulin signaling network. Endocr Rev 16:117–142PubMed
3.
Zurück zum Zitat Pessin JE, Saltiel AR (2000) Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106:165–169CrossRefPubMed Pessin JE, Saltiel AR (2000) Signaling pathways in insulin action: molecular targets of insulin resistance. J Clin Invest 106:165–169CrossRefPubMed
4.
Zurück zum Zitat Konrad D, Bilan PJ, Nawaz Z, Sweeney G, Niu W, Liu Z, Antonescu CN, Rudich A, Klip A (2002) Need for GLUT4 activation to reach maximum effect of insulin-mediated glucose uptake in brown adipocytes isolated from GLUT4myc-expressing mice. Diabetes 51:2719–2726CrossRefPubMed Konrad D, Bilan PJ, Nawaz Z, Sweeney G, Niu W, Liu Z, Antonescu CN, Rudich A, Klip A (2002) Need for GLUT4 activation to reach maximum effect of insulin-mediated glucose uptake in brown adipocytes isolated from GLUT4myc-expressing mice. Diabetes 51:2719–2726CrossRefPubMed
5.
Zurück zum Zitat Sweeney G, Garg RR, Ceddia RB, Li D, Ishiki M, Somwar R, Foster LJ, Neilsen PO, Prestwich GD, Rudich A, Klip A (2004) Intracellular delivery of phosphatidylinositol (3,4,5)-trisphosphate causes incorporation of glucose transporter 4 into the plasma membrane of muscle and fat cells without increasing glucose uptake. J Biol Chem 279:32233–32242CrossRefPubMed Sweeney G, Garg RR, Ceddia RB, Li D, Ishiki M, Somwar R, Foster LJ, Neilsen PO, Prestwich GD, Rudich A, Klip A (2004) Intracellular delivery of phosphatidylinositol (3,4,5)-trisphosphate causes incorporation of glucose transporter 4 into the plasma membrane of muscle and fat cells without increasing glucose uptake. J Biol Chem 279:32233–32242CrossRefPubMed
6.
Zurück zum Zitat Furtado LM, Somwar R, Sweeney G, Niu W, Klip A (2002) Activation of the glucose transporter GLUT4 by insulin. Biochem Cell Biol 80:569–578CrossRefPubMed Furtado LM, Somwar R, Sweeney G, Niu W, Klip A (2002) Activation of the glucose transporter GLUT4 by insulin. Biochem Cell Biol 80:569–578CrossRefPubMed
7.
Zurück zum Zitat Lemieux K, Konrad D, Klip A, Marette A (2003) The AMP-activated protein kinase activator AICAR does not induce GLUT4 translocation to transverse tubules but stimulates glucose uptake and p38 mitogen-activated protein kinases alpha and beta in skeletal muscle. FASEB J 17:1658–1665CrossRefPubMed Lemieux K, Konrad D, Klip A, Marette A (2003) The AMP-activated protein kinase activator AICAR does not induce GLUT4 translocation to transverse tubules but stimulates glucose uptake and p38 mitogen-activated protein kinases alpha and beta in skeletal muscle. FASEB J 17:1658–1665CrossRefPubMed
8.
Zurück zum Zitat Niu W, Huang C, Nawaz Z, Levy M, Somwar R, Li D, Bilan PJ, Klip A (2003) Maturation of the regulation of GLUT4 activity by p38 MAPK during L6 cell myogenesis. J Biol Chem 278:17953–17962CrossRefPubMed Niu W, Huang C, Nawaz Z, Levy M, Somwar R, Li D, Bilan PJ, Klip A (2003) Maturation of the regulation of GLUT4 activity by p38 MAPK during L6 cell myogenesis. J Biol Chem 278:17953–17962CrossRefPubMed
9.
Zurück zum Zitat Somwar R, Koterski S, Sweeney G, Sciotti R, Djuric S, Berg C, Trevillyan J, Scherer PE, Rondinone CM, Klip A (2002) A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3–L1 adipocytes without affecting GLUT4 translocation. J Biol Chem 277:50386–50395CrossRefPubMed Somwar R, Koterski S, Sweeney G, Sciotti R, Djuric S, Berg C, Trevillyan J, Scherer PE, Rondinone CM, Klip A (2002) A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3–L1 adipocytes without affecting GLUT4 translocation. J Biol Chem 277:50386–50395CrossRefPubMed
10.
Zurück zum Zitat Rudich A, Klip A (2003) Push/pull mechanisms of GLUT4 traffic in muscle cells. Acta Physiol Scand 178:297–308CrossRefPubMed Rudich A, Klip A (2003) Push/pull mechanisms of GLUT4 traffic in muscle cells. Acta Physiol Scand 178:297–308CrossRefPubMed
11.
Zurück zum Zitat Tsakiridis T, Tong P, Matthews B, Tsiani E, Bilan PJ, Klip A, Downey GP (1999) Role of the actin cytoskeleton in insulin action. Microsc Res Tech 47:79–92CrossRefPubMed Tsakiridis T, Tong P, Matthews B, Tsiani E, Bilan PJ, Klip A, Downey GP (1999) Role of the actin cytoskeleton in insulin action. Microsc Res Tech 47:79–92CrossRefPubMed
12.
Zurück zum Zitat Khayat ZA, Tong P, Yaworsky K, Bloch RJ, Klip A (2000) Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J Cell Sci 113:279–290PubMed Khayat ZA, Tong P, Yaworsky K, Bloch RJ, Klip A (2000) Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J Cell Sci 113:279–290PubMed
13.
Zurück zum Zitat Patel N, Rudich A, Khayat ZA, Garg R, Klip A (2003) Intracellular segregation of phosphatidylinositol-3,4,5-trisphosphate by insulin-dependent actin remodeling in L6 skeletal muscle cells. Mol Cell Biol 23:4611–4626CrossRefPubMed Patel N, Rudich A, Khayat ZA, Garg R, Klip A (2003) Intracellular segregation of phosphatidylinositol-3,4,5-trisphosphate by insulin-dependent actin remodeling in L6 skeletal muscle cells. Mol Cell Biol 23:4611–4626CrossRefPubMed
14.
Zurück zum Zitat Tong P, Khayat ZA, Huang C, Patel N, Ueyama A, Klip A (2001) Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. J Clin Invest 108:371–381PubMed Tong P, Khayat ZA, Huang C, Patel N, Ueyama A, Klip A (2001) Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. J Clin Invest 108:371–381PubMed
15.
Zurück zum Zitat Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97:2859–2865CrossRefPubMed Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97:2859–2865CrossRefPubMed
16.
Zurück zum Zitat Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, DeFronzo RA (1989) Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 84:205–213CrossRefPubMed Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E, DeFronzo RA (1989) Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 84:205–213CrossRefPubMed
17.
Zurück zum Zitat Kelley DE, Mokan M, Simoneau JA, Mandarino LJ (1993) Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest 92:91–98CrossRefPubMed Kelley DE, Mokan M, Simoneau JA, Mandarino LJ (1993) Interaction between glucose and free fatty acid metabolism in human skeletal muscle. J Clin Invest 92:91–98CrossRefPubMed
18.
Zurück zum Zitat Ikeda T, Terasawa H, Ishimura M, Ochi H, Noguchi I, Fujiyama K, Hoshino T, Tanaka Y, Mashiba H (1994) Inhibitory effect of fatty acids on glucose and insulin uptake in the perfused rat hindquarter. Biochem Med Metab Biol 52:97–100CrossRefPubMed Ikeda T, Terasawa H, Ishimura M, Ochi H, Noguchi I, Fujiyama K, Hoshino T, Tanaka Y, Mashiba H (1994) Inhibitory effect of fatty acids on glucose and insulin uptake in the perfused rat hindquarter. Biochem Med Metab Biol 52:97–100CrossRefPubMed
19.
Zurück zum Zitat Clore JN, Stillman JS, Li J, O’Keefe SJ, Levy JR (2004) Differential effect of saturated and polyunsaturated fatty acids on hepatic glucose metabolism in humans. Am J Physiol Endocrinol Metab 287:E358–E365CrossRefPubMed Clore JN, Stillman JS, Li J, O’Keefe SJ, Levy JR (2004) Differential effect of saturated and polyunsaturated fatty acids on hepatic glucose metabolism in humans. Am J Physiol Endocrinol Metab 287:E358–E365CrossRefPubMed
20.
Zurück zum Zitat Gaster M, Rustan AC, Beck-Nielsen H (2005) Differential utilization of saturated palmitate and unsaturated oleate: evidence from cultured myotubes. Diabetes 54:648–656CrossRefPubMed Gaster M, Rustan AC, Beck-Nielsen H (2005) Differential utilization of saturated palmitate and unsaturated oleate: evidence from cultured myotubes. Diabetes 54:648–656CrossRefPubMed
21.
Zurück zum Zitat Manco M, Mingrone G, Greco AV, Capristo E, Gniuli D, De Gaetano A, Gasbarrini G (2000) Insulin resistance directly correlates with increased saturated fatty acids in skeletal muscle triglycerides. Metabolism 49:220–224CrossRefPubMed Manco M, Mingrone G, Greco AV, Capristo E, Gniuli D, De Gaetano A, Gasbarrini G (2000) Insulin resistance directly correlates with increased saturated fatty acids in skeletal muscle triglycerides. Metabolism 49:220–224CrossRefPubMed
22.
Zurück zum Zitat Vessby B, Tengblad S, Lithell H (1994) Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia 37:1044–1050CrossRefPubMed Vessby B, Tengblad S, Lithell H (1994) Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia 37:1044–1050CrossRefPubMed
23.
Zurück zum Zitat Straczkowski M, Kowalska I, Nikolajuk A, Dzienis-Straczkowska S, Kinalska I, Baranowski M, Zendzian-Piotrowska M, Brzezinska Z, Gorski J (2004) Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes 53:1215–1221CrossRefPubMed Straczkowski M, Kowalska I, Nikolajuk A, Dzienis-Straczkowska S, Kinalska I, Baranowski M, Zendzian-Piotrowska M, Brzezinska Z, Gorski J (2004) Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes 53:1215–1221CrossRefPubMed
24.
Zurück zum Zitat Wang Q, Khayat Z, Kishi K, Ebina Y, Klip A (1998) GLUT4 translocation by insulin in intact muscle cells: detection by a fast and quantitative assay. FEBS Lett 427:193–197CrossRefPubMed Wang Q, Khayat Z, Kishi K, Ebina Y, Klip A (1998) GLUT4 translocation by insulin in intact muscle cells: detection by a fast and quantitative assay. FEBS Lett 427:193–197CrossRefPubMed
25.
Zurück zum Zitat Klip A, Logan WJ, Li G (1982) Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites. Biochim Biophys Acta 687:265–280CrossRefPubMed Klip A, Logan WJ, Li G (1982) Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites. Biochim Biophys Acta 687:265–280CrossRefPubMed
26.
Zurück zum Zitat Ewart MA, Clarke M, Kane S, Chamberlain LH, Gould GW (2005) Evidence for a role of the exocyst in insulin-stimulated Glut4 trafficking in 3T3–L1 adipocytes. J Biol Chem 280:3812–3816CrossRefPubMed Ewart MA, Clarke M, Kane S, Chamberlain LH, Gould GW (2005) Evidence for a role of the exocyst in insulin-stimulated Glut4 trafficking in 3T3–L1 adipocytes. J Biol Chem 280:3812–3816CrossRefPubMed
27.
Zurück zum Zitat Hardy RW, Ladenson JH, Henriksen EJ, Holloszy JO, McDonald JM (1991) Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4). Biochem Biophys Res Commun 177:343–349CrossRefPubMed Hardy RW, Ladenson JH, Henriksen EJ, Holloszy JO, McDonald JM (1991) Palmitate stimulates glucose transport in rat adipocytes by a mechanism involving translocation of the insulin sensitive glucose transporter (GLUT4). Biochem Biophys Res Commun 177:343–349CrossRefPubMed
28.
Zurück zum Zitat Joost HG, Steinfelder HJ (1985) Insulin-like stimulation of glucose transport in isolated adipocytes by fatty acids. Biochem Biophys Res Commun 128:1358–1363CrossRefPubMed Joost HG, Steinfelder HJ (1985) Insulin-like stimulation of glucose transport in isolated adipocytes by fatty acids. Biochem Biophys Res Commun 128:1358–1363CrossRefPubMed
29.
Zurück zum Zitat Sinha S, Perdomo G, Brown NF, O’Doherty RM (2004) Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. J Biol Chem 279:41294–41301CrossRefPubMed Sinha S, Perdomo G, Brown NF, O’Doherty RM (2004) Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. J Biol Chem 279:41294–41301CrossRefPubMed
30.
Zurück zum Zitat Reynoso R, Salgado LM, Calderon V (2003) High levels of palmitic acid lead to insulin resistance due to changes in the level of phosphorylation of the insulin receptor and insulin receptor substrate-1. Mol Cell Biochem 246:155–162CrossRefPubMed Reynoso R, Salgado LM, Calderon V (2003) High levels of palmitic acid lead to insulin resistance due to changes in the level of phosphorylation of the insulin receptor and insulin receptor substrate-1. Mol Cell Biochem 246:155–162CrossRefPubMed
31.
Zurück zum Zitat Weigert C, Brodbeck K, Staiger H, Kausch C, Machicao F, Haring HU, Schleicher ED (2004) Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor-kappaB. J Biol Chem 279:23942–23952CrossRefPubMed Weigert C, Brodbeck K, Staiger H, Kausch C, Machicao F, Haring HU, Schleicher ED (2004) Palmitate, but not unsaturated fatty acids, induces the expression of interleukin-6 in human myotubes through proteasome-dependent activation of nuclear factor-kappaB. J Biol Chem 279:23942–23952CrossRefPubMed
32.
Zurück zum Zitat Varma V, Yao-Borengasser A, Rasouli N, Nolen GT, Phanavanh B, Starks T, Gurley C, Simpson P, McGehee RE Jr, Kern PA, Peterson CA (2009) Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action. Am J Physiol Endocrinol Metab 296:E1300–E1310CrossRefPubMed Varma V, Yao-Borengasser A, Rasouli N, Nolen GT, Phanavanh B, Starks T, Gurley C, Simpson P, McGehee RE Jr, Kern PA, Peterson CA (2009) Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages and fatty acids leads to impaired insulin action. Am J Physiol Endocrinol Metab 296:E1300–E1310CrossRefPubMed
33.
Zurück zum Zitat Schmitz-Peiffer C, Craig DL, Biden TJ (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274:24202–24210CrossRefPubMed Schmitz-Peiffer C, Craig DL, Biden TJ (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274:24202–24210CrossRefPubMed
34.
Zurück zum Zitat Smedman A, Vessby B (2001) Conjugated linoleic acid supplementation in humans–metabolic effects. Lipids 36:773–781CrossRefPubMed Smedman A, Vessby B (2001) Conjugated linoleic acid supplementation in humans–metabolic effects. Lipids 36:773–781CrossRefPubMed
35.
Zurück zum Zitat Petersen KF, Hendler R, Price T, Perseghin G, Rothman DL, Held N, Amatruda JM, Shulman GI (1998) 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes 47:381–386CrossRefPubMed Petersen KF, Hendler R, Price T, Perseghin G, Rothman DL, Held N, Amatruda JM, Shulman GI (1998) 13C/31P NMR studies on the mechanism of insulin resistance in obesity. Diabetes 47:381–386CrossRefPubMed
36.
Zurück zum Zitat Rothman DL, Shulman RG, Shulman GI (1992) 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 89:1069–1075CrossRefPubMed Rothman DL, Shulman RG, Shulman GI (1992) 31P nuclear magnetic resonance measurements of muscle glucose-6-phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 89:1069–1075CrossRefPubMed
37.
Zurück zum Zitat Rothman DL, Magnusson I, Cline G, Gerard D, Kahn CR, Shulman RG, Shulman GI (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 92:983–987CrossRefPubMed Rothman DL, Magnusson I, Cline G, Gerard D, Kahn CR, Shulman RG, Shulman GI (1995) Decreased muscle glucose transport/phosphorylation is an early defect in the pathogenesis of non-insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 92:983–987CrossRefPubMed
38.
Zurück zum Zitat Abdul-Ghani MA, Molina-Carrion M, Jani R, Jenkinson C, Defronzo RA (2008) Adipocytes in subjects with impaired fasting glucose and impaired glucose tolerance are resistant to the anti-lipolytic effect of insulin. Acta Diabetol 45:147–150CrossRefPubMed Abdul-Ghani MA, Molina-Carrion M, Jani R, Jenkinson C, Defronzo RA (2008) Adipocytes in subjects with impaired fasting glucose and impaired glucose tolerance are resistant to the anti-lipolytic effect of insulin. Acta Diabetol 45:147–150CrossRefPubMed
39.
Zurück zum Zitat Perez-Hernandez IH, Avendano-Flores YS, Mejia-Zepeda R (2009) Analysis of the membrane fluidity of erythrocyte ghosts in diabetic, spontaneously hypertensive rats. Acta Diabetol. doi:10.1007/s00592-009-0120-9 Perez-Hernandez IH, Avendano-Flores YS, Mejia-Zepeda R (2009) Analysis of the membrane fluidity of erythrocyte ghosts in diabetic, spontaneously hypertensive rats. Acta Diabetol. doi:10.​1007/​s00592-009-0120-9
40.
Zurück zum Zitat Storlien LH, Kraegen EW, Chisholm DJ, Ford GL, Bruce DG, Pascoe WS (1987) Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237:885–888CrossRefPubMed Storlien LH, Kraegen EW, Chisholm DJ, Ford GL, Bruce DG, Pascoe WS (1987) Fish oil prevents insulin resistance induced by high-fat feeding in rats. Science 237:885–888CrossRefPubMed
41.
Zurück zum Zitat Mueckler M (2001) Insulin resistance and the disruption of Glut4 trafficking in skeletal muscle. J Clin Invest 107:1211–1213CrossRefPubMed Mueckler M (2001) Insulin resistance and the disruption of Glut4 trafficking in skeletal muscle. J Clin Invest 107:1211–1213CrossRefPubMed
42.
Zurück zum Zitat Wilson CM, Mitsumoto Y, Maher F, Klip A (1995) Regulation of cell surface GLUT1, GLUT3, and GLUT4 by insulin and IGF-I in L6 myotubes. FEBS Lett 368:19–22CrossRefPubMed Wilson CM, Mitsumoto Y, Maher F, Klip A (1995) Regulation of cell surface GLUT1, GLUT3, and GLUT4 by insulin and IGF-I in L6 myotubes. FEBS Lett 368:19–22CrossRefPubMed
43.
Zurück zum Zitat Sumitani S, Ramlal T, Somwar R, Keller SR, Klip A (1997) Insulin regulation and selective segregation with glucose transporter-4 of the membrane aminopeptidase vp165 in rat skeletal muscle cells. Endocrinology 138:1029–1034CrossRefPubMed Sumitani S, Ramlal T, Somwar R, Keller SR, Klip A (1997) Insulin regulation and selective segregation with glucose transporter-4 of the membrane aminopeptidase vp165 in rat skeletal muscle cells. Endocrinology 138:1029–1034CrossRefPubMed
44.
Zurück zum Zitat Somwar R, Niu W, Kim DY, Sweeney G, Randhawa VK, Huang C, Ramlal T, Klip A (2001) Differential effects of phosphatidylinositol 3-kinase inhibition on intracellular signals regulating GLUT4 translocation and glucose transport. J Biol Chem 276:46079–46087CrossRefPubMed Somwar R, Niu W, Kim DY, Sweeney G, Randhawa VK, Huang C, Ramlal T, Klip A (2001) Differential effects of phosphatidylinositol 3-kinase inhibition on intracellular signals regulating GLUT4 translocation and glucose transport. J Biol Chem 276:46079–46087CrossRefPubMed
45.
Zurück zum Zitat Somwar R, Kim DY, Sweeney G, Huang C, Niu W, Lador C, Ramlal T, Klip A (2001) GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem J 359:639–649CrossRefPubMed Somwar R, Kim DY, Sweeney G, Huang C, Niu W, Lador C, Ramlal T, Klip A (2001) GLUT4 translocation precedes the stimulation of glucose uptake by insulin in muscle cells: potential activation of GLUT4 via p38 mitogen-activated protein kinase. Biochem J 359:639–649CrossRefPubMed
46.
Zurück zum Zitat Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, Onishi Y, Ono H, Funaki M, Inukai K, Fukushima Y, Kikuchi M, Oka Y, Asano T (2001) MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. J Biol Chem 276:19800–19806CrossRefPubMed Fujishiro M, Gotoh Y, Katagiri H, Sakoda H, Ogihara T, Anai M, Onishi Y, Ono H, Funaki M, Inukai K, Fukushima Y, Kikuchi M, Oka Y, Asano T (2001) MKK6/3 and p38 MAPK pathway activation is not necessary for insulin-induced glucose uptake but regulates glucose transporter expression. J Biol Chem 276:19800–19806CrossRefPubMed
47.
Zurück zum Zitat Ho RC, Alcazar O, Fujii N, Hirshman MF, Goodyear LJ (2004) p38gamma MAPK regulation of glucose transporter expression and glucose uptake in L6 myotubes and mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 286:R342–R349PubMed Ho RC, Alcazar O, Fujii N, Hirshman MF, Goodyear LJ (2004) p38gamma MAPK regulation of glucose transporter expression and glucose uptake in L6 myotubes and mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 286:R342–R349PubMed
48.
Zurück zum Zitat Sweeney G, Somwar R, Ramlal T, Volchuk A, Ueyama A, Klip A (1999) An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3–L1 adipocytes and L6 myotubes. J Biol Chem 274:10071–10078CrossRefPubMed Sweeney G, Somwar R, Ramlal T, Volchuk A, Ueyama A, Klip A (1999) An inhibitor of p38 mitogen-activated protein kinase prevents insulin-stimulated glucose transport but not glucose transporter translocation in 3T3–L1 adipocytes and L6 myotubes. J Biol Chem 274:10071–10078CrossRefPubMed
Metadaten
Titel
Fatty acids inhibit insulin-mediated glucose transport associated with actin remodeling in rat L6 muscle cells
verfasst von
Hai-Lu Zhao
Li-Zhong Liu
Yi Sui
Stanley K. S. Ho
Shuk-Kuen Tam
Fernand M. M. Lai
Juliana C. N. Chan
Peter C. Y. Tong
Publikationsdatum
01.12.2010
Verlag
Springer Milan
Erschienen in
Acta Diabetologica / Ausgabe 4/2010
Print ISSN: 0940-5429
Elektronische ISSN: 1432-5233
DOI
https://doi.org/10.1007/s00592-010-0225-1

Weitere Artikel der Ausgabe 4/2010

Acta Diabetologica 4/2010 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.