Skip to main content

06.12.2024 | Review Article

Ferroptosis in Cardiovascular Diseases and Ferroptosis-Related Intervention Approaches

verfasst von: Xianpeng Zhou, Hao Wang, Biao Yan, Xinwen Nie, Qingjie Chen, Xiaosong Yang, Min Lei, Xiying Guo, Changhan Ouyang, Zhanhong Ren

Erschienen in: Cardiovascular Drugs and Therapy

Einloggen, um Zugang zu erhalten

Abstract

Objective

Cardiovascular diseases (CVDs) are major public health problems that threaten the lives and health of individuals. The article has reviewed recent progresses about ferroptosis and ferroptosis-related intervention approaches for the treatment of CVDs and provided more references and strategies for targeting ferroptosis to prevent and treat CVDs.

Methods

A comprehensive review was conducted using the literature researches.

Results and discussion

Many ferroptosis-targeted compounds and ferroptosis-related genes may be prospective targets for treating CVDs and our review provides a solid foundation for further studies about the detailed pathological mechanisms of CVDs.

Conclusion

There are challenges and limitations about the translation of ferroptosis-targeted potential therapies from experimental research to clinical practice. It warrants further exploration to pursure safer and more effective ferroptosis-targeted thereapeutic approaches for CVDs.

Graphical Abstract

Literatur
1.
Zurück zum Zitat Mensah GA, Fuster V, Roth GA. A heart-healthy and stroke-free world: using data to inform global action. J Am Coll Cardiol. 2023;82(25):2343–9.PubMedCrossRef Mensah GA, Fuster V, Roth GA. A heart-healthy and stroke-free world: using data to inform global action. J Am Coll Cardiol. 2023;82(25):2343–9.PubMedCrossRef
2.
Zurück zum Zitat Li Z, et al. Global, regional, and national death, and disability-adjusted life-years (DALYs) for cardiovascular disease in 2017 and trends and risk analysis from 1990 to 2017 using the Global Burden of Disease Study and Implications for Prevention. Front Public Health. 2021;9:559751.PubMedPubMedCentralCrossRef Li Z, et al. Global, regional, and national death, and disability-adjusted life-years (DALYs) for cardiovascular disease in 2017 and trends and risk analysis from 1990 to 2017 using the Global Burden of Disease Study and Implications for Prevention. Front Public Health. 2021;9:559751.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Adhikary D, et al. A systematic review of major cardiovascular risk factors: a growing global health concern. Cureus. 2022;14(10):e30119.PubMedPubMedCentral Adhikary D, et al. A systematic review of major cardiovascular risk factors: a growing global health concern. Cureus. 2022;14(10):e30119.PubMedPubMedCentral
4.
Zurück zum Zitat Arnett DK, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–646.PubMedPubMedCentral Arnett DK, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140(11):e596–646.PubMedPubMedCentral
5.
Zurück zum Zitat Mozaffarian D, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38-360.PubMed Mozaffarian D, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38-360.PubMed
6.
7.
Zurück zum Zitat Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ Res. 2017;120(11):1812–24.PubMedCrossRef Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ Res. 2017;120(11):1812–24.PubMedCrossRef
8.
Zurück zum Zitat Al-Masri A. Apoptosis and long non-coding RNAs: focus on their roles in heart diseases. Pathol Res Pract. 2023;251:154–889.CrossRef Al-Masri A. Apoptosis and long non-coding RNAs: focus on their roles in heart diseases. Pathol Res Pract. 2023;251:154–889.CrossRef
9.
Zurück zum Zitat Li P, et al. Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease. Chin Med J (Engl). 2021;134(22):2647–55.PubMedCrossRef Li P, et al. Molecular mechanism and therapeutic targeting of necrosis, apoptosis, pyroptosis, and autophagy in cardiovascular disease. Chin Med J (Engl). 2021;134(22):2647–55.PubMedCrossRef
10.
Zurück zum Zitat Zhaolin Z, et al. Role of pyroptosis in cardiovascular disease. Cell Prolif. 2019;52(2):e12563.PubMedCrossRef Zhaolin Z, et al. Role of pyroptosis in cardiovascular disease. Cell Prolif. 2019;52(2):e12563.PubMedCrossRef
11.
Zurück zum Zitat Galluzzi L, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.PubMedPubMedCentralCrossRef Galluzzi L, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.PubMedPubMedCentralCrossRef
12.
14.
Zurück zum Zitat Zhou Y, et al. Insight into crosstalk between ferroptosis and necroptosis: novel therapeutics in ischemic stroke. Oxid Med Cell Longev. 2021;2021:9991001.PubMedPubMedCentralCrossRef Zhou Y, et al. Insight into crosstalk between ferroptosis and necroptosis: novel therapeutics in ischemic stroke. Oxid Med Cell Longev. 2021;2021:9991001.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Tang J, et al. p53-mediated autophagic regulation: a prospective strategy for cancer therapy. Cancer Lett. 2015;363(2):101–7.PubMedCrossRef Tang J, et al. p53-mediated autophagic regulation: a prospective strategy for cancer therapy. Cancer Lett. 2015;363(2):101–7.PubMedCrossRef
17.
Zurück zum Zitat Tomita Y, et al. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem. 2006;281(13):8600–6.PubMedCrossRef Tomita Y, et al. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem. 2006;281(13):8600–6.PubMedCrossRef
18.
Zurück zum Zitat Wang H, et al. BRCC36 deubiquitinates HMGCR to regulate the interplay between ferroptosis and pyroptosis. Adv Sci (Weinh). 2024;11(11):e2304263.PubMedCrossRef Wang H, et al. BRCC36 deubiquitinates HMGCR to regulate the interplay between ferroptosis and pyroptosis. Adv Sci (Weinh). 2024;11(11):e2304263.PubMedCrossRef
23.
Zurück zum Zitat Heine KB, Parry HA, Hood WR. How does density of the inner mitochondrial membrane influence mitochondrial performance? Am J Physiol Regul Integr Comp Physiol. 2023;324(2):R242–8.PubMedCrossRef Heine KB, Parry HA, Hood WR. How does density of the inner mitochondrial membrane influence mitochondrial performance? Am J Physiol Regul Integr Comp Physiol. 2023;324(2):R242–8.PubMedCrossRef
25.
Zurück zum Zitat Mazur M, Kmita H, Wojtkowska M. The diversity of the mitochondrial outer membrane protein import channels: emerging targets for modulation. Molecules. 2021;26(13):4087.PubMedPubMedCentralCrossRef Mazur M, Kmita H, Wojtkowska M. The diversity of the mitochondrial outer membrane protein import channels: emerging targets for modulation. Molecules. 2021;26(13):4087.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100.PubMedCrossRef Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100.PubMedCrossRef
27.
28.
Zurück zum Zitat Ahola S, Langer T. Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol. 2024;34(2):150–60.PubMedCrossRef Ahola S, Langer T. Ferroptosis in mitochondrial cardiomyopathy. Trends Cell Biol. 2024;34(2):150–60.PubMedCrossRef
29.
Zurück zum Zitat Cheng R, et al. Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology. 2022;88:88–101.PubMedCrossRef Cheng R, et al. Mitochondrial iron metabolism and neurodegenerative diseases. Neurotoxicology. 2022;88:88–101.PubMedCrossRef
30.
Zurück zum Zitat Zheng J, Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab. 2020;32(6):920–37.PubMedCrossRef Zheng J, Conrad M. The metabolic underpinnings of ferroptosis. Cell Metab. 2020;32(6):920–37.PubMedCrossRef
31.
Zurück zum Zitat Ren H, et al. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: novel mechanisms and therapeutic targets. Biomed Pharmacother. 2024;174:116545.PubMedCrossRef Ren H, et al. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: novel mechanisms and therapeutic targets. Biomed Pharmacother. 2024;174:116545.PubMedCrossRef
32.
Zurück zum Zitat Zhang Y, et al. The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother. 2022;145:112423.PubMedCrossRef Zhang Y, et al. The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother. 2022;145:112423.PubMedCrossRef
33.
Zurück zum Zitat Martin-Sanchez D, et al. Ferroptosis and kidney disease. Nefrologia (Engl Ed). 2020;40(4):384–94.PubMedCrossRef Martin-Sanchez D, et al. Ferroptosis and kidney disease. Nefrologia (Engl Ed). 2020;40(4):384–94.PubMedCrossRef
35.
Zurück zum Zitat Yao MY, et al. Role of ferroptosis in neurological diseases. Neurosci Lett. 2021;747: 135614.PubMedCrossRef Yao MY, et al. Role of ferroptosis in neurological diseases. Neurosci Lett. 2021;747: 135614.PubMedCrossRef
36.
37.
Zurück zum Zitat Chen Z, et al. Targetting ferroptosis for blood cell-related diseases. J Drug Target. 2022;30(3):244–58.PubMedCrossRef Chen Z, et al. Targetting ferroptosis for blood cell-related diseases. J Drug Target. 2022;30(3):244–58.PubMedCrossRef
38.
Zurück zum Zitat Xie L, Fang B, Zhang C. The role of ferroptosis in metabolic diseases. Biochim Biophys Acta Mol Cell Res. 2023;1870(6):119480.PubMedCrossRef Xie L, Fang B, Zhang C. The role of ferroptosis in metabolic diseases. Biochim Biophys Acta Mol Cell Res. 2023;1870(6):119480.PubMedCrossRef
39.
Zurück zum Zitat Chen X, et al. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18(5):280–96.PubMedCrossRef Chen X, et al. Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol. 2021;18(5):280–96.PubMedCrossRef
40.
Zurück zum Zitat Sun Y, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108.PubMedCrossRef Sun Y, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020;127:110108.PubMedCrossRef
41.
Zurück zum Zitat Stroes ES, et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment. Aetiol Manag Eur Heart J. 2015;36(17):1012–22.CrossRef Stroes ES, et al. Statin-associated muscle symptoms: impact on statin therapy-European Atherosclerosis Society Consensus Panel Statement on Assessment. Aetiol Manag Eur Heart J. 2015;36(17):1012–22.CrossRef
42.
Zurück zum Zitat Reiner Z, et al. ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European society of cardiology (ESC) and the European atherosclerosis society (EAS). Eur Heart J. 2011;32(14):1769–818.PubMedCrossRef Reiner Z, et al. ESC/EAS guidelines for the management of dyslipidaemias: the task force for the management of dyslipidaemias of the European society of cardiology (ESC) and the European atherosclerosis society (EAS). Eur Heart J. 2011;32(14):1769–818.PubMedCrossRef
43.
Zurück zum Zitat Martínez-Milla J, et al. Role of beta-blockers in cardiovascular disease in 2019. Rev Esp Cardiol (Engl Ed). 2019;72(10):844–52.PubMedCrossRef Martínez-Milla J, et al. Role of beta-blockers in cardiovascular disease in 2019. Rev Esp Cardiol (Engl Ed). 2019;72(10):844–52.PubMedCrossRef
44.
Zurück zum Zitat Messerli FH, et al. Angiotensin-converting enzyme inhibitors in hypertension: to use or not to use? J Am Coll Cardiol. 2018;71(13):1474–82.PubMedCrossRef Messerli FH, et al. Angiotensin-converting enzyme inhibitors in hypertension: to use or not to use? J Am Coll Cardiol. 2018;71(13):1474–82.PubMedCrossRef
45.
Zurück zum Zitat Sato K, et al. Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. Int J Mol Sci. 2018;19(5):1293.PubMedPubMedCentralCrossRef Sato K, et al. Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. Int J Mol Sci. 2018;19(5):1293.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Fernandes V, Santos MJ, Pérez A. Statin-related myotoxicity. Endocrinol Nutr. 2016;63(5):239–49.PubMedCrossRef Fernandes V, Santos MJ, Pérez A. Statin-related myotoxicity. Endocrinol Nutr. 2016;63(5):239–49.PubMedCrossRef
47.
Zurück zum Zitat Cojocariu SA, et al. Neuropsychiatric consequences of lipophilic beta-blockers. Medicina (Kaunas). 2021;57(2):155.PubMedCrossRef Cojocariu SA, et al. Neuropsychiatric consequences of lipophilic beta-blockers. Medicina (Kaunas). 2021;57(2):155.PubMedCrossRef
48.
Zurück zum Zitat Qin Y, et al. Ferritinophagy and ferroptosis in cardiovascular disease: mechanisms and potential applications. Biomed Pharmacother. 2021;141:111872.PubMedCrossRef Qin Y, et al. Ferritinophagy and ferroptosis in cardiovascular disease: mechanisms and potential applications. Biomed Pharmacother. 2021;141:111872.PubMedCrossRef
51.
52.
Zurück zum Zitat Li X, et al. Targeting ferroptosis: pathological mechanism and treatment of ischemia-reperfusion injury. Oxid Med Cell Longev. 2021;2021:1587922.PubMedPubMedCentralCrossRef Li X, et al. Targeting ferroptosis: pathological mechanism and treatment of ischemia-reperfusion injury. Oxid Med Cell Longev. 2021;2021:1587922.PubMedPubMedCentralCrossRef
53.
55.
Zurück zum Zitat Yin J, et al. Investigating the therapeutic effects of ferroptosis on myocardial ischemia-reperfusion injury using a dual-locking mitochondrial targeting strategy. Angew Chem Int Ed Engl. 2024;63(21):e202402537.PubMedCrossRef Yin J, et al. Investigating the therapeutic effects of ferroptosis on myocardial ischemia-reperfusion injury using a dual-locking mitochondrial targeting strategy. Angew Chem Int Ed Engl. 2024;63(21):e202402537.PubMedCrossRef
56.
Zurück zum Zitat Cui J, et al. Protosappanin A protects DOX-induced myocardial injury and cardiac dysfunction by targeting ACSL4/FTH1 axis-dependent ferroptosis. Adv Sci (Weinh). 2024;11(34):e2310227.PubMedCrossRef Cui J, et al. Protosappanin A protects DOX-induced myocardial injury and cardiac dysfunction by targeting ACSL4/FTH1 axis-dependent ferroptosis. Adv Sci (Weinh). 2024;11(34):e2310227.PubMedCrossRef
58.
Zurück zum Zitat Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta. 2015;1852(7):1347–59.PubMedCrossRef Silva B, Faustino P. An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta. 2015;1852(7):1347–59.PubMedCrossRef
61.
Zurück zum Zitat Wiktorowska-Owczarek A, Berezińska M, Nowak JZ. PUFAs: structures, metabolism and functions. Adv Clin Exp Med. 2015;24(6):931–41.PubMedCrossRef Wiktorowska-Owczarek A, Berezińska M, Nowak JZ. PUFAs: structures, metabolism and functions. Adv Clin Exp Med. 2015;24(6):931–41.PubMedCrossRef
62.
Zurück zum Zitat Doll S, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8.PubMedCrossRef Doll S, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13(1):91–8.PubMedCrossRef
63.
Zurück zum Zitat Dixon SJ, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 2015;10(7):1604–9.PubMedPubMedCentralCrossRef Dixon SJ, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 2015;10(7):1604–9.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Tu H, et al. Insights into the novel function of system Xc- in regulated cell death. Eur Rev Med Pharmacol Sci. 2021;25(3):1650–62.PubMed Tu H, et al. Insights into the novel function of system Xc- in regulated cell death. Eur Rev Med Pharmacol Sci. 2021;25(3):1650–62.PubMed
66.
Zurück zum Zitat Liu Y, et al. Hierarchical flower-like manganese oxide/polystyrene with enhanced oxidase-mimicking performance for sensitive colorimetric detection of glutathione. Mikrochim Acta. 2022;189(2):63.PubMedCrossRef Liu Y, et al. Hierarchical flower-like manganese oxide/polystyrene with enhanced oxidase-mimicking performance for sensitive colorimetric detection of glutathione. Mikrochim Acta. 2022;189(2):63.PubMedCrossRef
68.
Zurück zum Zitat Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 2019;19(18):e1800311.PubMedCrossRef Forcina GC, Dixon SJ. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics. 2019;19(18):e1800311.PubMedCrossRef
69.
Zurück zum Zitat Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–52.PubMedCrossRef Seibt TM, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 2019;133:144–52.PubMedCrossRef
70.
Zurück zum Zitat Proneth B, Conrad M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ. 2019;26(1):14–24.PubMedCrossRef Proneth B, Conrad M. Ferroptosis and necroinflammation, a yet poorly explored link. Cell Death Differ. 2019;26(1):14–24.PubMedCrossRef
71.
Zurück zum Zitat Yang J, Lee Y, Hwang CS. The ubiquitin-proteasome system links NADPH metabolism to ferroptosis. Trends Cell Biol. 2023;33(12):1088–103.PubMedCrossRef Yang J, Lee Y, Hwang CS. The ubiquitin-proteasome system links NADPH metabolism to ferroptosis. Trends Cell Biol. 2023;33(12):1088–103.PubMedCrossRef
74.
Zurück zum Zitat Koju N, Qin ZH, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin. 2022;43(8):1889–904.PubMedPubMedCentralCrossRef Koju N, Qin ZH, Sheng R. Reduced nicotinamide adenine dinucleotide phosphate in redox balance and diseases: a friend or foe? Acta Pharmacol Sin. 2022;43(8):1889–904.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Sun Y, Wu D, Hu Q. NADP+/NADPH in metabolism and its relation to cardiovascular pathologies. Curr Med Chem. 2024. Sun Y, Wu D, Hu Q. NADP+/NADPH in metabolism and its relation to cardiovascular pathologies. Curr Med Chem. 2024.
76.
77.
Zurück zum Zitat Tril VE, Burlutskaya AV, Polischuk LV. Metabolic cardiomyopathy in pediatrics. Rev Cardiovasc Med. 2019;20(2):73–80.PubMedCrossRef Tril VE, Burlutskaya AV, Polischuk LV. Metabolic cardiomyopathy in pediatrics. Rev Cardiovasc Med. 2019;20(2):73–80.PubMedCrossRef
78.
Zurück zum Zitat Li D, et al. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother. 2022;153:113279.PubMedCrossRef Li D, et al. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother. 2022;153:113279.PubMedCrossRef
79.
Zurück zum Zitat Hoes MF, Grote Beverborg N, Kijlstra JD, et al. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail. 2018;20(5):910–9. Hoes MF, Grote Beverborg N, Kijlstra JD, et al. Iron deficiency impairs contractility of human cardiomyocytes through decreased mitochondrial function. Eur J Heart Fail. 2018;20(5):910–9.
81.
Zurück zum Zitat Xie J, et al. The epidemiology of sepsis in Chinese ICUs: a national cross-sectional survey. Crit Care Med. 2020;48(3):e209–18.PubMedCrossRef Xie J, et al. The epidemiology of sepsis in Chinese ICUs: a national cross-sectional survey. Crit Care Med. 2020;48(3):e209–18.PubMedCrossRef
83.
Zurück zum Zitat Vallabhajosyula S, et al. Impact of right ventricular dysfunction on short-term and long-term mortality in sepsis: a meta-analysis of 1,373 patients. Chest. 2021;159(6):2254–63.PubMedPubMedCentralCrossRef Vallabhajosyula S, et al. Impact of right ventricular dysfunction on short-term and long-term mortality in sepsis: a meta-analysis of 1,373 patients. Chest. 2021;159(6):2254–63.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Li N, et al. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med. 2020;160:303–18.PubMedCrossRef Li N, et al. Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med. 2020;160:303–18.PubMedCrossRef
86.
Zurück zum Zitat Liu C, et al. Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation. Bioact Mater. 2023;24:313–21.PubMed Liu C, et al. Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation. Bioact Mater. 2023;24:313–21.PubMed
87.
Zurück zum Zitat Lin X, et al. Quercetin ameliorates ferroptosis of rat cardiomyocytes via activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate sepsis‑induced cardiomyopathy. Int J Mol Med. 2023;52(6):1-0. Lin X, et al. Quercetin ameliorates ferroptosis of rat cardiomyocytes via activation of the SIRT1/p53/SLC7A11 signaling pathway to alleviate sepsis‑induced cardiomyopathy. Int J Mol Med. 2023;52(6):1-0.
88.
Zurück zum Zitat Zhou YX, Zhang H, Peng C. Puerarin: a review of pharmacological effects. Phytother Res. 2014;28(7):961–75.PubMedCrossRef Zhou YX, Zhang H, Peng C. Puerarin: a review of pharmacological effects. Phytother Res. 2014;28(7):961–75.PubMedCrossRef
89.
Zurück zum Zitat Zhou B, et al. Puerarin protects against sepsis-induced myocardial injury through AMPK-mediated ferroptosis signaling. Aging (Albany NY). 2022;14(8):3617–32.PubMedCrossRef Zhou B, et al. Puerarin protects against sepsis-induced myocardial injury through AMPK-mediated ferroptosis signaling. Aging (Albany NY). 2022;14(8):3617–32.PubMedCrossRef
90.
Zurück zum Zitat Li DT, et al. Yiqifumai injection and its main ingredients attenuate lipopolysaccharide-induced cerebrovascular hyperpermeability through a multi-pathway mode. Microcirculation. 2019;26(7):e12553.PubMedCrossRef Li DT, et al. Yiqifumai injection and its main ingredients attenuate lipopolysaccharide-induced cerebrovascular hyperpermeability through a multi-pathway mode. Microcirculation. 2019;26(7):e12553.PubMedCrossRef
91.
Zurück zum Zitat Guo L, Li P, Wang Y, et al. YiQiFuMai injection ameliorated sepsis-induced cardiomyopathy by inhibition of ferroptosis via xCT/GPX4 axis. Shock. 2024;61(4):638–645. Guo L, Li P, Wang Y, et al. YiQiFuMai injection ameliorated sepsis-induced cardiomyopathy by inhibition of ferroptosis via xCT/GPX4 axis. Shock. 2024;61(4):638–645.
92.
Zurück zum Zitat Cao G, et al. H2S regulation of ferroptosis attenuates sepsis-induced cardiomyopathy. Mol Med Rep. 2022;26(5):1–2.CrossRef Cao G, et al. H2S regulation of ferroptosis attenuates sepsis-induced cardiomyopathy. Mol Med Rep. 2022;26(5):1–2.CrossRef
93.
Zurück zum Zitat Zeng Y, et al. Resveratrol attenuates sepsis-induced cardiomyopathy in rats through anti-ferroptosis via the Sirt1/Nrf2 pathway. J Invest Surg. 2023;36(1):2157521.PubMedCrossRef Zeng Y, et al. Resveratrol attenuates sepsis-induced cardiomyopathy in rats through anti-ferroptosis via the Sirt1/Nrf2 pathway. J Invest Surg. 2023;36(1):2157521.PubMedCrossRef
94.
Zurück zum Zitat Shan M, et al. Vitamin B6 alleviates lipopolysaccharide-induced myocardial injury by ferroptosis and apoptosis regulation. Front Pharmacol. 2021;12:766820.PubMedPubMedCentralCrossRef Shan M, et al. Vitamin B6 alleviates lipopolysaccharide-induced myocardial injury by ferroptosis and apoptosis regulation. Front Pharmacol. 2021;12:766820.PubMedPubMedCentralCrossRef
95.
96.
Zurück zum Zitat Xu Y, Bu G. Identification of two novel ferroptosis-associated targets in sepsis-induced cardiac injury: Hmox1 and Slc7a11. Front Cardiovasc Med. 2023;10:1185924.PubMedPubMedCentralCrossRef Xu Y, Bu G. Identification of two novel ferroptosis-associated targets in sepsis-induced cardiac injury: Hmox1 and Slc7a11. Front Cardiovasc Med. 2023;10:1185924.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Chen Y, et al. Beneficial impact of cardiac heavy metal scavenger metallothionein in sepsis-provoked cardiac anomalies dependent upon regulation of endoplasmic reticulum stress and ferroptosis but not autophagy. Life Sci. 2024;336:122291.PubMedCrossRef Chen Y, et al. Beneficial impact of cardiac heavy metal scavenger metallothionein in sepsis-provoked cardiac anomalies dependent upon regulation of endoplasmic reticulum stress and ferroptosis but not autophagy. Life Sci. 2024;336:122291.PubMedCrossRef
98.
Zurück zum Zitat Lin H, et al. LPS-aggravated ferroptosis via disrupting circadian rhythm by Bmal1/AKT/p53 in sepsis-induced myocardial injury. Inflammation. 2023;46(4):1133–43.PubMedCrossRef Lin H, et al. LPS-aggravated ferroptosis via disrupting circadian rhythm by Bmal1/AKT/p53 in sepsis-induced myocardial injury. Inflammation. 2023;46(4):1133–43.PubMedCrossRef
99.
Zurück zum Zitat Qin S, et al. ANXA1sp protects against sepsis-induced myocardial injury by inhibiting ferroptosis-induced cardiomyocyte death via SIRT3-mediated p53 deacetylation. Mediators Inflamm. 2023;2023:6638929.PubMedPubMedCentralCrossRef Qin S, et al. ANXA1sp protects against sepsis-induced myocardial injury by inhibiting ferroptosis-induced cardiomyocyte death via SIRT3-mediated p53 deacetylation. Mediators Inflamm. 2023;2023:6638929.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Chen Z, Cao Z, Gui F, et al. TMEM43 protects against sepsis-induced cardiac injury via inhibiting ferroptosis in mice. Cells. 2022;11(19):2992. Chen Z, Cao Z, Gui F, et al. TMEM43 protects against sepsis-induced cardiac injury via inhibiting ferroptosis in mice. Cells. 2022;11(19):2992.
101.
Zurück zum Zitat Qi Z, et al. microRNA-130b-3p attenuates septic cardiomyopathy by regulating the AMPK/mTOR signaling pathways and directly targeting ACSL4 against ferroptosis. Int J Biol Sci. 2023;19(13):4223–41.PubMedPubMedCentralCrossRef Qi Z, et al. microRNA-130b-3p attenuates septic cardiomyopathy by regulating the AMPK/mTOR signaling pathways and directly targeting ACSL4 against ferroptosis. Int J Biol Sci. 2023;19(13):4223–41.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Gergely S, et al. High throughput screening identifies a novel compound protecting cardiomyocytes from doxorubicin-induced damage. Oxid Med Cell Longev. 2015;2015:178513.PubMedPubMedCentralCrossRef Gergely S, et al. High throughput screening identifies a novel compound protecting cardiomyocytes from doxorubicin-induced damage. Oxid Med Cell Longev. 2015;2015:178513.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Al-Malky HS, Al Harthi SE, Osman AM. Major obstacles to doxorubicin therapy: cardiotoxicity and drug resistance. J Oncol Pharm Pract. 2020;26(2):434–44.PubMedCrossRef Al-Malky HS, Al Harthi SE, Osman AM. Major obstacles to doxorubicin therapy: cardiotoxicity and drug resistance. J Oncol Pharm Pract. 2020;26(2):434–44.PubMedCrossRef
104.
Zurück zum Zitat Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother. 2022;156:113903.PubMedCrossRef Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother. 2022;156:113903.PubMedCrossRef
105.
Zurück zum Zitat Tadokoro T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2020;5(9). Tadokoro T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2020;5(9).
106.
Zurück zum Zitat Tadokoro T, Ikeda M, Ide T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2023;8(6):e169756. Tadokoro T, Ikeda M, Ide T, et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight. 2023;8(6):e169756.
107.
Zurück zum Zitat Zhang Y, Liu S, Peng J, et al. Biomimetic nanozymes suppressed ferroptosis to ameliorate doxorubicin-induced cardiotoxicity via synergetic effect of antioxidant stress and GPX4 restoration. Nutrients. 2023;15(5):1090. Zhang Y, Liu S, Peng J, et al. Biomimetic nanozymes suppressed ferroptosis to ameliorate doxorubicin-induced cardiotoxicity via synergetic effect of antioxidant stress and GPX4 restoration. Nutrients. 2023;15(5):1090.
108.
Zurück zum Zitat Tadokoro T, et al. Ethoxyquin is a competent radical-trapping antioxidant for preventing ferroptosis in doxorubicin cardiotoxicity. J Cardiovasc Pharmacol. 2022;80(5):690–9.PubMedCrossRef Tadokoro T, et al. Ethoxyquin is a competent radical-trapping antioxidant for preventing ferroptosis in doxorubicin cardiotoxicity. J Cardiovasc Pharmacol. 2022;80(5):690–9.PubMedCrossRef
109.
Zurück zum Zitat Xu C, et al. Synthesis and in vivo evaluation of new steviol derivatives that protect against cardiomyopathy by inhibiting ferroptosis. Bioorg Chem. 2022;129:106142.PubMedCrossRef Xu C, et al. Synthesis and in vivo evaluation of new steviol derivatives that protect against cardiomyopathy by inhibiting ferroptosis. Bioorg Chem. 2022;129:106142.PubMedCrossRef
110.
Zurück zum Zitat Zhang H, et al. Protective effects of dexazoxane on rat ferroptosis in doxorubicin-induced cardiomyopathy through regulating HMGB1. Front Cardiovasc Med. 2021;8:685434.PubMedPubMedCentralCrossRef Zhang H, et al. Protective effects of dexazoxane on rat ferroptosis in doxorubicin-induced cardiomyopathy through regulating HMGB1. Front Cardiovasc Med. 2021;8:685434.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat You J, et al. Discovery of 2-vinyl-10H-phenothiazine derivatives as a class of ferroptosis inhibitors with minimal human Ether-a-go-go related gene (hERG) activity for the treatment of DOX-induced cardiomyopathy. Bioorg Med Chem Lett. 2022;74:128911.PubMedCrossRef You J, et al. Discovery of 2-vinyl-10H-phenothiazine derivatives as a class of ferroptosis inhibitors with minimal human Ether-a-go-go related gene (hERG) activity for the treatment of DOX-induced cardiomyopathy. Bioorg Med Chem Lett. 2022;74:128911.PubMedCrossRef
112.
Zurück zum Zitat Sun X, et al. Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression. Toxicol Appl Pharmacol. 2022;437:115902.PubMedCrossRef Sun X, et al. Melatonin alleviates doxorubicin-induced mitochondrial oxidative damage and ferroptosis in cardiomyocytes by regulating YAP expression. Toxicol Appl Pharmacol. 2022;437:115902.PubMedCrossRef
113.
Zurück zum Zitat Li D, et al. Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation. Front Pharmacol. 2021;12:808480.PubMedCrossRef Li D, et al. Fisetin attenuates doxorubicin-induced cardiomyopathy in vivo and in vitro by inhibiting ferroptosis through SIRT1/Nrf2 signaling pathway activation. Front Pharmacol. 2021;12:808480.PubMedCrossRef
114.
Zurück zum Zitat Yang L, et al. Angiotensin IV ameliorates doxorubicin-induced cardiotoxicity by increasing glutathione peroxidase 4 and alleviating ferroptosis. Toxicol Appl Pharmacol. 2023;479:116713.PubMedCrossRef Yang L, et al. Angiotensin IV ameliorates doxorubicin-induced cardiotoxicity by increasing glutathione peroxidase 4 and alleviating ferroptosis. Toxicol Appl Pharmacol. 2023;479:116713.PubMedCrossRef
115.
Zurück zum Zitat Liu X, et al. LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int Immunopharmacol. 2022;113(Pt A):109379.PubMedCrossRef Liu X, et al. LCZ696 protects against doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via AKT/SIRT3/SOD2 signaling pathway activation. Int Immunopharmacol. 2022;113(Pt A):109379.PubMedCrossRef
116.
Zurück zum Zitat Chen H, et al. Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway. Phytomedicine. 2022;99:153964.PubMedCrossRef Chen H, et al. Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway. Phytomedicine. 2022;99:153964.PubMedCrossRef
117.
Zurück zum Zitat Yu W, Chen C, Xu C, et al. Activation of p62-NRF2 axis protects against doxorubicin-induced ferroptosis in cardiomyocytes: a novel role and molecular mechanism of resveratrol. Am J Chin Med. 2022;50(8):2103–23. Yu W, Chen C, Xu C, et al. Activation of p62-NRF2 axis protects against doxorubicin-induced ferroptosis in cardiomyocytes: a novel role and molecular mechanism of resveratrol. Am J Chin Med. 2022;50(8):2103–23.
119.
Zurück zum Zitat Ta N, et al. Mitochondrial outer membrane protein FUNDC2 promotes ferroptosis and contributes to doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci U S A. 2022;119(36):e2117396119.PubMedPubMedCentralCrossRef Ta N, et al. Mitochondrial outer membrane protein FUNDC2 promotes ferroptosis and contributes to doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci U S A. 2022;119(36):e2117396119.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Wang W, et al. Cardiac sirtuin1 deficiency exacerbates ferroptosis in doxorubicin-induced cardiac injury through the Nrf2/Keap1 pathway. Chem Biol Interact. 2023;377:110469.PubMedCrossRef Wang W, et al. Cardiac sirtuin1 deficiency exacerbates ferroptosis in doxorubicin-induced cardiac injury through the Nrf2/Keap1 pathway. Chem Biol Interact. 2023;377:110469.PubMedCrossRef
121.
Zurück zum Zitat Zhuang S, et al. METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis. Cell Biol Toxicol. 2023;39(3):1015–35.PubMedCrossRef Zhuang S, et al. METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis. Cell Biol Toxicol. 2023;39(3):1015–35.PubMedCrossRef
122.
Zurück zum Zitat Wang Y, et al. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ. 2022;29(10):1982–95.PubMedPubMedCentralCrossRef Wang Y, et al. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ. 2022;29(10):1982–95.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Eneh C, Lekkala MR. Dexrazoxane. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2023. Eneh C, Lekkala MR. Dexrazoxane. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2023.
124.
Zurück zum Zitat Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–38. Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–38.
125.
Zurück zum Zitat Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21–8.PubMedCrossRef Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 2018;61(1):21–8.PubMedCrossRef
126.
Zurück zum Zitat Wilson AJ, et al. Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart. 2018;104(4):293–9.PubMedCrossRef Wilson AJ, et al. Reactive oxygen species signalling in the diabetic heart: emerging prospect for therapeutic targeting. Heart. 2018;104(4):293–9.PubMedCrossRef
127.
Zurück zum Zitat Zhao Y, et al. Ferroptosis: roles and molecular mechanisms in diabetic cardiomyopathy. Front Endocrinol (Lausanne). 2023;14:1140644.PubMedCrossRef Zhao Y, et al. Ferroptosis: roles and molecular mechanisms in diabetic cardiomyopathy. Front Endocrinol (Lausanne). 2023;14:1140644.PubMedCrossRef
128.
Zurück zum Zitat Wu S, et al. 6-Gingerol alleviates ferroptosis and inflammation of diabetic cardiomyopathy via the Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2022;2022:3027514.PubMedPubMedCentralCrossRef Wu S, et al. 6-Gingerol alleviates ferroptosis and inflammation of diabetic cardiomyopathy via the Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2022;2022:3027514.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Wei Z, et al. Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovasc Ther. 2022;2022:3159717.PubMedPubMedCentralCrossRef Wei Z, et al. Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovasc Ther. 2022;2022:3159717.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Wang X, et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 2022;12(2):708–22.PubMedCrossRef Wang X, et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B. 2022;12(2):708–22.PubMedCrossRef
131.
Zurück zum Zitat Li F, et al. Dexmedetomidine ameliorates diabetic cardiomyopathy by inhibiting ferroptosis through the Nrf2/GPX4 pathway. J Cardiothorac Surg. 2023;18(1):223.PubMedPubMedCentralCrossRef Li F, et al. Dexmedetomidine ameliorates diabetic cardiomyopathy by inhibiting ferroptosis through the Nrf2/GPX4 pathway. J Cardiothorac Surg. 2023;18(1):223.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Du S, et al. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Front Endocrinol (Lausanne). 2022;13:1011669.PubMedCrossRef Du S, et al. Canagliflozin mitigates ferroptosis and improves myocardial oxidative stress in mice with diabetic cardiomyopathy. Front Endocrinol (Lausanne). 2022;13:1011669.PubMedCrossRef
133.
Zurück zum Zitat Zhang J, et al. Astragaloside IV derived from Astragalus membranaceus: a research review on the pharmacological effects. Adv Pharmacol. 2020;87:89–112.PubMedCrossRef Zhang J, et al. Astragaloside IV derived from Astragalus membranaceus: a research review on the pharmacological effects. Adv Pharmacol. 2020;87:89–112.PubMedCrossRef
134.
Zurück zum Zitat Li X, et al. Astragaloside IV attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis. Phytother Res. 2023;37(7):3042–56.PubMedCrossRef Li X, et al. Astragaloside IV attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis. Phytother Res. 2023;37(7):3042–56.PubMedCrossRef
135.
Zurück zum Zitat Sun J, et al. Exogenous spermidine alleviates diabetic cardiomyopathy via suppressing reactive oxygen species, endoplasmic reticulum stress, and Pannexin-1-mediated ferroptosis. Biomol Biomed. 2023;23(5):825–37.PubMedPubMedCentral Sun J, et al. Exogenous spermidine alleviates diabetic cardiomyopathy via suppressing reactive oxygen species, endoplasmic reticulum stress, and Pannexin-1-mediated ferroptosis. Biomol Biomed. 2023;23(5):825–37.PubMedPubMedCentral
136.
Zurück zum Zitat Teekakirikul P, Zhu W, Huang HC, Fung E. Hypertrophic cardiomyopathy: an overview of genetics and management. Biomolecules. 2019;9(12):878. Teekakirikul P, Zhu W, Huang HC, Fung E. Hypertrophic cardiomyopathy: an overview of genetics and management. Biomolecules. 2019;9(12):878.
137.
Zurück zum Zitat Kitaoka H, Kubo T, Doi YL. Hypertrophic cardiomyopathy - a heterogeneous and lifelong disease in the real world. Circ J. 2020;84(8):1218–26.PubMedCrossRef Kitaoka H, Kubo T, Doi YL. Hypertrophic cardiomyopathy - a heterogeneous and lifelong disease in the real world. Circ J. 2020;84(8):1218–26.PubMedCrossRef
138.
Zurück zum Zitat Fang X, et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res. 2020;127(4):486–501.PubMedCrossRef Fang X, et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res. 2020;127(4):486–501.PubMedCrossRef
139.
Zurück zum Zitat Wang Z, et al. Exploring the communal pathogenesis, ferroptosis mechanism, and potential therapeutic targets of dilated cardiomyopathy and hypertrophic cardiomyopathy via a microarray data analysis. Front Cardiovasc Med. 2022;9:824756.PubMedPubMedCentralCrossRef Wang Z, et al. Exploring the communal pathogenesis, ferroptosis mechanism, and potential therapeutic targets of dilated cardiomyopathy and hypertrophic cardiomyopathy via a microarray data analysis. Front Cardiovasc Med. 2022;9:824756.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Turchi R, Faraonio R, Lettieri-Barbato D, Aquilano K. An overview of the ferroptosis hallmarks in Friedreich's Ataxia. Biomolecules. 2020;10(11):1489. Turchi R, Faraonio R, Lettieri-Barbato D, Aquilano K. An overview of the ferroptosis hallmarks in Friedreich's Ataxia. Biomolecules. 2020;10(11):1489.
141.
Zurück zum Zitat Pilotto F, Chellapandi DM, Puccio H. Omaveloxolone: a groundbreaking milestone as the first FDA-approved drug for Friedreich ataxia. Trends Mol Med. 2024. Pilotto F, Chellapandi DM, Puccio H. Omaveloxolone: a groundbreaking milestone as the first FDA-approved drug for Friedreich ataxia. Trends Mol Med. 2024.
142.
Zurück zum Zitat Cotticelli MG, et al. Ferroptosis as a novel therapeutic target for Friedreich’s ataxia. J Pharmacol Exp Ther. 2019;369(1):47–54.PubMedCrossRef Cotticelli MG, et al. Ferroptosis as a novel therapeutic target for Friedreich’s ataxia. J Pharmacol Exp Ther. 2019;369(1):47–54.PubMedCrossRef
143.
Zurück zum Zitat Heineke J, et al. Calcineurin protects the heart in a murine model of dilated cardiomyopathy. J Mol Cell Cardiol. 2010;48(6):1080–7.PubMedCrossRef Heineke J, et al. Calcineurin protects the heart in a murine model of dilated cardiomyopathy. J Mol Cell Cardiol. 2010;48(6):1080–7.PubMedCrossRef
144.
Zurück zum Zitat Orphanou N, Papatheodorou E, Anastasakis A. Dilated cardiomyopathy in the era of precision medicine: latest concepts and developments. Heart Fail Rev. 2022;27(4):1173–91.PubMedCrossRef Orphanou N, Papatheodorou E, Anastasakis A. Dilated cardiomyopathy in the era of precision medicine: latest concepts and developments. Heart Fail Rev. 2022;27(4):1173–91.PubMedCrossRef
145.
Zurück zum Zitat Yotti R, Seidman CE, Seidman JG. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu Rev Genomics Hum Genet. 2019;20:129–53.PubMedCrossRef Yotti R, Seidman CE, Seidman JG. Advances in the genetic basis and pathogenesis of sarcomere cardiomyopathies. Annu Rev Genomics Hum Genet. 2019;20:129–53.PubMedCrossRef
146.
Zurück zum Zitat Lu H, et al. Identification of novel targets for treatment of dilated cardiomyopathy based on the ferroptosis and immune heterogeneity. J Inflamm Res. 2023;16:2461–76.PubMedPubMedCentralCrossRef Lu H, et al. Identification of novel targets for treatment of dilated cardiomyopathy based on the ferroptosis and immune heterogeneity. J Inflamm Res. 2023;16:2461–76.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Roles of lipocalin 2 and adiponectin in iron overload cardiomyopathy. J Cell Physiol. 2018;233(7):5104–11.PubMedCrossRef Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Roles of lipocalin 2 and adiponectin in iron overload cardiomyopathy. J Cell Physiol. 2018;233(7):5104–11.PubMedCrossRef
149.
Zurück zum Zitat Mattera R, et al. Increased release of arachidonic acid and eicosanoids in iron-overloaded cardiomyocytes. Circulation. 2001;103(19):2395–401.PubMedCrossRef Mattera R, et al. Increased release of arachidonic acid and eicosanoids in iron-overloaded cardiomyocytes. Circulation. 2001;103(19):2395–401.PubMedCrossRef
150.
Zurück zum Zitat Liao Y, Cao P, Luo L. Identification of novel arachidonic acid 15-lipoxygenase inhibitors based on the bayesian classifier model and computer-aided high-throughput virtual screening. Pharmaceuticals (Basel). 2022;15(11):1440. Liao Y, Cao P, Luo L. Identification of novel arachidonic acid 15-lipoxygenase inhibitors based on the bayesian classifier model and computer-aided high-throughput virtual screening. Pharmaceuticals (Basel). 2022;15(11):1440.
151.
152.
Zurück zum Zitat Herrington W, et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016;118(4):535–46.PubMedCrossRef Herrington W, et al. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res. 2016;118(4):535–46.PubMedCrossRef
155.
Zurück zum Zitat Lin L, et al. Autophagy, pyroptosis, and ferroptosis: new regulatory mechanisms for atherosclerosis. Front Cell Dev Biol. 2021;9:809955.PubMedCrossRef Lin L, et al. Autophagy, pyroptosis, and ferroptosis: new regulatory mechanisms for atherosclerosis. Front Cell Dev Biol. 2021;9:809955.PubMedCrossRef
156.
Zurück zum Zitat Zhou Y, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic Biol Med. 2021;171:55–68.PubMedCrossRef Zhou Y, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic Biol Med. 2021;171:55–68.PubMedCrossRef
157.
Zurück zum Zitat Meng Z, et al. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci. 2021;284:119935.PubMedCrossRef Meng Z, et al. HMOX1 upregulation promotes ferroptosis in diabetic atherosclerosis. Life Sci. 2021;284:119935.PubMedCrossRef
158.
Zurück zum Zitat Bai T, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 2020;160:92–102.PubMedCrossRef Bai T, et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 2020;160:92–102.PubMedCrossRef
159.
Zurück zum Zitat Rong J, et al. Hydroxysafflor yellow A inhibits endothelial cell ferroptosis in diabetic atherosclerosis mice by regulating miR-429/SLC7A11. Pharm Biol. 2023;61(1):404–15.PubMedPubMedCentralCrossRef Rong J, et al. Hydroxysafflor yellow A inhibits endothelial cell ferroptosis in diabetic atherosclerosis mice by regulating miR-429/SLC7A11. Pharm Biol. 2023;61(1):404–15.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Wang X, et al. Icariin alleviates ferroptosis-related atherosclerosis by promoting autophagy in xo-LDL-induced vascular endothelial cell injury and atherosclerotic mice. Phytother Res. 2023;37(9):3951–63.PubMedCrossRef Wang X, et al. Icariin alleviates ferroptosis-related atherosclerosis by promoting autophagy in xo-LDL-induced vascular endothelial cell injury and atherosclerotic mice. Phytother Res. 2023;37(9):3951–63.PubMedCrossRef
161.
Zurück zum Zitat Hu G, Yuan Z, Wang J. Autophagy inhibition and ferroptosis activation during atherosclerosis: hypoxia-inducible factor 1α inhibitor PX-478 alleviates atherosclerosis by inducing autophagy and suppressing ferroptosis in macrophages. Biomed Pharmacother. 2023;161:114333.PubMedCrossRef Hu G, Yuan Z, Wang J. Autophagy inhibition and ferroptosis activation during atherosclerosis: hypoxia-inducible factor 1α inhibitor PX-478 alleviates atherosclerosis by inducing autophagy and suppressing ferroptosis in macrophages. Biomed Pharmacother. 2023;161:114333.PubMedCrossRef
162.
Zurück zum Zitat Zhang J, et al. Qing-Xin-Jie-Yu Granule inhibits ferroptosis and stabilizes atherosclerotic plaques by regulating the GPX4/xCT signaling pathway. J Ethnopharmacol. 2023;301:115852.PubMedCrossRef Zhang J, et al. Qing-Xin-Jie-Yu Granule inhibits ferroptosis and stabilizes atherosclerotic plaques by regulating the GPX4/xCT signaling pathway. J Ethnopharmacol. 2023;301:115852.PubMedCrossRef
163.
Zurück zum Zitat Wu X, et al. DiDang decoction improves mitochondrial function and lipid metabolism via the HIF-1 signaling pathway to treat atherosclerosis and hyperlipidemia. J Ethnopharmacol. 2023;308:116289.PubMedCrossRef Wu X, et al. DiDang decoction improves mitochondrial function and lipid metabolism via the HIF-1 signaling pathway to treat atherosclerosis and hyperlipidemia. J Ethnopharmacol. 2023;308:116289.PubMedCrossRef
164.
Zurück zum Zitat Xiang P, et al. Metabolite Neu5Ac triggers SLC3A2 degradation promoting vascular endothelial ferroptosis and aggravates atherosclerosis progression in ApoE(-/-)mice. Theranostics. 2023;13(14):4993–5016.PubMedPubMedCentralCrossRef Xiang P, et al. Metabolite Neu5Ac triggers SLC3A2 degradation promoting vascular endothelial ferroptosis and aggravates atherosclerosis progression in ApoE(-/-)mice. Theranostics. 2023;13(14):4993–5016.PubMedPubMedCentralCrossRef
165.
166.
Zurück zum Zitat Yang K, Song H, Yin D. PDSS2 inhibits the ferroptosis of vascular endothelial cells in atherosclerosis by activating Nrf2. J Cardiovasc Pharmacol. 2021;77(6):767–76.PubMedPubMedCentralCrossRef Yang K, Song H, Yin D. PDSS2 inhibits the ferroptosis of vascular endothelial cells in atherosclerosis by activating Nrf2. J Cardiovasc Pharmacol. 2021;77(6):767–76.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Gao F, et al. Regulation of endothelial ferroptosis by SESN1 in atherosclerosis and its related mechanism. Aging (Albany NY). 2023;15(11):5052–65.PubMed Gao F, et al. Regulation of endothelial ferroptosis by SESN1 in atherosclerosis and its related mechanism. Aging (Albany NY). 2023;15(11):5052–65.PubMed
168.
Zurück zum Zitat Li J, Zou C, Zhang Z, Xue F. N6-methyladenosine (m6A) reader YTHDF2 accelerates endothelial cells ferroptosis in cerebrovascular atherosclerosis. Mol Cell Biochem. 2024;479(7):1853–61. Li J, Zou C, Zhang Z, Xue F. N6-methyladenosine (m6A) reader YTHDF2 accelerates endothelial cells ferroptosis in cerebrovascular atherosclerosis. Mol Cell Biochem. 2024;479(7):1853–61.
169.
Zurück zum Zitat Lv Y, et al. Estrogen deficiency accelerates postmenopausal atherosclerosis by inducing endothelial cell ferroptosis through inhibiting NRF2/GPX4 pathway. Faseb j. 2023;37(6):e22992.PubMedCrossRef Lv Y, et al. Estrogen deficiency accelerates postmenopausal atherosclerosis by inducing endothelial cell ferroptosis through inhibiting NRF2/GPX4 pathway. Faseb j. 2023;37(6):e22992.PubMedCrossRef
170.
Zurück zum Zitat Liu Z, et al. MicroRNA-132 promotes atherosclerosis by inducing mitochondrial oxidative stressmediated ferroptosis. Nan Fang Yi Ke Da Xue Xue Bao. 2022;42(1):143–9.PubMed Liu Z, et al. MicroRNA-132 promotes atherosclerosis by inducing mitochondrial oxidative stressmediated ferroptosis. Nan Fang Yi Ke Da Xue Xue Bao. 2022;42(1):143–9.PubMed
171.
Zurück zum Zitat Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):e895–1032.PubMed Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022;145(18):e895–1032.PubMed
172.
Zurück zum Zitat McDonagh TA, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726.PubMedCrossRef McDonagh TA, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42(36):3599–726.PubMedCrossRef
173.
Zurück zum Zitat Savarese G, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272–87.PubMedCrossRef Savarese G, et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc Res. 2023;118(17):3272–87.PubMedCrossRef
174.
Zurück zum Zitat Moe GW, Marín-García J. Role of cell death in the progression of heart failure. Heart Fail Rev. 2016;21(2):157–67.PubMedCrossRef Moe GW, Marín-García J. Role of cell death in the progression of heart failure. Heart Fail Rev. 2016;21(2):157–67.PubMedCrossRef
175.
Zurück zum Zitat Zhang H, et al. Role of iron metabolism in heart failure: from iron deficiency to iron overload. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1925–37.PubMedCrossRef Zhang H, et al. Role of iron metabolism in heart failure: from iron deficiency to iron overload. Biochim Biophys Acta Mol Basis Dis. 2019;1865(7):1925–37.PubMedCrossRef
176.
Zurück zum Zitat Zhang W, et al. Resveratrol inhibits ferroptosis and decelerates heart failure progression via Sirt1/p53 pathway activation. J Cell Mol Med. 2023;27(20):3075–89.PubMedPubMedCentralCrossRef Zhang W, et al. Resveratrol inhibits ferroptosis and decelerates heart failure progression via Sirt1/p53 pathway activation. J Cell Mol Med. 2023;27(20):3075–89.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Zhang LL, Chen GH, Tang RJ, et al. Levosimendan reverses cardiac malfunction and cardiomyocyte ferroptosis during heart failure with preserved ejection fraction via connexin 43 signaling activation. Cardiovasc Drugs Ther. 2024;38(4):705–18. Zhang LL, Chen GH, Tang RJ, et al. Levosimendan reverses cardiac malfunction and cardiomyocyte ferroptosis during heart failure with preserved ejection fraction via connexin 43 signaling activation. Cardiovasc Drugs Ther. 2024;38(4):705–18.
178.
Zurück zum Zitat Liang Y, et al. A new mechanism of therapeutic effect of stachydrine on heart failure by inhibiting myocardial ferroptosis. Eur J Pharmacol. 2023;954:175881.PubMedCrossRef Liang Y, et al. A new mechanism of therapeutic effect of stachydrine on heart failure by inhibiting myocardial ferroptosis. Eur J Pharmacol. 2023;954:175881.PubMedCrossRef
179.
Zurück zum Zitat Liu B, et al. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun. 2018;497(1):233–40.PubMedCrossRef Liu B, et al. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun. 2018;497(1):233–40.PubMedCrossRef
180.
Zurück zum Zitat Ma S, et al. Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(8):945–62.PubMedPubMedCentralCrossRef Ma S, et al. Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction. Naunyn Schmiedebergs Arch Pharmacol. 2022;395(8):945–62.PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat Yin P, et al. HACE1 expression in heart failure patients might promote mitochondrial oxidative stress and ferroptosis by targeting NRF2. Aging (Albany NY). 2023;15(23):13888–900.PubMedCrossRef Yin P, et al. HACE1 expression in heart failure patients might promote mitochondrial oxidative stress and ferroptosis by targeting NRF2. Aging (Albany NY). 2023;15(23):13888–900.PubMedCrossRef
182.
Zurück zum Zitat Li S, et al. PGAM5 expression levels in heart failure and protection ROS-induced oxidative stress and ferroptosis by Keap1/Nrf2. Clin Exp Hypertens. 2023;45(1):2162537.PubMedCrossRef Li S, et al. PGAM5 expression levels in heart failure and protection ROS-induced oxidative stress and ferroptosis by Keap1/Nrf2. Clin Exp Hypertens. 2023;45(1):2162537.PubMedCrossRef
183.
Zurück zum Zitat Yagi M, Do Y, Hirai H, et al. Improving lysosomal ferroptosis with NMN administration protects against heart failure. Life Sci Alliance. 2023;6(12):e202302116. Yagi M, Do Y, Hirai H, et al. Improving lysosomal ferroptosis with NMN administration protects against heart failure. Life Sci Alliance. 2023;6(12):e202302116.
184.
Zurück zum Zitat Golforoush P, Yellon DM, Davidson SM. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol. 2020;115(6):73.PubMedPubMedCentralCrossRef Golforoush P, Yellon DM, Davidson SM. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol. 2020;115(6):73.PubMedPubMedCentralCrossRef
185.
186.
187.
Zurück zum Zitat Park TJ, et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death Dis. 2019;10(11):835.PubMedPubMedCentralCrossRef Park TJ, et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death Dis. 2019;10(11):835.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Liu K, Chen S, Lu R. Identification of important genes related to ferroptosis and hypoxia in acute myocardial infarction based on WGCNA. Bioengineered. 2021;12(1):7950–63.PubMedPubMedCentralCrossRef Liu K, Chen S, Lu R. Identification of important genes related to ferroptosis and hypoxia in acute myocardial infarction based on WGCNA. Bioengineered. 2021;12(1):7950–63.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Wu YT, et al. Ferrostatin-1 suppresses cardiomyocyte ferroptosis after myocardial infarction by activating Nrf2 signaling. J Pharm Pharmacol. 2023;75(11):1467–77.PubMedCrossRef Wu YT, et al. Ferrostatin-1 suppresses cardiomyocyte ferroptosis after myocardial infarction by activating Nrf2 signaling. J Pharm Pharmacol. 2023;75(11):1467–77.PubMedCrossRef
190.
Zurück zum Zitat Feng Y, et al. Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem Biophys Res Commun. 2019;520(3):606–11.PubMedPubMedCentralCrossRef Feng Y, et al. Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochem Biophys Res Commun. 2019;520(3):606–11.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Chen Y, et al. A novel mechanism of ferroptosis inhibition-enhanced atherosclerotic plaque stability: YAP1 suppresses vascular smooth muscle cell ferroptosis through GLS1. Faseb j. 2024;38(15):e23850.PubMedCrossRef Chen Y, et al. A novel mechanism of ferroptosis inhibition-enhanced atherosclerotic plaque stability: YAP1 suppresses vascular smooth muscle cell ferroptosis through GLS1. Faseb j. 2024;38(15):e23850.PubMedCrossRef
192.
Zurück zum Zitat Shen Y, et al. Protective effects of Salvianolic acid B on rat ferroptosis in myocardial infarction through upregulating the Nrf2 signaling pathway. Int Immunopharmacol. 2022;112:109257.PubMedCrossRef Shen Y, et al. Protective effects of Salvianolic acid B on rat ferroptosis in myocardial infarction through upregulating the Nrf2 signaling pathway. Int Immunopharmacol. 2022;112:109257.PubMedCrossRef
193.
Zurück zum Zitat Yang T, et al. AP39 inhibits ferroptosis by inhibiting mitochondrial autophagy through the PINK1/parkin pathway to improve myocardial fibrosis with myocardial infarction. Biomed Pharmacother. 2023;165:115195.PubMedCrossRef Yang T, et al. AP39 inhibits ferroptosis by inhibiting mitochondrial autophagy through the PINK1/parkin pathway to improve myocardial fibrosis with myocardial infarction. Biomed Pharmacother. 2023;165:115195.PubMedCrossRef
194.
Zurück zum Zitat Yu Q, et al. EGCG attenuated acute myocardial infarction by inhibiting ferroptosis via miR-450b-5p/ACSL4 axis. Phytomedicine. 2023;119:154999.PubMedCrossRef Yu Q, et al. EGCG attenuated acute myocardial infarction by inhibiting ferroptosis via miR-450b-5p/ACSL4 axis. Phytomedicine. 2023;119:154999.PubMedCrossRef
195.
Zurück zum Zitat Xu Y, et al. Fraxetin attenuates ferroptosis in myocardial infarction via AKT/Nrf2/HO-1 signaling. Am J Transl Res. 2021;13(9):10315–27.PubMedPubMedCentral Xu Y, et al. Fraxetin attenuates ferroptosis in myocardial infarction via AKT/Nrf2/HO-1 signaling. Am J Transl Res. 2021;13(9):10315–27.PubMedPubMedCentral
196.
Zurück zum Zitat Wang H, et al. Curdione inhibits ferroptosis in isoprenaline-induced myocardial infarction via regulating Keap1/Trx1/GPX4 signaling pathway. Phytother Res. 2023;37(11):5328–40.PubMedCrossRef Wang H, et al. Curdione inhibits ferroptosis in isoprenaline-induced myocardial infarction via regulating Keap1/Trx1/GPX4 signaling pathway. Phytother Res. 2023;37(11):5328–40.PubMedCrossRef
197.
Zurück zum Zitat Song Y, et al. Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol Toxicol. 2021;37(1):51–64.PubMedCrossRef Song Y, et al. Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol Toxicol. 2021;37(1):51–64.PubMedCrossRef
198.
Zurück zum Zitat Qian Y, et al. Sestrin2 levels in patients with anxiety and depression myocardial infarction was up-regulated and suppressed inflammation and ferroptosis by LKB1-mediated AMPK activation. Clin Exp Hypertens. 2023;45(1):2205049.PubMedCrossRef Qian Y, et al. Sestrin2 levels in patients with anxiety and depression myocardial infarction was up-regulated and suppressed inflammation and ferroptosis by LKB1-mediated AMPK activation. Clin Exp Hypertens. 2023;45(1):2205049.PubMedCrossRef
199.
Zurück zum Zitat Wang K, et al. Klotho improves cardiac fibrosis, inflammatory cytokines, ferroptosis, and oxidative stress in mice with myocardial infarction. J Physiol Biochem. 2023;79(2):341–53.PubMedCrossRef Wang K, et al. Klotho improves cardiac fibrosis, inflammatory cytokines, ferroptosis, and oxidative stress in mice with myocardial infarction. J Physiol Biochem. 2023;79(2):341–53.PubMedCrossRef
200.
Zurück zum Zitat Dai R, et al. LncRNA AC005332.7 inhibited ferroptosis to alleviate acute myocardial infarction through regulating miR-331–3p/CCND2 axis. Korean Circ J. 2023;53(3):151–67.PubMedPubMedCentralCrossRef Dai R, et al. LncRNA AC005332.7 inhibited ferroptosis to alleviate acute myocardial infarction through regulating miR-331–3p/CCND2 axis. Korean Circ J. 2023;53(3):151–67.PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Gao F, et al. Suppression of lncRNA Gm47283 attenuates myocardial infarction via miR-706/ Ptgs2/ferroptosis axis. Bioengineered. 2022;13(4):10786–802.PubMedPubMedCentralCrossRef Gao F, et al. Suppression of lncRNA Gm47283 attenuates myocardial infarction via miR-706/ Ptgs2/ferroptosis axis. Bioengineered. 2022;13(4):10786–802.PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat Jiang Y, et al. Adaptor protein HIP-55-mediated signalosome protects against ferroptosis in myocardial infarction. Cell Death Differ. 2023;30(3):825–38.PubMedPubMedCentralCrossRef Jiang Y, et al. Adaptor protein HIP-55-mediated signalosome protects against ferroptosis in myocardial infarction. Cell Death Differ. 2023;30(3):825–38.PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Miao S, et al. Platelet internalization mediates ferroptosis in myocardial infarction. Arterioscler Thromb Vasc Biol. 2023;43(2):218–30.PubMedCrossRef Miao S, et al. Platelet internalization mediates ferroptosis in myocardial infarction. Arterioscler Thromb Vasc Biol. 2023;43(2):218–30.PubMedCrossRef
204.
Zurück zum Zitat Kakavand H, et al. Pharmacologic prevention of myocardial ischemia-reperfusion injury in patients with acute coronary syndrome undergoing percutaneous coronary intervention. J Cardiovasc Pharmacol. 2021;77(4):430–49.PubMedCrossRef Kakavand H, et al. Pharmacologic prevention of myocardial ischemia-reperfusion injury in patients with acute coronary syndrome undergoing percutaneous coronary intervention. J Cardiovasc Pharmacol. 2021;77(4):430–49.PubMedCrossRef
205.
206.
207.
Zurück zum Zitat Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L, Rodrigo R. Targeting ferroptosis against ischemia/reperfusion cardiac injury. Antioxidants (Basel). 2021;10(5):667. Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L, Rodrigo R. Targeting ferroptosis against ischemia/reperfusion cardiac injury. Antioxidants (Basel). 2021;10(5):667.
208.
Zurück zum Zitat Miyamoto HD, et al. Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl Sci. 2022;7(8):800–19.PubMedPubMedCentralCrossRef Miyamoto HD, et al. Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl Sci. 2022;7(8):800–19.PubMedPubMedCentralCrossRef
209.
Zurück zum Zitat Li JY, et al. A novel insight into the fate of cardiomyocytes in ischemia-reperfusion injury: from iron metabolism to ferroptosis. Front Cell Dev Biol. 2021;9:799499.PubMedPubMedCentralCrossRef Li JY, et al. A novel insight into the fate of cardiomyocytes in ischemia-reperfusion injury: from iron metabolism to ferroptosis. Front Cell Dev Biol. 2021;9:799499.PubMedPubMedCentralCrossRef
211.
Zurück zum Zitat Li W, et al. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol. 2020;39(2):210–25.PubMedCrossRef Li W, et al. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol. 2020;39(2):210–25.PubMedCrossRef
212.
Zurück zum Zitat Yang T, et al. Galangin attenuates myocardial ischemic reperfusion-induced ferroptosis by targeting Nrf2/Gpx4 signaling pathway. Drug Des Devel Ther. 2023;17:2495–511.PubMedPubMedCentralCrossRef Yang T, et al. Galangin attenuates myocardial ischemic reperfusion-induced ferroptosis by targeting Nrf2/Gpx4 signaling pathway. Drug Des Devel Ther. 2023;17:2495–511.PubMedPubMedCentralCrossRef
213.
Zurück zum Zitat Wang IC, et al. Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int J Cardiol. 2023;375:74–86.PubMedCrossRef Wang IC, et al. Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int J Cardiol. 2023;375:74–86.PubMedCrossRef
214.
Zurück zum Zitat Shan X, et al. The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxid Med Cell Longev. 2021;2021:8880141.PubMedPubMedCentralCrossRef Shan X, et al. The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxid Med Cell Longev. 2021;2021:8880141.PubMedPubMedCentralCrossRef
215.
Zurück zum Zitat Xu S, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /system xc-/ glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 2021;12(2):10924–34.PubMedPubMedCentralCrossRef Xu S, et al. Naringenin alleviates myocardial ischemia/reperfusion injury by regulating the nuclear factor-erythroid factor 2-related factor 2 (Nrf2) /system xc-/ glutathione peroxidase 4 (GPX4) axis to inhibit ferroptosis. Bioengineered. 2021;12(2):10924–34.PubMedPubMedCentralCrossRef
216.
Zurück zum Zitat Huang Q, et al. Nobiletin alleviates myocardial ischemia-reperfusion injury via ferroptosis in rats with type-2 diabetes mellitus. Biomed Pharmacother. 2023;163:114795.PubMedCrossRef Huang Q, et al. Nobiletin alleviates myocardial ischemia-reperfusion injury via ferroptosis in rats with type-2 diabetes mellitus. Biomed Pharmacother. 2023;163:114795.PubMedCrossRef
217.
Zurück zum Zitat Xu X, et al. Salvianolic acid B inhibits ferroptosis and apoptosis during myocardial ischemia/reperfusion injury via decreasing the ubiquitin-proteasome degradation of GPX4 and the ROS-JNK/MAPK pathways. Molecules. 2023;28(10). Xu X, et al. Salvianolic acid B inhibits ferroptosis and apoptosis during myocardial ischemia/reperfusion injury via decreasing the ubiquitin-proteasome degradation of GPX4 and the ROS-JNK/MAPK pathways. Molecules. 2023;28(10).
218.
Zurück zum Zitat Lin JH, et al. Xanthohumol protects the rat myocardium against ischemia/reperfusion injury-induced ferroptosis. Oxid Med Cell Longev. 2022;2022:9523491.PubMedPubMedCentralCrossRef Lin JH, et al. Xanthohumol protects the rat myocardium against ischemia/reperfusion injury-induced ferroptosis. Oxid Med Cell Longev. 2022;2022:9523491.PubMedPubMedCentralCrossRef
219.
Zurück zum Zitat Ge C, Peng Y, Li J, et al. Hydroxysafflor yellow a alleviates acute myocardial ischemia/reperfusion injury in mice by inhibiting ferroptosis via the activation of the HIF-1α/SLC7A11/GPX4 signaling pathway. Nutrients. 2023;15(15):3411. Ge C, Peng Y, Li J, et al. Hydroxysafflor yellow a alleviates acute myocardial ischemia/reperfusion injury in mice by inhibiting ferroptosis via the activation of the HIF-1α/SLC7A11/GPX4 signaling pathway. Nutrients. 2023;15(15):3411.
220.
Zurück zum Zitat Sun Y, et al. Adjuvant application of Shenmai injection for sepsis: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2022;2022:3710672.PubMedPubMedCentralCrossRef Sun Y, et al. Adjuvant application of Shenmai injection for sepsis: a systematic review and meta-analysis. Evid Based Complement Alternat Med. 2022;2022:3710672.PubMedPubMedCentralCrossRef
221.
Zurück zum Zitat Mei SL, et al. Shenmai injection attenuates myocardial ischemia/reperfusion injury by targeting Nrf2/GPX4 signalling-mediated ferroptosis. Chin J Integr Med. 2022;28(11):983–91.PubMedCrossRef Mei SL, et al. Shenmai injection attenuates myocardial ischemia/reperfusion injury by targeting Nrf2/GPX4 signalling-mediated ferroptosis. Chin J Integr Med. 2022;28(11):983–91.PubMedCrossRef
222.
Zurück zum Zitat Yan J, et al. Fucoxanthin alleviated myocardial ischemia and reperfusion injury through inhibition of ferroptosis via the NRF2 signaling pathway. Food Funct. 2023;14(22):10052–68.PubMedCrossRef Yan J, et al. Fucoxanthin alleviated myocardial ischemia and reperfusion injury through inhibition of ferroptosis via the NRF2 signaling pathway. Food Funct. 2023;14(22):10052–68.PubMedCrossRef
223.
Zurück zum Zitat Shen Y, et al. Geniposide possesses the protective effect on myocardial injury by inhibiting oxidative stress and ferroptosis via activation of the Grsf1/GPx4 axis. Front Pharmacol. 2022;13:879870.PubMedPubMedCentralCrossRef Shen Y, et al. Geniposide possesses the protective effect on myocardial injury by inhibiting oxidative stress and ferroptosis via activation of the Grsf1/GPx4 axis. Front Pharmacol. 2022;13:879870.PubMedPubMedCentralCrossRef
224.
Zurück zum Zitat Ma X, et al. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury via inhibiting ferroptosis by the cAMP/PKA/CREB pathway. Mol Cell Probes. 2023;68:101899.PubMedCrossRef Ma X, et al. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury via inhibiting ferroptosis by the cAMP/PKA/CREB pathway. Mol Cell Probes. 2023;68:101899.PubMedCrossRef
225.
Zurück zum Zitat Wang Z, et al. Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother. 2022;154:113572.PubMedCrossRef Wang Z, et al. Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother. 2022;154:113572.PubMedCrossRef
226.
Zurück zum Zitat Lv Z, et al. Etomidate attenuates the ferroptosis in myocardial ischemia/reperfusion rat model via Nrf2/HO-1 pathway. Shock. 2021;56(3):440–9.PubMedCrossRef Lv Z, et al. Etomidate attenuates the ferroptosis in myocardial ischemia/reperfusion rat model via Nrf2/HO-1 pathway. Shock. 2021;56(3):440–9.PubMedCrossRef
227.
Zurück zum Zitat Lin JH, et al. Gossypol acetic acid attenuates cardiac ischemia/reperfusion injury in rats via an antiferroptotic mechanism. Biomolecules. 2021. 11(11). Lin JH, et al. Gossypol acetic acid attenuates cardiac ischemia/reperfusion injury in rats via an antiferroptotic mechanism. Biomolecules. 2021. 11(11).
228.
Zurück zum Zitat Li T, et al. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene. 2022;808:145968.PubMedCrossRef Li T, et al. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene. 2022;808:145968.PubMedCrossRef
229.
Zurück zum Zitat Huang Q, et al. Rev-erbs agonist SR9009 alleviates ischemia-reperfusion injury by heightening endogenous cardioprotection at onset of type-2 diabetes in rats: down-regulating ferritinophagy/ferroptosis signaling. Biomed Pharmacother. 2022;154:113595.PubMedCrossRef Huang Q, et al. Rev-erbs agonist SR9009 alleviates ischemia-reperfusion injury by heightening endogenous cardioprotection at onset of type-2 diabetes in rats: down-regulating ferritinophagy/ferroptosis signaling. Biomed Pharmacother. 2022;154:113595.PubMedCrossRef
230.
Zurück zum Zitat Peng Y, et al. Atorvastatin inhibits ferroptosis of H9C2 cells by regulating SMAD7/hepcidin expression to improve ischemia-reperfusion injury. Cardiol Res Pract. 2022;2022:3972829.PubMedPubMedCentralCrossRef Peng Y, et al. Atorvastatin inhibits ferroptosis of H9C2 cells by regulating SMAD7/hepcidin expression to improve ischemia-reperfusion injury. Cardiol Res Pract. 2022;2022:3972829.PubMedPubMedCentralCrossRef
231.
Zurück zum Zitat Liu X, et al. Ferulic acid alleviates myocardial ischemia reperfusion injury via upregulating AMPKα2 expression-mediated ferroptosis depression. J Cardiovasc Pharmacol. 2021;79(4):489–500.PubMedPubMedCentralCrossRef Liu X, et al. Ferulic acid alleviates myocardial ischemia reperfusion injury via upregulating AMPKα2 expression-mediated ferroptosis depression. J Cardiovasc Pharmacol. 2021;79(4):489–500.PubMedPubMedCentralCrossRef
232.
Zurück zum Zitat Zhang Y, et al. Targeting ferroptosis by polydopamine nanoparticles protects heart against ischemia/reperfusion injury. ACS Appl Mater Interfaces. 2021;13(45):53671–82.PubMedCrossRef Zhang Y, et al. Targeting ferroptosis by polydopamine nanoparticles protects heart against ischemia/reperfusion injury. ACS Appl Mater Interfaces. 2021;13(45):53671–82.PubMedCrossRef
233.
Zurück zum Zitat Ding Y, et al. Puerarin protects against myocardial ischemia/reperfusion injury by inhibiting ferroptosis. Biol Pharm Bull. 2023;46(4):524–32.PubMedCrossRef Ding Y, et al. Puerarin protects against myocardial ischemia/reperfusion injury by inhibiting ferroptosis. Biol Pharm Bull. 2023;46(4):524–32.PubMedCrossRef
234.
Zurück zum Zitat Qian W, et al. Cyclosporine A-loaded apoferritin alleviates myocardial ischemia-reperfusion injury by simultaneously blocking ferroptosis and apoptosis of cardiomyocytes. Acta Biomater. 2023;160:265–80.PubMedCrossRef Qian W, et al. Cyclosporine A-loaded apoferritin alleviates myocardial ischemia-reperfusion injury by simultaneously blocking ferroptosis and apoptosis of cardiomyocytes. Acta Biomater. 2023;160:265–80.PubMedCrossRef
235.
Zurück zum Zitat Wang R, et al. Kinsenoside mitigates myocardial ischemia/reperfusion-induced ferroptosis via activation of the Akt/Nrf2/HO-1 pathway. Eur J Pharmacol. 2023;956:175985.PubMedCrossRef Wang R, et al. Kinsenoside mitigates myocardial ischemia/reperfusion-induced ferroptosis via activation of the Akt/Nrf2/HO-1 pathway. Eur J Pharmacol. 2023;956:175985.PubMedCrossRef
236.
Zurück zum Zitat Silva-Palacios A, et al. Sulforaphane protects from myocardial ischemia-reperfusion damage through the balanced activation of Nrf2/AhR. Free Radic Biol Med. 2019;143:331–40.PubMedCrossRef Silva-Palacios A, et al. Sulforaphane protects from myocardial ischemia-reperfusion damage through the balanced activation of Nrf2/AhR. Free Radic Biol Med. 2019;143:331–40.PubMedCrossRef
237.
Zurück zum Zitat Lu H, et al. Britanin relieves ferroptosis-mediated myocardial ischaemia/reperfusion damage by upregulating GPX4 through activation of AMPK/GSK3β/Nrf2 signalling. Pharm Biol. 2022;60(1):38–45.PubMedCrossRef Lu H, et al. Britanin relieves ferroptosis-mediated myocardial ischaemia/reperfusion damage by upregulating GPX4 through activation of AMPK/GSK3β/Nrf2 signalling. Pharm Biol. 2022;60(1):38–45.PubMedCrossRef
238.
Zurück zum Zitat Fu C, et al. PFKFB2 inhibits ferroptosis in myocardial ischemia/reperfusion injury through adenosine monophosphate-activated protein kinase activation. J Cardiovasc Pharmacol. 2023;82(2):128–37.PubMedCrossRef Fu C, et al. PFKFB2 inhibits ferroptosis in myocardial ischemia/reperfusion injury through adenosine monophosphate-activated protein kinase activation. J Cardiovasc Pharmacol. 2023;82(2):128–37.PubMedCrossRef
239.
Zurück zum Zitat Liu L, et al. Deubiquitinase OTUD5 as a novel protector against 4-hne-triggered ferroptosis in myocardial ischemia/reperfusion injury. Adv Sci (Weinh). 2023;10(28):e2301852.PubMedCrossRef Liu L, et al. Deubiquitinase OTUD5 as a novel protector against 4-hne-triggered ferroptosis in myocardial ischemia/reperfusion injury. Adv Sci (Weinh). 2023;10(28):e2301852.PubMedCrossRef
240.
Zurück zum Zitat Chen HY, et al. ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy. Mol Med. 2021;27(1):14.PubMedPubMedCentralCrossRef Chen HY, et al. ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy. Mol Med. 2021;27(1):14.PubMedPubMedCentralCrossRef
241.
Zurück zum Zitat Liu H, et al. A novel function of ATF3 in suppression of ferroptosis in mouse heart suffered ischemia/reperfusion. Free Radic Biol Med. 2022;189:122–35.PubMedCrossRef Liu H, et al. A novel function of ATF3 in suppression of ferroptosis in mouse heart suffered ischemia/reperfusion. Free Radic Biol Med. 2022;189:122–35.PubMedCrossRef
242.
Zurück zum Zitat Lu P, et al. The mitochondrial-derived peptide MOTS-c suppresses ferroptosis and alleviates acute lung injury induced by myocardial ischemia reperfusion via PPARγ signaling pathway. Eur J Pharmacol. 2023;953:175835.PubMedCrossRef Lu P, et al. The mitochondrial-derived peptide MOTS-c suppresses ferroptosis and alleviates acute lung injury induced by myocardial ischemia reperfusion via PPARγ signaling pathway. Eur J Pharmacol. 2023;953:175835.PubMedCrossRef
243.
Zurück zum Zitat Jiang YQ, et al. Inhibition of MALT1 reduces ferroptosis in rat hearts following ischemia/reperfusion via enhancing the Nrf2/SLC7A11 pathway. Eur J Pharmacol. 2023;950:175774.PubMedCrossRef Jiang YQ, et al. Inhibition of MALT1 reduces ferroptosis in rat hearts following ischemia/reperfusion via enhancing the Nrf2/SLC7A11 pathway. Eur J Pharmacol. 2023;950:175774.PubMedCrossRef
244.
Zurück zum Zitat Zhang GY, et al. MiR-199a-5p promotes ferroptosis-induced cardiomyocyte death responding to oxygen-glucose deprivation/reperfusion injury via inhibiting Akt/eNOS signaling pathway. Kaohsiung J Med Sci. 2022;38(11):1093–102.PubMedCrossRef Zhang GY, et al. MiR-199a-5p promotes ferroptosis-induced cardiomyocyte death responding to oxygen-glucose deprivation/reperfusion injury via inhibiting Akt/eNOS signaling pathway. Kaohsiung J Med Sci. 2022;38(11):1093–102.PubMedCrossRef
245.
Zurück zum Zitat Wang J, et al. FOXN4 affects myocardial ischemia-reperfusion injury through HIF-1α/MMP2-mediated ferroptosis of cardiomyocytes. Cell Mol Biol (Noisy-le-grand). 2023;69(6): 214–225. Wang J, et al. FOXN4 affects myocardial ischemia-reperfusion injury through HIF-1α/MMP2-mediated ferroptosis of cardiomyocytes. Cell Mol Biol (Noisy-le-grand). 2023;69(6): 214–225.
246.
Zurück zum Zitat Ju J, et al. Circular RNA FEACR inhibits ferroptosis and alleviates myocardial ischemia/reperfusion injury by interacting with NAMPT. J Biomed Sci. 2023;30(1):45.PubMedPubMedCentralCrossRef Ju J, et al. Circular RNA FEACR inhibits ferroptosis and alleviates myocardial ischemia/reperfusion injury by interacting with NAMPT. J Biomed Sci. 2023;30(1):45.PubMedPubMedCentralCrossRef
247.
248.
Zurück zum Zitat Gordan R, Fefelova N, Gwathmey JK, Xie LH. Iron overload, oxidative stress and calcium mishandling in cardiomyocytes: role of the mitochondrial permeability transition pore. Antioxidants (Basel). 2020;9(8):758. Gordan R, Fefelova N, Gwathmey JK, Xie LH. Iron overload, oxidative stress and calcium mishandling in cardiomyocytes: role of the mitochondrial permeability transition pore. Antioxidants (Basel). 2020;9(8):758.
249.
Zurück zum Zitat Dai C, et al. Inhibition of ferroptosis reduces susceptibility to frequent excessive alcohol consumption-induced atrial fibrillation. Toxicology. 2022;465:153055.PubMedCrossRef Dai C, et al. Inhibition of ferroptosis reduces susceptibility to frequent excessive alcohol consumption-induced atrial fibrillation. Toxicology. 2022;465:153055.PubMedCrossRef
251.
Zurück zum Zitat Yang HJ, et al. Shensong Yangxin attenuates metabolic syndrome-induced atrial fibrillation via inhibition of ferroportin-mediated intracellular iron overload. Phytomedicine. 2022;101:154086.PubMedCrossRef Yang HJ, et al. Shensong Yangxin attenuates metabolic syndrome-induced atrial fibrillation via inhibition of ferroportin-mediated intracellular iron overload. Phytomedicine. 2022;101:154086.PubMedCrossRef
252.
Zurück zum Zitat Yu LM, et al. Inhibition of ferroptosis by icariin treatment attenuates excessive ethanol consumption-induced atrial remodeling and susceptibility to atrial fibrillation, role of SIRT1. Apoptosis. 2023;28(3–4):607–26.PubMedCrossRef Yu LM, et al. Inhibition of ferroptosis by icariin treatment attenuates excessive ethanol consumption-induced atrial remodeling and susceptibility to atrial fibrillation, role of SIRT1. Apoptosis. 2023;28(3–4):607–26.PubMedCrossRef
253.
Zurück zum Zitat Ju H, et al. Iron and atrial fibrillation: a review. Pacing Clin Electrophysiol. 2023;46(4):312–8.PubMedCrossRef Ju H, et al. Iron and atrial fibrillation: a review. Pacing Clin Electrophysiol. 2023;46(4):312–8.PubMedCrossRef
254.
Zurück zum Zitat Litwin M, et al. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities. Pediatr Nephrol. 2016;31(2):185–94.PubMedCrossRef Litwin M, et al. Primary hypertension is a disease of premature vascular aging associated with neuro-immuno-metabolic abnormalities. Pediatr Nephrol. 2016;31(2):185–94.PubMedCrossRef
255.
Zurück zum Zitat Mancia G, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.PubMedCrossRef Mancia G, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357.PubMedCrossRef
256.
Zurück zum Zitat Zhang Z, et al. Elabela alleviates ferroptosis, myocardial remodeling, fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling. Free Radic Biol Med. 2022;181:130–42.PubMedCrossRef Zhang Z, et al. Elabela alleviates ferroptosis, myocardial remodeling, fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling. Free Radic Biol Med. 2022;181:130–42.PubMedCrossRef
257.
Zurück zum Zitat Yang J, et al. Study on ferroptosis pathway that operates in hypertensive brain damage. Clin Exp Hypertens. 2020;42(8):748–52.PubMedCrossRef Yang J, et al. Study on ferroptosis pathway that operates in hypertensive brain damage. Clin Exp Hypertens. 2020;42(8):748–52.PubMedCrossRef
258.
Zurück zum Zitat Li XT, et al. Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling. Free Radic Biol Med. 2022;193(Pt 1):459–73.PubMedCrossRef Li XT, et al. Sirtuin 7 mitigates renal ferroptosis, fibrosis and injury in hypertensive mice by facilitating the KLF15/Nrf2 signaling. Free Radic Biol Med. 2022;193(Pt 1):459–73.PubMedCrossRef
260.
Zurück zum Zitat Erbel R, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the european society of cardiology (ESC). Eur Heart J. 2014;35(41):2873–926.PubMedCrossRef Erbel R, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the european society of cardiology (ESC). Eur Heart J. 2014;35(41):2873–926.PubMedCrossRef
261.
262.
Zurück zum Zitat Chen Y, et al. Ferroptosis: a novel pathological mechanism of aortic dissection. Pharmacol Res. 2022;182:106351.PubMedCrossRef Chen Y, et al. Ferroptosis: a novel pathological mechanism of aortic dissection. Pharmacol Res. 2022;182:106351.PubMedCrossRef
263.
Zurück zum Zitat Sampilvanjil A, et al. Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2020;318(3):H508-h518.PubMedCrossRef Sampilvanjil A, et al. Cigarette smoke extract induces ferroptosis in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2020;318(3):H508-h518.PubMedCrossRef
264.
Zurück zum Zitat Zou HX, et al. Role of ferroptosis-related genes in Stanford type a aortic dissection and identification of key genes: new insights from bioinformatic analysis. Bioengineered. 2021;12(2):9976–90.PubMedPubMedCentralCrossRef Zou HX, et al. Role of ferroptosis-related genes in Stanford type a aortic dissection and identification of key genes: new insights from bioinformatic analysis. Bioengineered. 2021;12(2):9976–90.PubMedPubMedCentralCrossRef
265.
Zurück zum Zitat Sawada H, et al. Aortic iron overload with oxidative stress and inflammation in human and murine abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2015;35(6):1507–14.PubMedCrossRef Sawada H, et al. Aortic iron overload with oxidative stress and inflammation in human and murine abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol. 2015;35(6):1507–14.PubMedCrossRef
267.
Zurück zum Zitat Chen Y, et al. BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection. Pharmacol Res. 2022;177:106122.PubMedCrossRef Chen Y, et al. BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection. Pharmacol Res. 2022;177:106122.PubMedCrossRef
269.
Zurück zum Zitat Guan Q, et al. Melatonin ameliorates hepatic ferroptosis in NAFLD by inhibiting ER stress via the MT2/cAMP/PKA/IRE1 signaling pathway. Int J Biol Sci. 2023;19(12):3937–50.PubMedPubMedCentralCrossRef Guan Q, et al. Melatonin ameliorates hepatic ferroptosis in NAFLD by inhibiting ER stress via the MT2/cAMP/PKA/IRE1 signaling pathway. Int J Biol Sci. 2023;19(12):3937–50.PubMedPubMedCentralCrossRef
271.
Zurück zum Zitat Hamilton JL, et al. In vivo efficacy, toxicity and biodistribution of ultra-long circulating desferrioxamine based polymeric iron chelator. Biomaterials. 2016;102:58–71.PubMedCrossRef Hamilton JL, et al. In vivo efficacy, toxicity and biodistribution of ultra-long circulating desferrioxamine based polymeric iron chelator. Biomaterials. 2016;102:58–71.PubMedCrossRef
272.
273.
Zurück zum Zitat Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20.PubMedCrossRef Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20.PubMedCrossRef
274.
Zurück zum Zitat Iqbal HMN, et al. Recent trends in nanotechnology-based drugs and formulations for targeted therapeutic delivery. Recent Pat Inflamm Allergy Drug Discov. 2017;10(2):86–93.PubMedCrossRef Iqbal HMN, et al. Recent trends in nanotechnology-based drugs and formulations for targeted therapeutic delivery. Recent Pat Inflamm Allergy Drug Discov. 2017;10(2):86–93.PubMedCrossRef
275.
Zurück zum Zitat Liu Y, et al. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Des Devel Ther. 2024;18:1469–95.PubMedPubMedCentralCrossRef Liu Y, et al. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Des Devel Ther. 2024;18:1469–95.PubMedPubMedCentralCrossRef
276.
Zurück zum Zitat Lv Q, et al. Nanosponge for iron chelation and efflux: a ferroptosis-inhibiting approach for myocardial infarction therapy. Adv Sci (Weinh). 2024;11(25):e2305895.PubMedCrossRef Lv Q, et al. Nanosponge for iron chelation and efflux: a ferroptosis-inhibiting approach for myocardial infarction therapy. Adv Sci (Weinh). 2024;11(25):e2305895.PubMedCrossRef
277.
Zurück zum Zitat Weng H, et al. Inhalable cardiac targeting peptide modified nanomedicine prevents pressure overload heart failure in male mice. Nat Commun. 2024;15(1):6058.PubMedPubMedCentralCrossRef Weng H, et al. Inhalable cardiac targeting peptide modified nanomedicine prevents pressure overload heart failure in male mice. Nat Commun. 2024;15(1):6058.PubMedPubMedCentralCrossRef
Metadaten
Titel
Ferroptosis in Cardiovascular Diseases and Ferroptosis-Related Intervention Approaches
verfasst von
Xianpeng Zhou
Hao Wang
Biao Yan
Xinwen Nie
Qingjie Chen
Xiaosong Yang
Min Lei
Xiying Guo
Changhan Ouyang
Zhanhong Ren
Publikationsdatum
06.12.2024
Verlag
Springer US
Erschienen in
Cardiovascular Drugs and Therapy
Print ISSN: 0920-3206
Elektronische ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-024-07642-5

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Kardiologie

Lp(a) zur Risikoeinschätzung bei Thoraxschmerzen

Der Lp(a)-Wert kann dazu beitragen, bei stabilen Patienten mit neu aufgetretenen Thoraxschmerzen und ohne KHK-Diagnose die Wahrscheinlichkeit für das Vorliegen von Koronarstenosen abzuschätzen.

Finerenon bei eGFR-Verlust nicht gleich absetzen!

Der Mineralokortikoid-Rezeptor-Antagonist Finerenon verbessert die Prognose bei Herzinsuffizienz mit leicht reduzierter oder erhaltener Ejektionsfraktion. Ein Rückgang der eGFR zu Beginn der Therapie scheint diese Wirkung nicht wesentlich zu mindern.

LVAD auch bei kalt-trockener terminaler Herzinsuffizienz wirksam

Auch Personen mit kalt-trockener terminaler Herzinsuffizienz profitieren von einem linksventrikulären Unterstützungssystem (LVAD), wie Daten aus einem US-Register nahelegen. Doch es gibt Besonderheiten.     

Koronare Herzkrankheit: Das waren die Top-Studien 2024

Zum Thema Koronare Herzkrankheit gab es 2024 wichtige neue Studien. Beleuchtet wurden darin unter anderem der Stellenwert von Betablockern nach Herzinfarkt, neue Optionen für eine Lipidsenkung sowie die Therapie bei infarktbedingtem kardiogenem Schock.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.