Skip to main content

02.10.2018 | Original Article | Ausgabe 3/2019

European Journal of Nuclear Medicine and Molecular Imaging 3/2019

Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma

European Journal of Nuclear Medicine and Molecular Imaging > Ausgabe 3/2019
Michael Lundemann, Per Munck af Rosenschöld, Aida Muhic, Vibeke A. Larsen, Hans S. Poulsen, Svend-Aage Engelholm, Flemming L. Andersen, Andreas Kjær, Henrik B. W. Larsson, Ian Law, Adam E. Hansen
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00259-018-4180-3) contains supplementary material, which is available to authorized users.



Recurrence in glioblastoma patients often occur close to the original tumour and indicates that the current treatment is inadequate for local tumour control. In this study, we explored the feasibility of using multi-modality imaging at the time of radiotherapy planning. Specifically, we aimed to identify parameters from pre-treatment PET and MRI with potential to predict tumour recurrence.

Materials and methods

Sixteen patients were prospectively recruited and treated according to established guidelines. Multi-parametric imaging with 18F-FET PET/CT and 18F-FDG PET/MR including diffusion and dynamic contrast enhanced perfusion MRI were performed before radiotherapy. Correlations between imaging parameters were calculated. Imaging was related to the voxel-wise outcome at the time of tumour recurrence. Within the radiotherapy target, median differences of imaging parameters in recurring and non-recurring voxels were calculated for contrast-enhancing lesion (CEL), non-enhancing lesion (NEL), and normal appearing grey and white matter. Logistic regression models were created to predict the patient-specific probability of recurrence. The most important parameters were identified using standardized model coefficients.


Significant median differences between recurring and non-recurring voxels were observed for FDG, FET, fractional anisotropy, mean diffusivity, mean transit time, extra-vascular, extra-cellular blood volume and permeability derived from scans prior to chemo-radiotherapy. Tissue-specific patterns of voxel-wise correlations were observed. The most pronounced correlations were observed for 18F-FDG- and 18F-FET-uptake in CEL and NEL. Voxel-wise modelling of recurrence probability resulted in area under the receiver operating characteristic curve of 0.77 from scans prior to therapy. Overall, FET proved to be the most important parameter for recurrence prediction.


Multi-parametric imaging before radiotherapy is feasible and significant differences in imaging parameters between recurring and non-recurring voxels were observed. Combining parameters in a logistic regression model enabled patient-specific maps of recurrence probability, where 18F-FET proved to be most important. This strategy could enable risk-adapted radiotherapy planning.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

e.Med Interdisziplinär

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag als Mediziner

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf

Weitere Produktempfehlungen anzeigen
Nur für berechtigte Nutzer zugänglich
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2019

European Journal of Nuclear Medicine and Molecular Imaging 3/2019 Zur Ausgabe
  1. Sie können e.Med Radiologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.