Skip to main content
Erschienen in:

08.11.2021 | Scientific Article

Feasibility study of hallux valgus measurement with a deep convolutional neural network based on landmark detection

verfasst von: Tong Li, Yuzhao Wang, Yang Qu, Rongpeng Dong, Mingyang Kang, Jianwu Zhao

Erschienen in: Skeletal Radiology | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Objective

To develop a deep learning algorithm based on automatic detection of landmarks that can be used to automatically calculate forefoot imaging parameters from radiographs and test its performance.

Materials and methods

A total of 1023 weight-bearing dorsoplantar (DP) radiographs were included. A total of 776 radiographs were used for training and verification of the model, and 247 radiographs were used for testing the performance of the model. The radiologists manually marked 18 landmarks on each image. By training our model to automatically label these landmarks, 4 imaging parameters commonly used for the diagnosis of hallux valgus could be measured, including the first–second intermetatarsal angle (IMA), hallux valgus angle (HVA), hallux interphalangeal angle (HIA), and distal metatarsal articular angle (DMAA). The reference standard was determined by the radiologists’ measurements. The percentage of correct key points (PCK), intragroup correlation coefficient (ICC), Pearson correlation coefficient (r), root mean square error (RMSE), and mean absolute error (MAE) between the predicted value of the model and the reference standard were calculated. The Bland–Altman plot shows the mean difference and 95% LoA.

Results

The PCK was 84–99% at the 3-mm threshold. The correlation between the observed and predicted values of the four angles was high (ICC: 0.89–0.96, r: 0.81–0.97, RMSE: 3.76–6.77, MAE: 3.22–5.52). However, there was a systematic error between the model predicted value and the reference standard (the mean difference ranged from − 3.00 to − 5.08°, and the standard deviation ranged from 2.25 to 4.47°).

Conclusion

Our model can accurately identify landmarks, but there is a certain amount of error in the angle measurement, which needs further improvement.
Literatur
15.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[J]. Springer International Publishing; 2015. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation[J]. Springer International Publishing; 2015.
16.
Zurück zum Zitat Xiao B , Wu H , Wei Y . Simple baselines for human pose estimation and tracking[C]// ECCV. arXiv, 2018. Xiao B , Wu H , Wei Y . Simple baselines for human pose estimation and tracking[C]// ECCV. arXiv, 2018.
26.
Zurück zum Zitat Wang CW, Huang CT, Hsieh MC, Li CH, Chang SW, Li WC, Vandaele R, Marée R, Jodogne S, Geurts P, Chen C, Zheng G, Chu C, Mirzaalian H, Hamarneh G, Vrtovec T, Ibragimov B. Evaluation and comparison of anatomical landmark detection methods for cephalometric X-ray images: a grand challenge. IEEE Trans Med Imaging. 2015;34(9):1890–900. https://doi.org/10.1109/TMI.2015.2412951.CrossRefPubMed Wang CW, Huang CT, Hsieh MC, Li CH, Chang SW, Li WC, Vandaele R, Marée R, Jodogne S, Geurts P, Chen C, Zheng G, Chu C, Mirzaalian H, Hamarneh G, Vrtovec T, Ibragimov B. Evaluation and comparison of anatomical landmark detection methods for cephalometric X-ray images: a grand challenge. IEEE Trans Med Imaging. 2015;34(9):1890–900. https://​doi.​org/​10.​1109/​TMI.​2015.​2412951.CrossRefPubMed
32.
Zurück zum Zitat Cassar-Pullicino VN. Measurements in musculoskeletal radiology. Springer Verlag Ny; 2017. Cassar-Pullicino VN. Measurements in musculoskeletal radiology. Springer Verlag Ny; 2017.
33.
Zurück zum Zitat Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks[J]. IEEE, 2017. Dai J, Qi H, Xiong Y, et al. Deformable convolutional networks[J]. IEEE, 2017.
34.
Zurück zum Zitat Rectified linear units improve restricted Boltzmann machines Vinod Nair[C]// International Conference on International Conference on Machine Learning. Omnipress, 2010. Rectified linear units improve restricted Boltzmann machines Vinod Nair[C]// International Conference on International Conference on Machine Learning. Omnipress, 2010.
35.
Zurück zum Zitat Payer C, Tern D, Bischof H, et al. Integrating spatial configuration into heatmap regression based CNNs for landmark localization[J]. Med Image Anal. 2019. Payer C, Tern D, Bischof H, et al. Integrating spatial configuration into heatmap regression based CNNs for landmark localization[J]. Med Image Anal. 2019.
38.
Zurück zum Zitat Dong Y, Zhang S, Yan Z, Tan C, Metaxas D. . . Automated anatomical landmark detection on distal femur surface using convolutional neural network. 2015 IEEE International Symposium on Biomedical Imaging. IEEE. 2015. Dong Y, Zhang S, Yan Z, Tan C, Metaxas D. . . Automated anatomical landmark detection on distal femur surface using convolutional neural network. 2015 IEEE International Symposium on Biomedical Imaging. IEEE. 2015.
39.
Zurück zum Zitat Liu W, Wang Y, Jiang T, et al. Landmarks detection with anatomical constraints for total hip arthroplasty preoperative measurements[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2020: 670-679 Liu W, Wang Y, Jiang T, et al. Landmarks detection with anatomical constraints for total hip arthroplasty preoperative measurements[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2020: 670-679
Metadaten
Titel
Feasibility study of hallux valgus measurement with a deep convolutional neural network based on landmark detection
verfasst von
Tong Li
Yuzhao Wang
Yang Qu
Rongpeng Dong
Mingyang Kang
Jianwu Zhao
Publikationsdatum
08.11.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Skeletal Radiology / Ausgabe 6/2022
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-021-03939-w

Neu im Fachgebiet Radiologie

Ringen um den richtigen Umgang mit Zufallsbefunden

Wenn 2026 in Deutschland das Lungenkrebsscreening mittels Low-Dose-Computertomografie (LDCT) eingeführt wird, wird es auch viele Zufallsbefunde ans Licht bringen. Das birgt Chancen und Risiken.

Bald 5% der Krebserkrankungen durch CT verursacht

Die jährlich rund 93 Millionen CTs in den USA könnten künftig zu über 100.000 zusätzlichen Krebserkrankungen führen, geht aus einer Modellrechnung hervor. Damit würde eine von 20 Krebserkrankungen auf die ionisierende Strahlung bei CT-Untersuchungen zurückgehen.

Röntgen-Thorax oder LDCT fürs Lungenscreening nach HNSCC?

Personen, die an einem Plattenepithelkarzinom im Kopf-Hals-Bereich erkrankt sind, haben ein erhöhtes Risiko für Metastasen oder zweite Primärmalignome der Lunge. Eine Studie hat untersucht, wie die radiologische Überwachung aussehen sollte.

Statine: Was der G-BA-Beschluss für Praxen bedeutet

Nach dem G-BA-Beschluss zur erweiterten Verordnungsfähigkeit von Lipidsenkern rechnet die DEGAM mit 200 bis 300 neuen Dauerpatienten pro Praxis. Im Interview erläutert Präsidiumsmitglied Erika Baum, wie Hausärztinnen und Hausärzte am besten vorgehen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.