Skip to main content
main-content

13.06.2016 | Original Article | Ausgabe 11/2016

International Journal of Computer Assisted Radiology and Surgery 11/2016

Feasibility of differential geometry-based features in detection of anatomical feature points on patient surfaces in range image-guided radiation therapy

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 11/2016
Autoren:
Mazen Soufi, Hidetaka Arimura, Katsumasa Nakamura, Fauzia P. Lestari, Freddy Haryanto, Taka-aki Hirose, Yoshiyuki Umedu, Yoshiyuki Shioyama, Fukai Toyofuku

Abstract

Purpose

To investigate the feasibility of differential geometry features in the detection of anatomical feature points on a patient surface in infrared-ray-based range images in image-guided radiation therapy.

Methods

The key technology was to reconstruct the patient surface in the range image, i.e., point distribution with three-dimensional coordinates, and characterize the geometrical shape at every point based on curvature features. The region of interest on the range image was extracted by using a template matching technique, and the range image was processed for reducing temporal and spatial noise. Next, a mathematical smooth surface of the patient was reconstructed from the range image by using a non-uniform rational B-splines model. The feature points were detected based on curvature features computed on the reconstructed surface. The framework was tested on range images acquired by a time-of-flight (TOF) camera and a Kinect sensor for two surface (texture) types of head phantoms A and B that had different anatomical geometries. The detection accuracy was evaluated by measuring the residual error, i.e., the mean of minimum Euclidean distances (MMED) between reference (ground truth) and detected feature points on convex and concave regions.

Results

The MMEDs obtained using convex feature points for range images of the translated and rotated phantom A were \(1.79 \pm 0.53\) and \(1.97\pm 0.21\,\hbox {mm}\), respectively, using the TOF camera. For the phantom B, the MMEDs of the convex and concave feature points were \(0.26\pm 0.09\) and \(0.52\pm 0.12\) mm, respectively, using the Kinect sensor. There was a statistically significant difference in the decreased MMED for convex feature points compared with concave feature points \((P<0.001)\).

Conclusions

The proposed framework has demonstrated the feasibility of differential geometry features for the detection of anatomical feature points on a patient surface in range image-guided radiation therapy.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der Fachzeitschriften, inklusive eines Print-Abos.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 11/2016

International Journal of Computer Assisted Radiology and Surgery 11/2016Zur Ausgabe
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

  2. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.