Skip to main content
Erschienen in: Die Diabetologie 4/2021

14.02.2021 | Pneumologie | Leitthema

Mikrobiom und metabolische Fettlebererkrankung (MeFLD)

verfasst von: Noreen Neuwirth, Samuel Kochenburger, Prof. Dr. med. Christian Sina

Erschienen in: Die Diabetologie | Ausgabe 4/2021

Einloggen, um Zugang zu erhalten

Zusammenfassung

Hintergrund

Trotz zunehmender Forschungsanstrengungen bleiben die Pathogenese und Pathophysiologie der metabolischen Fettlebererkrankung (MeFLD) inklusive hepatischer Folgekomplikationen bislang nur unzureichend verstanden. Neben Dyslipidämien sowie Störungen des Glukosestoffwechsels steht zunehmend die intestinale Mikrobiota im Verdacht, über die Beeinflussung des Stoffwechsels sowie des Immunsystems maßgeblich an der Entstehung sowie am Fortschreiten der MeFLD beteiligt zu sein.

Ziel der Arbeit

Funktionelle Mechanismen, wie das Mikrobiom potenziell zur Entstehung der MeFLD beiträgt, sollen anhand der aktuellen Literatur aufgezeigt werden.

Material und Methoden

Geeignete Literatur wurde mittels systematischer PubMed-Suche recherchiert und bildet die Grundlage dieser Arbeit.

Ergebnisse

Zahlreiche über das Mikrobiom kontrollierte molekulare Mechanismen könnten an der Entstehung von MeFLD beteiligt sein. Während Tierstudien eine klare Evidenz für diesen Zusammenhang lieferten, stehen klinische Beweise trotz insgesamt vielversprechender präliminarer Studienergebnisse noch aus. Ergebnisse humaner Interventionsstudien mit Prä‑, Pro- oder Synbiotika sowie fäkalem Mikrobiomtransfer deuten aber darauf hin, dass die Modulation des Mikrobioms einen Einfluss auf die Entstehung und den Verlauf von MeFLD hat.

Diskussion

Mit fortschreitendem Verständnis über den spezifischen Einfluss des Mikrobioms im Rahmen der Pathogenese der MeFLD könnten zukünftig zielgerichtete mikrobiommodulierende Maßnahmen zur Prävention und Therapie der MeFLD ergriffen werden.
Literatur
2.
Zurück zum Zitat Sheka AC, Adeyi O, Thompson J et al (2020) Nonalcoholic steatohepatitis: a review. JAMA 323:1175–1183PubMed Sheka AC, Adeyi O, Thompson J et al (2020) Nonalcoholic steatohepatitis: a review. JAMA 323:1175–1183PubMed
3.
Zurück zum Zitat Starley BQ, Calcagno CJ, Harrison SA (2010) Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 51:1820–1832PubMed Starley BQ, Calcagno CJ, Harrison SA (2010) Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology 51:1820–1832PubMed
4.
Zurück zum Zitat Takahashi Y, Fukusato T (2014) Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 20(42):15539–15548PubMedPubMedCentral Takahashi Y, Fukusato T (2014) Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 20(42):15539–15548PubMedPubMedCentral
5.
Zurück zum Zitat Eslam M, Sanyal AJ, George J (2020) MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158:1999–2014.e1PubMed Eslam M, Sanyal AJ, George J (2020) MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 158:1999–2014.e1PubMed
6.
Zurück zum Zitat Divella R, Mazzocca A, Daniele A et al (2019) Obesity, nonalcoholic fatty liver disease and adipocytokines network in promotion of cancer. Int J Biol Sci 15:610–616PubMedPubMedCentral Divella R, Mazzocca A, Daniele A et al (2019) Obesity, nonalcoholic fatty liver disease and adipocytokines network in promotion of cancer. Int J Biol Sci 15:610–616PubMedPubMedCentral
7.
Zurück zum Zitat Boza C, Riquelme A, Ibañez L et al (2005) Predictors of nonalcoholic steatohepatitis (NASH) in obese patients undergoing gastric bypass. Obes Surg 15:1148–1153PubMed Boza C, Riquelme A, Ibañez L et al (2005) Predictors of nonalcoholic steatohepatitis (NASH) in obese patients undergoing gastric bypass. Obes Surg 15:1148–1153PubMed
8.
Zurück zum Zitat Denkmayr L, Feldman A, Stechemesser L et al (2018) Lean patients with non-alcoholic fatty liver disease have a severe histological phenotype similar to obese patients. J Clin Med 7(12):562PubMedCentral Denkmayr L, Feldman A, Stechemesser L et al (2018) Lean patients with non-alcoholic fatty liver disease have a severe histological phenotype similar to obese patients. J Clin Med 7(12):562PubMedCentral
9.
Zurück zum Zitat Pierantonelli I, Svegliati-Baroni G (2019) Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH. Transplantation 103:e1–e13PubMed Pierantonelli I, Svegliati-Baroni G (2019) Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH. Transplantation 103:e1–e13PubMed
10.
Zurück zum Zitat Noureddin M, Vipani A, Bresee C et al (2018) NASH leading cause of liver transplant in women: updated analysis of indications for liver transplant and ethnic and gender variances. Am J Gastroenterol 113:1649–1659PubMed Noureddin M, Vipani A, Bresee C et al (2018) NASH leading cause of liver transplant in women: updated analysis of indications for liver transplant and ethnic and gender variances. Am J Gastroenterol 113:1649–1659PubMed
11.
Zurück zum Zitat Hung CK, Bodenheimer HC Jr. (2018) Current treatment of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis 22:175–187PubMed Hung CK, Bodenheimer HC Jr. (2018) Current treatment of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis 22:175–187PubMed
12.
Zurück zum Zitat Gilbert JA, Blaser MJ, Caporaso JG et al (2018) Current understanding of the human microbiome. Nat Med 24:392–400PubMedPubMedCentral Gilbert JA, Blaser MJ, Caporaso JG et al (2018) Current understanding of the human microbiome. Nat Med 24:392–400PubMedPubMedCentral
13.
Zurück zum Zitat Cleophas MCP, Ratter JM, Bekkering S et al (2019) Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Sci Rep 9:775PubMedPubMedCentral Cleophas MCP, Ratter JM, Bekkering S et al (2019) Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males. Sci Rep 9:775PubMedPubMedCentral
14.
Zurück zum Zitat Kespohl M, Vachharajani N, Luu M et al (2017) The microbial metabolite butyrate induces expression of th1-associated factors in CD4(+) T cells. Front Immunol 8:1036PubMedPubMedCentral Kespohl M, Vachharajani N, Luu M et al (2017) The microbial metabolite butyrate induces expression of th1-associated factors in CD4(+) T cells. Front Immunol 8:1036PubMedPubMedCentral
16.
Zurück zum Zitat Vich Vila A, Collij V, Sanna S et al (2020) Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun 11:362PubMedPubMedCentral Vich Vila A, Collij V, Sanna S et al (2020) Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun 11:362PubMedPubMedCentral
18.
Zurück zum Zitat Durack J, Lynch SV (2019) The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med 216:20–40PubMedPubMedCentral Durack J, Lynch SV (2019) The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med 216:20–40PubMedPubMedCentral
19.
Zurück zum Zitat Yamada S, Kamada N, Amiya T et al (2017) Gut microbiota-mediated generation of saturated fatty acids elicits inflammation in the liver in murine high-fat diet-induced steatohepatitis. BMC Gastroenterol 17:136PubMedPubMedCentral Yamada S, Kamada N, Amiya T et al (2017) Gut microbiota-mediated generation of saturated fatty acids elicits inflammation in the liver in murine high-fat diet-induced steatohepatitis. BMC Gastroenterol 17:136PubMedPubMedCentral
20.
Zurück zum Zitat Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723PubMedPubMedCentral Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723PubMedPubMedCentral
21.
Zurück zum Zitat Le Roy T, Llopis M, Lepage P et al (2013) Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62:1787–1794PubMed Le Roy T, Llopis M, Lepage P et al (2013) Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62:1787–1794PubMed
22.
Zurück zum Zitat Gangarapu V, Ince AT, Baysal B et al (2015) Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 27:840–845PubMed Gangarapu V, Ince AT, Baysal B et al (2015) Efficacy of rifaximin on circulating endotoxins and cytokines in patients with nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol 27:840–845PubMed
23.
Zurück zum Zitat Wong VW, Tse CH, Lam TT et al (2013) Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis—a longitudinal study. PLoS One 8:e62885PubMedPubMedCentral Wong VW, Tse CH, Lam TT et al (2013) Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis—a longitudinal study. PLoS One 8:e62885PubMedPubMedCentral
24.
Zurück zum Zitat de Faria Ghetti F, Oliveira DG, de Oliveira JM et al (2018) Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur J Nutr 57:861–876PubMed de Faria Ghetti F, Oliveira DG, de Oliveira JM et al (2018) Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur J Nutr 57:861–876PubMed
25.
Zurück zum Zitat Schwimmer JB, Johnson JS, Angeles JE et al (2019) Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology 157:1109–1122PubMedPubMedCentral Schwimmer JB, Johnson JS, Angeles JE et al (2019) Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology 157:1109–1122PubMedPubMedCentral
27.
Zurück zum Zitat Caussy C, Loomba R (2018) Gut microbiome, microbial metabolites and the development of NAFLD. Nat Rev Gastroenterol Hepatol 15:719–720PubMed Caussy C, Loomba R (2018) Gut microbiome, microbial metabolites and the development of NAFLD. Nat Rev Gastroenterol Hepatol 15:719–720PubMed
28.
Zurück zum Zitat Chen YM, Liu Y, Zhou RF et al (2016) Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 6:19076PubMedPubMedCentral Chen YM, Liu Y, Zhou RF et al (2016) Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 6:19076PubMedPubMedCentral
29.
Zurück zum Zitat Kwan SY, Jiao J, Qi J et al (2020) Bile acid changes associated with liver fibrosis and steatosis in the Mexican-American population of south texas. Hepatol Commun 4:555–568PubMedPubMedCentral Kwan SY, Jiao J, Qi J et al (2020) Bile acid changes associated with liver fibrosis and steatosis in the Mexican-American population of south texas. Hepatol Commun 4:555–568PubMedPubMedCentral
30.
Zurück zum Zitat Ridlon JM, Kang DJ, Hylemon PB et al (2014) Bile acids and the gut microbiome. Curr Opin Gastroenterol 30:332–338PubMedPubMedCentral Ridlon JM, Kang DJ, Hylemon PB et al (2014) Bile acids and the gut microbiome. Curr Opin Gastroenterol 30:332–338PubMedPubMedCentral
31.
Zurück zum Zitat Duarte SMB, Stefano JT, Miele L et al (2018) Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: a prospective pilot study. Nutr Metab Cardiovasc Dis 28:369–384PubMed Duarte SMB, Stefano JT, Miele L et al (2018) Gut microbiome composition in lean patients with NASH is associated with liver damage independent of caloric intake: a prospective pilot study. Nutr Metab Cardiovasc Dis 28:369–384PubMed
32.
Zurück zum Zitat Yun Y, Kim H‑N, Lee E‑J et al (2019) Fecal and blood microbiota profiles and presence of nonalcoholic fatty liver disease in obese versus lean subjects. PLoS ONE 14:e213692PubMedPubMedCentral Yun Y, Kim H‑N, Lee E‑J et al (2019) Fecal and blood microbiota profiles and presence of nonalcoholic fatty liver disease in obese versus lean subjects. PLoS ONE 14:e213692PubMedPubMedCentral
33.
Zurück zum Zitat Brun P, Castagliuolo I, Di Leo V et al (2007) Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292:G518–525PubMed Brun P, Castagliuolo I, Di Leo V et al (2007) Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 292:G518–525PubMed
34.
Zurück zum Zitat Cheng C, Tan J, Qian W et al (2018) Gut inflammation exacerbates hepatic injury in the high-fat diet induced NAFLD mouse: attention to the gut-vascular barrier dysfunction. Life Sci 209:157–166PubMed Cheng C, Tan J, Qian W et al (2018) Gut inflammation exacerbates hepatic injury in the high-fat diet induced NAFLD mouse: attention to the gut-vascular barrier dysfunction. Life Sci 209:157–166PubMed
35.
Zurück zum Zitat Rahman K, Desai C, Iyer SS et al (2016) Loss of junctional adhesion molecule A promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 151:733–746.e12PubMedPubMedCentral Rahman K, Desai C, Iyer SS et al (2016) Loss of junctional adhesion molecule A promotes severe steatohepatitis in mice on a diet high in saturated fat, fructose, and cholesterol. Gastroenterology 151:733–746.e12PubMedPubMedCentral
36.
Zurück zum Zitat Arab JP, Arrese M, Trauner M (2018) Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol 13:321–350PubMed Arab JP, Arrese M, Trauner M (2018) Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol 13:321–350PubMed
37.
Zurück zum Zitat Cani PD, Jordan BF (2018) Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 15:671–682PubMed Cani PD, Jordan BF (2018) Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 15:671–682PubMed
39.
Zurück zum Zitat Desai MS, Seekatz AM, Koropatkin NM et al (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339–1353.e21PubMedPubMedCentral Desai MS, Seekatz AM, Koropatkin NM et al (2016) A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339–1353.e21PubMedPubMedCentral
40.
Zurück zum Zitat Cani PD, Osto M, Geurts L et al (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3(4):279–288PubMedPubMedCentral Cani PD, Osto M, Geurts L et al (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3(4):279–288PubMedPubMedCentral
41.
Zurück zum Zitat Chassaing B, Koren O, Goodrich JK et al (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519(7541):92–96PubMedPubMedCentral Chassaing B, Koren O, Goodrich JK et al (2015) Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519(7541):92–96PubMedPubMedCentral
42.
Zurück zum Zitat Lock JY, Carlson TL, Wang CM et al (2018) Acute exposure to commonly ingested emulsifiers alters intestinal mucus structure and transport properties. Sci Rep 8:10008PubMedPubMedCentral Lock JY, Carlson TL, Wang CM et al (2018) Acute exposure to commonly ingested emulsifiers alters intestinal mucus structure and transport properties. Sci Rep 8:10008PubMedPubMedCentral
43.
Zurück zum Zitat Ijssennagger N, van der Meer R, van Mil SWC (2016) Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends Mol Med 22:190–199PubMed Ijssennagger N, van der Meer R, van Mil SWC (2016) Sulfide as a mucus barrier-breaker in inflammatory bowel disease? Trends Mol Med 22:190–199PubMed
45.
Zurück zum Zitat Sharifnia T, Antoun J, Verriere TG et al (2015) Hepatic TLR4 signaling in obese NAFLD. Am J Physiol Gastrointest Liver Physiol 309:G270–278PubMedPubMedCentral Sharifnia T, Antoun J, Verriere TG et al (2015) Hepatic TLR4 signaling in obese NAFLD. Am J Physiol Gastrointest Liver Physiol 309:G270–278PubMedPubMedCentral
46.
Zurück zum Zitat Wang J, Si Y, Wu C et al (2012) Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway. Lipids Health Dis 11:139PubMedPubMedCentral Wang J, Si Y, Wu C et al (2012) Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway. Lipids Health Dis 11:139PubMedPubMedCentral
47.
Zurück zum Zitat Etienne-Mesmin L, Vijay-Kumar M, Gewirtz AT et al (2016) Hepatocyte toll-like receptor 5 promotes bacterial clearance and protects mice against high-fat diet-induced liver disease. Cell Mol Gastroenterol Hepatol 2:584–604PubMedPubMedCentral Etienne-Mesmin L, Vijay-Kumar M, Gewirtz AT et al (2016) Hepatocyte toll-like receptor 5 promotes bacterial clearance and protects mice against high-fat diet-induced liver disease. Cell Mol Gastroenterol Hepatol 2:584–604PubMedPubMedCentral
48.
Zurück zum Zitat Lee YS, Kim YH, Jung YS et al (2017) Hepatocyte toll-like receptor 4 mediates lipopolysaccharide-induced hepcidin expression. Exp Mol Med 49:e408PubMedPubMedCentral Lee YS, Kim YH, Jung YS et al (2017) Hepatocyte toll-like receptor 4 mediates lipopolysaccharide-induced hepcidin expression. Exp Mol Med 49:e408PubMedPubMedCentral
49.
Zurück zum Zitat Liu M, Peng J, Tai N et al (2018) Toll-like receptor 9 negatively regulates pancreatic islet beta cell growth and function in a mouse model of type 1 diabetes. Diabetologia 61:2333–2343PubMedPubMedCentral Liu M, Peng J, Tai N et al (2018) Toll-like receptor 9 negatively regulates pancreatic islet beta cell growth and function in a mouse model of type 1 diabetes. Diabetologia 61:2333–2343PubMedPubMedCentral
50.
Zurück zum Zitat Wan X, Xu C, Yu C et al (2016) Role of NLRP3 inflammasome in the progression of NAFLD to NASH. Can J Gastroenterol Hepatol 2016:6489012PubMedPubMedCentral Wan X, Xu C, Yu C et al (2016) Role of NLRP3 inflammasome in the progression of NAFLD to NASH. Can J Gastroenterol Hepatol 2016:6489012PubMedPubMedCentral
51.
Zurück zum Zitat Mirea AM, Tack CJ, Chavakis T et al (2018) IL‑1 family cytokine pathways underlying NAFLD: towards new treatment strategies. Trends Mol Med 24:458–471PubMedPubMedCentral Mirea AM, Tack CJ, Chavakis T et al (2018) IL‑1 family cytokine pathways underlying NAFLD: towards new treatment strategies. Trends Mol Med 24:458–471PubMedPubMedCentral
52.
Zurück zum Zitat Bigorgne AE, John B, Ebrahimkhani MR et al (2016) TLR4-dependent secretion by hepatic stellate cells of the neutrophil-chemoattractant CXCL1 mediates liver response to gut microbiota. PLoS ONE 11:e151063PubMedPubMedCentral Bigorgne AE, John B, Ebrahimkhani MR et al (2016) TLR4-dependent secretion by hepatic stellate cells of the neutrophil-chemoattractant CXCL1 mediates liver response to gut microbiota. PLoS ONE 11:e151063PubMedPubMedCentral
53.
Zurück zum Zitat Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338PubMed Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338PubMed
54.
Zurück zum Zitat Zhu L, Baker SS, Gill C et al (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57:601–609PubMed Zhu L, Baker SS, Gill C et al (2013) Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57:601–609PubMed
55.
Zurück zum Zitat Yuan J, Chen C, Cui J et al (2019) Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab 30:675–688.e7PubMed Yuan J, Chen C, Cui J et al (2019) Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab 30:675–688.e7PubMed
56.
Zurück zum Zitat Aljomah G, Baker SS, Liu W et al (2015) Induction of CYP2E1 in non-alcoholic fatty liver diseases. Exp Mol Pathol 99:677–681PubMedPubMedCentral Aljomah G, Baker SS, Liu W et al (2015) Induction of CYP2E1 in non-alcoholic fatty liver diseases. Exp Mol Pathol 99:677–681PubMedPubMedCentral
57.
Zurück zum Zitat Aranha MM, Cortez-Pinto H, Costa A et al (2008) Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol 20:519–525PubMed Aranha MM, Cortez-Pinto H, Costa A et al (2008) Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol 20:519–525PubMed
58.
Zurück zum Zitat Ferslew BC, Xie G, Johnston CK et al (2015) Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci 60:3318–3328PubMedPubMedCentral Ferslew BC, Xie G, Johnston CK et al (2015) Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci 60:3318–3328PubMedPubMedCentral
59.
Zurück zum Zitat Ogawa Y, Kurosu H, Yamamoto M et al (2007) BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 104:7432–7437PubMedPubMedCentral Ogawa Y, Kurosu H, Yamamoto M et al (2007) BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 104:7432–7437PubMedPubMedCentral
60.
Zurück zum Zitat So WY, Cheng Q, Chen L et al (2013) High glucose represses β‑klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor γ signaling. Diabetes 62:3751–3759PubMedPubMedCentral So WY, Cheng Q, Chen L et al (2013) High glucose represses β‑klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor γ signaling. Diabetes 62:3751–3759PubMedPubMedCentral
61.
Zurück zum Zitat Finn PD, Rodriguez D, Kohler J et al (2019) Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in western diet-fed mice. Am J Physiol Gastrointest Liver Physiol 316:G412–G424PubMedPubMedCentral Finn PD, Rodriguez D, Kohler J et al (2019) Intestinal TGR5 agonism improves hepatic steatosis and insulin sensitivity in western diet-fed mice. Am J Physiol Gastrointest Liver Physiol 316:G412–G424PubMedPubMedCentral
62.
Zurück zum Zitat Ding L, Chang M, Guo Y et al (2018) Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis 17:286PubMedPubMedCentral Ding L, Chang M, Guo Y et al (2018) Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis 17:286PubMedPubMedCentral
63.
Zurück zum Zitat Roy S, Yuzefpolskaya M, Nandakumar R et al (2020) Plasma trimethylamine-N-oxide and impaired glucose regulation: results from the oral infections, glucose intolerance and insulin resistance study (ORIGINS). PLoS ONE 15:e227482PubMedPubMedCentral Roy S, Yuzefpolskaya M, Nandakumar R et al (2020) Plasma trimethylamine-N-oxide and impaired glucose regulation: results from the oral infections, glucose intolerance and insulin resistance study (ORIGINS). PLoS ONE 15:e227482PubMedPubMedCentral
65.
Zurück zum Zitat Tan X, Liu Y, Long J et al (2019) Trimethylamine N‑oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease. Mol Nutr Food Res 63:e1900257PubMed Tan X, Liu Y, Long J et al (2019) Trimethylamine N‑oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid X receptor signaling in nonalcoholic fatty liver disease. Mol Nutr Food Res 63:e1900257PubMed
66.
Zurück zum Zitat Bomhof MR, Parnell JA, Ramay HR et al (2019) Histological improvement of non-alcoholic steatohepatitis with a prebiotic: a pilot clinical trial. Eur J Nutr 58:1735–1745PubMed Bomhof MR, Parnell JA, Ramay HR et al (2019) Histological improvement of non-alcoholic steatohepatitis with a prebiotic: a pilot clinical trial. Eur J Nutr 58:1735–1745PubMed
67.
Zurück zum Zitat Eslamparast T, Poustchi H, Zamani F et al (2014) Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr 99:535–542PubMed Eslamparast T, Poustchi H, Zamani F et al (2014) Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr 99:535–542PubMed
68.
Zurück zum Zitat Ma YY, Li L, Yu CH et al (2013) Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol 19:6911–6918PubMedPubMedCentral Ma YY, Li L, Yu CH et al (2013) Effects of probiotics on nonalcoholic fatty liver disease: a meta-analysis. World J Gastroenterol 19:6911–6918PubMedPubMedCentral
69.
Zurück zum Zitat Pachikian BD, Essaghir A, Demoulin JB et al (2013) Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways. Mol Nutr Food Res 57:347–359PubMed Pachikian BD, Essaghir A, Demoulin JB et al (2013) Prebiotic approach alleviates hepatic steatosis: implication of fatty acid oxidative and cholesterol synthesis pathways. Mol Nutr Food Res 57:347–359PubMed
Metadaten
Titel
Mikrobiom und metabolische Fettlebererkrankung (MeFLD)
verfasst von
Noreen Neuwirth
Samuel Kochenburger
Prof. Dr. med. Christian Sina
Publikationsdatum
14.02.2021
Verlag
Springer Medizin
Erschienen in
Die Diabetologie / Ausgabe 4/2021
Print ISSN: 2731-7447
Elektronische ISSN: 2731-7455
DOI
https://doi.org/10.1007/s11428-021-00725-z

Weitere Artikel der Ausgabe 4/2021

Die Diabetologie 4/2021 Zur Ausgabe

Mitteilungen des BDE

Mitteilungen des BDE

Mitteilungen des BDI

Mitteilungen des BDI

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.