Skip to main content
main-content

03.07.2019

Feature Enhancement in Medical Ultrasound Videos Using Contrast-Limited Adaptive Histogram Equalization

Zeitschrift:
Journal of Digital Imaging
Autoren:
Prerna Singh, Ramakrishnan Mukundan, Rex De Ryke
Wichtige Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Speckle noise reduction algorithms are extensively used in the field of ultrasound image analysis with the aim of improving image quality and diagnostic accuracy. However, significant speckle filtering induces blurring, and this requires the enhancement of features and fine details. We propose a novel framework for both multiplicative noise suppression and robust contrast enhancement and demonstrate its effectiveness using a wide range of clinical ultrasound scans. Our approach to noise suppression uses a novel algorithm based on a convolutional neural network that is first trained on synthetically modeled ultrasound images and then applied on real ultrasound videos. The feature improvement stage uses an improved contrast-limited adaptive histogram equalization (CLAHE) method for enhancing texture features, contrast, resolvable details, and image structures to which the human visual system is sensitive in ultrasound video frames. The proposed CLAHE algorithm also considers an automatic system for evaluating the grid size using entropy, and three different target distribution functions (uniform, Rayleigh, and exponential), and interpolation techniques (B-spline, cubic, and Lanczos-3). An extensive comparative study has been performed to find the most suitable distribution and interpolation techniques and also the optimal clip limit for ultrasound video feature enhancement after speckle suppression. Subjective assessments by four radiologists and experimental validation using three quality metrics clearly indicate that the proposed framework generates superior performance compared with other well-established methods. The processing pipeline reduces speckle effectively while preserving essential information and enhancing the overall visual quality and therefore could find immediate applications in real-time ultrasound video segmentation and classification algorithms.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel
  1. Sie können e.Med Radiologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise