Skip to main content
Erschienen in:

Open Access 02.07.2024 | Correspondence

Federated learning: a step in the right direction to improve data equity

verfasst von: Michel E. van Genderen, Davy van de Sande, Maurizio Cecconi, Christian Jung

Erschienen in: Intensive Care Medicine | Ausgabe 8/2024

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise
This comment refers to the article available online at https://​doi.​org/​10.​1007/​s00134-024-07408-5.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
We would like to thank Sauer and colleagues for their insightful comments [1] on our recent article in Intensive Care Medicine, in which we proposed a federated infrastructure for intensive care unit (ICU) data across Europe [2]. We agree that artificial intelligence (AI) could perpetuate biases in clinical medicine, but we believe federated learning (FL) plays an important role in fostering responsible and equitable AI.
FL allows real-time analysis of diverse, sensitive clinical data from multiple ICUs, crucial in critical decision-making and broader healthcare scenarios like pandemics. The decentralized nature of FL preserves privacy and enables up-to-date use of dynamic AI models based on various data sources. Institutions can contribute their unique expertise and data while retaining control over it. Establishing diverse health datasets from multiple ICUs is crucial for responsible AI. Currently, 31% (152 out of 494) of ICU AI models are trained on large publicly available datasets, such as the MIMIC dataset, which may need to be more adequately represented in different subpopulations [3]. For example, less than 10% (18,719 out of 189,415) of the patients registered in the two largest ICU databases globally are African-American, with the majority being white male patients [4]. FL can enhance patient representation across Europe and beyond, fostering more diverse and inclusive health datasets. This cross-border data and model-sharing framework standardizes data sharing and access and serves as a fundamental data infrastructure for practical AI implementation within ICUs, enabling the comparability of clinical ICU data.
While FL promotes inclusive health datasets, it needs to fully address the complex issue of social patterning in data generation. Effective FL requires robust data governance, comprehensive data management policies, and consensus on adopting a standard data model. However, the crux of enhancing the fairness and safety of AI systems in healthcare lies in first establishing standards that promote informed decision-making. For example, the lack of ethnicity and socioeconomic data collection in most ICUs outside the United States of America complicates understanding dataset composition and detecting potential biases in AI.
Initiatives like STANDING Together are, therefore, crucial in advocating for the collection and representation of diverse demographic data, fostering inclusivity and diversity in health datasets [5]. Uniform and consistent collection of protected personal characteristics in global patient health records is crucial. FL offers a unique opportunity to address this issue globally by integrating ethical and legal data standards into the federated data infrastructure and bringing together diverse datasets worldwide while preserving privacy.
Maintaining transparency at all stages of model development and deployment is essential to build an ecosystem that uses FL to foster responsible AI. This includes setting data standards for representing diverse demographic data, creating diverse datasets from multiple institutions, and transparently documenting the specifics of the AI model before clinical deployment [6].
In conclusion, while FL can facilitate inclusive global data collection and AI integration, addressing deep-rooted biases in medical AI requires an in-depth, multifaceted strategy.

Declarations

Conflict of interest

The authors declare that they have no conflicts of interest.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
download
DOWNLOAD
print
DRUCKEN

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Anästhesiologie

Kombi-Abonnement

Mit e.Med Anästhesiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes AINS, den Premium-Inhalten der AINS-Fachzeitschriften, inklusive einer gedruckten AINS-Zeitschrift Ihrer Wahl.

Literatur
3.
Zurück zum Zitat van de Sande D, van Genderen ME, Huiskens J, Gommers D, van Bommel J (2021) Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Med 47:750–760CrossRefPubMedPubMedCentral van de Sande D, van Genderen ME, Huiskens J, Gommers D, van Bommel J (2021) Moving from bytes to bedside: a systematic review on the use of artificial intelligence in the intensive care unit. Intensive Care Med 47:750–760CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Sauer CM, Dam TA, Celi LA, Faltys M, de la Hoz MAA, Adhikari L, Ziesemer KA, Girbes A, Thoral PJ, Elbers P (2022) Systematic review and comparison of publicly available ICU data sets-a decision guide for clinicians and data scientists. Crit Care Med 50:E581–E588CrossRefPubMedPubMedCentral Sauer CM, Dam TA, Celi LA, Faltys M, de la Hoz MAA, Adhikari L, Ziesemer KA, Girbes A, Thoral PJ, Elbers P (2022) Systematic review and comparison of publicly available ICU data sets-a decision guide for clinicians and data scientists. Crit Care Med 50:E581–E588CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Ganapathi S, Palmer J, Alderman JE, Calvert M, Espinoza C, Gath J, Ghassemi M, Heller K, Mckay F, Karthikesalingam A, Kuku S, Mackintosh M, Manohar S, Mateen BA, Matin R, McCradden M, Oakden-Rayner L, Ordish J, Pearson R, Pfohl SR, Rostamzadeh N, Sapey E, Sebire N, Sounderajah V, Summers C, Treanor D, Denniston AK, Liu XX (2022) Tackling bias in AI health datasets through the STANDING together initiative. Nat Med 28:2232–2233CrossRefPubMed Ganapathi S, Palmer J, Alderman JE, Calvert M, Espinoza C, Gath J, Ghassemi M, Heller K, Mckay F, Karthikesalingam A, Kuku S, Mackintosh M, Manohar S, Mateen BA, Matin R, McCradden M, Oakden-Rayner L, Ordish J, Pearson R, Pfohl SR, Rostamzadeh N, Sapey E, Sebire N, Sounderajah V, Summers C, Treanor D, Denniston AK, Liu XX (2022) Tackling bias in AI health datasets through the STANDING together initiative. Nat Med 28:2232–2233CrossRefPubMed
6.
Zurück zum Zitat van Genderen ME, van de Sande D, Hooft L, Reis AA, Cornet AD, Oosterhoff JHF, van der Ster BJP, Huiskens J, Townsend R, van Bommel J, Gommers D, van den Hoven J (2024) Charting a new course in healthcare: early-stage AI algorithm registration to enhance trust and transparency. NPJ Digit Med 7:119CrossRefPubMedPubMedCentral van Genderen ME, van de Sande D, Hooft L, Reis AA, Cornet AD, Oosterhoff JHF, van der Ster BJP, Huiskens J, Townsend R, van Bommel J, Gommers D, van den Hoven J (2024) Charting a new course in healthcare: early-stage AI algorithm registration to enhance trust and transparency. NPJ Digit Med 7:119CrossRefPubMedPubMedCentral
Metadaten
Titel
Federated learning: a step in the right direction to improve data equity
verfasst von
Michel E. van Genderen
Davy van de Sande
Maurizio Cecconi
Christian Jung
Publikationsdatum
02.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Intensive Care Medicine / Ausgabe 8/2024
Print ISSN: 0342-4642
Elektronische ISSN: 1432-1238
DOI
https://doi.org/10.1007/s00134-024-07525-1

Neu im Fachgebiet AINS

Extrakorporale Reanimation: Wechsel des EKG-Musters verschlechtert Prognose

Patientinnen und Patienten im Herzstillstand mit schockbarem Rhythmus, deren EKG-Muster sich später ändert, haben schlechtere Chancen. Eine Studiengruppe hat die Bedeutung eines solchen Rhythmuswechsels mit Blick auf die extrakorporale Reanimation genauer untersucht.

Weniger Bargeld, weniger Erstickungsnotfälle?

Dadurch, dass immer seltener mit Bargeld gezahlt wird, könnte die Rate an Erstickungsnotfällen bei Kindern zurückgehen. Dieser Hypothese ist ein britisches Forschungsteam in Klinikdaten aus den letzten zweieinhalb Jahrzehnten nachgegangen.

Leben retten dank Erste-Hilfe-App

Bei einem Herzstillstand zählt jede Minute bis eine Reanimation begonnen wird. Notfallmediziner Prof. Dr. med. Michael Müller erklärt im Interview, wie medizinisch geschulte Ersthelfende mittels App alarmiert werden können – und warum digitale Lösungen die Notfallversorgung revolutionieren könnten.

Rückenmarkstimulation lindert diabetische Neuropathie

Mit einer perkutanen Rückenmarkstimulation gehen nicht nur die Schmerzen bei chronischer diabetischer Neuropathie erheblich zurück, auch die sensorischen, autonomen und sexuellen Funktionen verbessern sich. Darauf weisen erste Ergebnisse einer Pilotstudie.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.