FGD1-related Aarskog–Scott syndrome: Identification of four novel variations and a literature review of clinical and molecular aspects
DOI: 10.1007/s00431-024-05484-9
© The Author(s) 2024
Received: 15 January 2024
Accepted: 12 February 2024
Published: 27 February 2024
Abstract
Patients with Aarskog–Scott syndrome (AAS) have short stature, facial anomalies, skeletal deformities, and genitourinary malformations. FYVE, RhoGEF, and PH domain-containing 1 (FGD1) is the only known causative gene of AAS. However, the diagnosis of AAS remains difficult, and specific treatments are still absent. Patients suspected with AAS were recruited, and clinical information was collected. Genetic testing and functional analysis were carried out for the diagnosis. By literature review, we summarized the clinical and genetic characteristics of FGD1-related AAS and analyzed the genotype–phenotype correlation. Five patients were recruited, and four novel FGD1 variants were identified. The diagnosis of AAS was confirmed by genetic analysis and functional study. Three patients treated with growth hormone showed improved heights during the follow-up period. By literature review, clinical features of AAS patients with FGD1 variants were summarized. Regarding FGD1 variations, substitutions were the most common form, and among them, missense variants were the most frequent. Moreover, we found patients with drastic variants showed higher incidences of foot and genitourinary malformations. Missense variants in DH domain were related to a lower incidence of cryptorchidism.
What is Known: • Aarskog–Scott syndrome is a rare genetic disease, and the only known cause is the variant in FGD1 gene. The typical clinical manifestations of AAS include facial, skeletal, and urogenital deformities and short stature. | |
What is New: • We reported four novel FGD1 variants and reported the treatment of growth hormone in FGD1-related AAS patients. Our genotype–phenotype correlation analysis suggested the crucial role of DH domain in FGD1 function. |
Keywords
Aarskog–Scott syndrome FGD1 Short stature Growth hormone treatment Genotype–phenotype correlation analysisAbbreviations
- AAS:
-
Aarskog–Scott syndrome
- ACMG:
-
The American College of Medical Genetics
- ERK 1/2:
-
Extracellular signal-regulated kinase 1/2
- FGD1 :
-
FYVE, RhoGEF, and PH domain-containing 1
- GEF:
-
Guanine nucleotide exchange factor
- GHD:
-
Growth hormone deficiency
- HGMD:
-
The Human Gene Mutation Database
- PEG-rhGH:
-
PEGylated rhGH
- rhGH:
-
Recombinant human growth hormone
- RUNX2:
-
Runt-related transcription factor 2
Introduction
Aarskog–Scott syndrome (AAS, OMIM #305400), or faciogenital dysplasia (FGDY), firstly described by Aarskog in 1970 and further improved by Scott in 1971, is a rare genetic disease with a population prevalence of about 1/25,000 [1–3]. The clinical manifestations of AAS are heterogeneous. Typical features include short stature, facial anomalies (hypertelorism, ptosis, anteverted nares, and long philtrum), skeletal deformities (short, broad hands, and short fifth fingers), and genitourinary malformations (shawl scrotum, cryptorchidism, and inguinal/umbilical hernia) [4]. Rare symptoms such as cardiovascular defects, mild mental retardation, and attention-deficit hyperactivity disorder (ADHD) have also been reported [5–8].
Although there were a few reports of different inheritance patterns in AAS, the majority cases are inherited in X-linked recessive pattern. FGD1 (FYVE, RhoGEF, and PH domain-containing 1) gene located on chromosome Xp11.21 is responsible for part of the X-linked recessive form of AAS and is also the only known causative gene of AAS [3]. FGD1 consists of 18 exons, encoding FGD1 protein of 961 amino acids. The FGD1 protein contains five important domains including a putative Src homology 3 (SH3)-binding region (PRD), two pleckstrin homology (PH) domains, a Dbl homology (DH) domain, and a zinc finger (FYVE) domain [9]. It is a Rho/RAC guanine nucleotide exchange factor (GEF) and can regulate many physiological functions, such as cytoskeleton remodeling, osteoblast differentiation, extracellular matrix remolding, and cell trafficking [5, 10–12]. Importantly, studies have reported that FGD1 played a critical role in skeletal development via regulating downstream factors including extracellular signal-regulated kinase 1/2 (ERK1/2) and runt-related transcription factor 2 (RUNX2) in osteoblasts [11].
Although FGD1 variant is the only known cause of AAS, there are only about 20% of AAS patients who were confirmed to have variants in FGD1, which may be due to the presence of undetected FGD1 variants or the involvement of epigenetic or exogenous causes in the pathogenesis of AAS [5, 13]. Because it is easily confused with other syndromes like Noonan syndrome and Robinow syndrome, the diagnosis is very difficult without clear biochemical diagnostic criteria. In addition, as the patients grow older, the phenotype may become less typical, making diagnosis more difficult [7]. Moreover, due to the unclear pathogenesis of AAS, there is a lack of specific treatment for the disease, and the therapeutic effect is also unclear currently.
In this study, we recruited five Chinese patients with suspected AAS and confirmed the diagnosis by next-generation sequencing and functional study. The follow-up data of recombinant human growth hormone (rhGH) treatment on FGD1-related AAS patients were presented. Moreover, combined with the literature review of AAS patients with FGD1 variants, the correlations between genotype and phenotype were analyzed.
Materials and methods
Patient enrollment and clinical investigations
Patients who presented with suspected AAS and showed clinical manifestations including short stature, facial anomalies, skeletal deformities, and genitourinary malformations were enrolled in this study. The medical history and clinical information of patients were collected. The serum IGF-1 and IGFBP-3 levels were detected by chemiluminescent immunoassay (IMMULITE 2000 XPi immunoassay system, Siemens Ltd), and the IGF-1 SDS was calculated as previously reported [14]. A combined insulin–clonidine or arginine–clonidine stimulation test was conducted in the patients to assess the peak level of growth hormone secretion. The stimulated growth hormone level greater than 10 ng/mL is considered to be normal [15]. During the treatment of rhGH, the patients were followed up every 3 to 4 months. At each visit, the height and weight were monitored. The serum IGF-1 levels and fasting blood glucose and insulin levels, as well as thyroid function, were evaluated at the same time.
Ethics statement
The human study was approved by the Ethics Committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (TJ-IRB20180703). The study was performed according to the Declaration of Helsinki. Written informed consents were obtained from the parents.
Genetic testing
Peripheral blood was collected from the patients and their family members. The genomic DNA was extracted from each blood sample by QIAamp DNA Blood Mini Kit (Qiagen GmbH, Hilden, Germany). To perform next-generation sequencing, the genomic DNA was fragmented, and the DNA library was prepared by MyGenostics protocols (Beijing, China). The amplified DNA was captured using the GenCap WES capture kit (MyGenostics, Beijing, China). The enrichment libraries were then sequenced on the DNBSEQ-T7 platform (MGI, Shenzhen, China). After sequencing, the raw data was analyzed by the BWA-GATK procedure (http://bio-bwa.sourceforge.net/ and https://software.broadinstitute.org/gatk/). Variants were further annotated by ANNOVAR (http://annovar.openbioinformatics.org/en/latest/) and associated with multiple databases: the 1000 Genomes Project (http://www.1000genomes.org), bSNP (http://www.ncbi.nlm.nih.gov/projects/SNP), the Human Gene Mutation Database (HGMD) (http://www.hgmd.cf.ac.uk), and the MyGenostics local database.
To confirm the FGD1 variants from next-generation sequencing, corresponding exons and exon–intron boundaries were amplified by PCR and purified and then sequenced using the ABI3730XL sequencer (Applied Biosystems; Thermo Fisher Scientific, Inc., Waltham, MA, USA). The sequence data was then analyzed using Mutation Surveyor DNA Variant Analysis software (version 4.0.4; SoftGenetics, LLC.).
Bioinformatic analysis of the function of identified variants
SIFT (http://provean.jcvi.org/index.php), PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2), MutationTaster (http://www.mutationtaster.org), Combined Annotation Dependent Depletion (CADD) Phred scores (https://cadd.gs.washington.edu/), and GERP++ (https://mendel.stanford.edu/sidowlab/downloads/gerp/index.html) were used to predict the effect of identified variants on protein function. Protein multi-sequences alignment and amino acid hydrophilicity analysis were displayed by DNAMAN 6.0.3.99 (Lynnon Biosoft, USA).
Plasmid construction
Wild-type human FGD1 cDNA was subcloned into the eukaryotic expression vector pcDNA3.1-Flag-C as the template for further cloning steps. Based on the wild-type plasmid, site-directed mutagenesis was performed using the QuikChange site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA) to construct the mutant plasmids. Each of the plasmids was verified by DNA sequencing. The sequencing primers used are listed in Table S1.
Cell culture and transfection
HEK-293T cells were cultured in DMEM supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin at 37 ℃ in a humidified 5% CO2 incubator. Cells were seeded in 12-well plates, and when the cellular fusion rate was 70–80%, 2 µg plasmid DNA and 4 µl Lipo3000 Reagent (Invitrogen, USA) were added to each well according to the manufacturer’s instruction. Meanwhile, pCMV6-AC-GFP was co-transfected with FGD1 vectors as a control of transfection. After 48 h of transfection, HEK-293T cells were collected and further analyzed.
Quantitative real-time PCR
Total RNA was extracted from transfected cells using RNAiso plus (Takara, Tokyo, Japan), and RNA was reverse-transcribed using PrimeScript RT Master Mix (Takara, Tokyo, Japan) according to the manufacturer’s protocol. All amplifications were performed on CFX Connect Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) with a 10 µl reaction mixture consisting of 0.2 µl forward primer, 0.2 µl reverse primer, 1 µl cDNA, 3.6 µl H2O, and 5 µl SYBR Premix EX Taq (Takara, Tokyo, Japan). GFP was amplified as an internal control. The comparative threshold cycle (2−ΔΔCT) method was used to analyze the relative mRNA expression. The primers for RT-qPCR are provided in Table S1.
Western blot
Protein extracted from the transfected cells with RIPA lysis buffer (BOSTER, Wuhan, China) was separated by 10% SDS-PAGE and then transferred to nitrocellulose filter membranes. After blocking with 5% skim milk for 2 h at room temperature, the membranes were incubated overnight at 4 ℃ with primary antibodies as shown in Table S2. After incubating with the secondary antibodies, protein bands were visualized by a chemiluminescence system (ChemiDox XRS+, Bio-Rad, CA, USA) and then analyzed using Image Lab software from Bio-Rad.
Literature search strategy and data analysis
Case series studies or case reports containing the clinical data and information of FGD1 gene variations of AAS patients were searched in HGMD, PubMed, and two Chinese public searching databases (China National Knowledge Infrastructure and WANFANG DATA). The following search terms were used: Aarskog–Scott syndrome, FGD1, faciogenital dysplasia, faciodigitogenital syndrome, or Aarskog syndrome. The searching deadline was January 2024. Cases without genetic evidence were excluded. Cases without complete phenotypic descriptions were excluded when analyzing the phenotypic characteristics of AAS patients. Patient basic information, clinical characteristics, and FGD1 gene variations were extracted from selected cases. Ultimately, the phenotypic spectrum and variant spectrum of FGD1-related AAS patients were obtained.
Statistical analysis
The continuous variable was expressed as mean ± SEM, and the categorical variable was expressed as number and percentage. One-way analysis of variance (ANOVA) with Tukey’s multiple comparisons test was used for multiple comparisons of normally distributed data. Fisher’s exact test was used to compare the incidence of clinical characteristics between the two groups. P < 0.05 was considered to be statistically significant. When conducting pairwise comparisons between multiple groups, Bonferroni correction was used to correct for the significance levels. All statistical tests were performed with GraphPad Prism software version 8.0 (GraphPad Software Inc., San Diego, CA, USA).
Results
Case series
Clinical characteristics
This study enrolled five Chinese Han patients from four different medical centers in China. Except that case 2 and case 3 were brothers, the patients were not related. All of them were born to non-consanguineous parents. Cases 1–3 had family history of short stature, especially their mothers. No facial or skeletal malformations were observed in their parents.
Their basic clinical characteristics and laboratory examination at the first visit are shown in Table S3. They were all male aged from 4 to 10 years old. Other than case 4, the patients showed different patterns of intrauterine growth restriction in aspect of birth weight or birth length. Severe postnatal growth retardation was found in each of the patients. Except for case 2, delayed bone age was found in these patients. The IGF-1 and IGFBP-3 levels of the patients were normal. The stimulated growth hormone levels were normal except for case 5. All of the patients had normal blood cell counts, liver function, kidney function, serum electrolytes, and blood gas. Their fasting blood glucose and insulin, thyroid function, and adrenal function were also normal.
Genetic and clinical information of five patients in our study
Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | |
---|---|---|---|---|---|
Genetic features | |||||
Variant effect | Splicing | Missense | Missense | Missense | Splicing |
Nucleotide change | c.2016-1G > A | c.1829G > T | c.1829G > T | c.1345C > T | c.2580+1G > A |
Amino acid change | / | R610L | R610L | R449C | / |
Variant site | Intron 12 | Exon 10 | Exon 10 | Exon 7 | Intron 17 |
Affected domain | PH1 | PH1 | PH1 | DH | PH2 |
Source of variant | Mother | Mother | Mother | Mother | De novo |
Growth retardation | |||||
Short stature | + | + | + | + | + |
Delayed bone age | + | + | + | + | + |
Specific facial features | |||||
Hypertelorism | + | + | + | + | - |
Short nose with anteverted nares/long philtrum | + | + | + | + | + |
Ptosis | + | - | - | + | + |
Downward slant of palpebral fissures | - | - | - | + | - |
Widow’s peak | - | - | - | + | - |
Frontal bossing | + | + | + | - | - |
Dental malocclusion | - | + | + | - | + |
Skeletal deformities | |||||
Short, broad hands | - | + | + | + | + |
Short fifth fingers/clinodactyly | + | + | + | + | + |
Broad feet with bulbous toes | - | - | - | - | + |
Flatfoot | - | + | + | - | + |
Pectus excavatum | - | - | - | - | - |
Genitourinary malformations | |||||
Cryptorchidism | + | + | - | - | + |
Inguinal hernia | + | - | - | - | - |
Shawl scrotum | + | - | - | + | - |
Hypospadia | + | - | - | - | - |
Neuropsychiatric disorders | - | Mild intellectual disabilities | - | - | Attention disorder |
Cardiovascular defects | PDA | - | PFO | - | ASD |
Follow-up data | |||||
Formulation of rhGH | / | Daily rhGH | Daily rhGH | / | PEG-rhGH |
Therapeutic dose | / | 0.05 mg/kg/day | 0.05 mg/kg/day | / | 0.2 mg/kg/week |
Follow-up time | / | 16 months | 16 months | / | 34 months |
Height before treatment | / | 118.5 cm (< 3rd, − 3.75 SDS) | 101.6 cm (< 3rd, − 2.91 SDS) | / | 119.3 cm (< 3rd, − 2.14 SDS) |
Annual growth velocity before treatment | / | / | / | / | 5 cm/year |
Height after treatment | / | 127.5 cm (< 3rd, − 2.99 SDS) | 110.3 cm (< 3rd, − 2.14 SDS) | / | 145.2 cm (25–50th, − 0.46SDS) |
Annual growth velocity after treatment | / | 6.75 cm/year | 8.70 cm/year | / | 8.68 cm/year |
Among them, case 1 had the most severe genitourinary malformations. He showed incomplete penoscrotal transposition and shawl scrotum. His penis was poorly developed and bent downward, with the absence of a penile frenulum. He also had hypospadias with the urethra opening on the ventral side of the penis close to the scrotum. Moreover, a bifid and empty scrotum was found in him. He had cryptorchidism, and the bilateral testicles were palpable in the inguinal canals. An inguinal hernia was also found in him with a reversible mass in the right scrotum. In addition, case 2 was the elder brother of case 3, and both of them had similar facial features. Differently, case 2 had cryptorchidism on the right side, mild defect in intelligence, and normal cardiac ultrasonography, while case 3 showed no genitourinary abnormalities, normal intelligence, and patent foramen ovale on the ultrasonography. Case 4 had no other symptoms except for typical AAS phenotypes such as short stature, short nose with anteverted nares/long philtrum, ptosis, short fingers, and shawl scrotum. As for case 5, in addition to typical AAS symptoms, he also had attention disorder and atrial septal defect, which were rare clinical phenotypes of AAS.
Genetic testing and bioinformatic analysis
In these patients, four novel variants in FGD1 gene were found by next-generation sequencing and confirmed by Sanger sequencing in the patients and their parents (Figs. 1f–i, and S1; Table 1).
A maternal inherited splice-site variant of c.2016-1G>A and a de novo splice-site variant of c.2580+1G>A were found in case 1 and case 5, respectively. These two canonical splice-site variants were not reported in the population databases mentioned above. According to the guidelines of the American College of Medical Genetics (ACMG), both of the splice-site variants in FGD1 were determined as pathogenic (PVS1+PM2+PP4 for case 1 and PVS1+PS2+PM2+PP4 for case 5).
In vitro functional analysis of the identified missense variants
To further investigate the pathogenicity of the identified missense variants, mutated FGD1 vectors of R610L and R449C were constructed. Wild-type (WT) or mutated FGD1 vectors were transfected into HEK-293T cells together with pCMV6-AC-GFP as an external control of transfection.
Firstly, the effect of R610L mutant on FGD1 mRNA and protein expression was analyzed. In cells transfected with R610L mutant, the mRNA and protein levels of FGD1 were significantly suppressed by R610L mutant compared with WT vectors (Fig. 2g). It suggested that R610L mutant could affect the stability of mRNA or the processing and modification process of mRNA precursors. The pathogenicity of c.1829G>T (p.R610L) in FGD1 was determined as pathogenic (PS3+PM2+PM5+PP3+PP4).
In cells transfected with R449C mutant, both mRNA and protein expression levels of FGD1 remained similar with those in cells transfected with WT vectors (Fig. 2g). Thus, we further evaluated the expression levels of downstream effectors ERK 1/2 and RUNX2.
It revealed that the phosphorylation level of ERK 1/2 and protein expression level of RUNX2 were both significantly decreased in cells transfected with R449C mutant compared to cells transfected with WT vectors (Fig. 2h, i). Although the FGD1 protein expression was not affected, these results suggested that R449C mutant could disturb the cellular function of FGD1 indicated by RUNX2 and ERK 1/2. Thus, the pathogenicity of c.1345C>T (p.R449C) in FGD1 was interpreted as likely pathogenic (PS3+PM2+PP4).
Treatment and follow-up
For case 2 and case 3, they started the treatment immediately after the diagnosis (at the age of 10 years and 4 months and 5 years and 4 months, respectively). Before the treatment, their heights were 118.5 cm (<3rd, −3.75 SDS) and 101.6 cm (<3rd, −2.91 SDS), respectively, but their growth velocities were not recorded. The serum IGF-1 levels for cases 2 and 3 before the treatment were 218 ng/mL (−0.24 SDS) and 192 ng/mL (1.02 SDS), respectively. Case 2 was treated with daily rhGH of 0.05 mg/kg/day for 16 months. After the treatment, his height increased to 127.5 cm (<3rd, −2.99 SDS), and his estimated annual growth velocity during the treatment was 6.75 cm/year. Case 3 was treated with daily rhGH of 0.05 mg/kg/day for 1 year, and his height was 110.3 cm (<3rd, −2.14 SDS). His estimated annual growth velocity during the treatment was 8.70 cm/year. The IGF-1 levels of case 2 and case 3 increased to 448 ng/mL (1.51 SDS) and 236 ng/mL (1.54 SDS) after the treatments.
Case 5 was treated with the once-weekly PEG-rhGH for 34 months from the age of 8 years and 7 months. Before treatment, his growth velocity was about 5 cm/year, his height was 119.3 cm (< 3rd, −2.14 SDS), and his serum IGF-1 level was 200 ng/mL (0.23 SDS). After 16 months of PEG-rhGH treatment (0.2 mg/kg/week), his height increased to 131.2 cm (3rd to 10th, −1.45 SDS), and his annual growth velocity during the treatment was 7.95 cm/year, and the IGF-1 level increased to 382 ng/mL (1.73 SDS). After continuing treatment for 18 months, when he was 11 years and 5 months old, his height reached 145.2 cm (25–50th, −0.46 SDS), and his serum IGF-1 level reached 414 ng/mL (1.49 SDS). Throughout the entire treatment period, his annual growth velocity was 8.68 cm/year.
During the treatment, their glucose metabolism and thyroid function were all normal, and no related adverse events were reported. These results suggested the possible efficacy of rhGH treatment on the height of FGD1-related AAS children during the follow-up period. Longer follow-up time is needed to demonstrate the effectiveness and safety of rhGH treatment on FGD1-related AAS patients.
Literature review of FGD1-related AAS
Since the variant in FGD1 is currently the only clear cause of AAS, we analyzed FGD1-related AAS cases to explore the genotype and phenotype correlation. Including the four novel variants reported in our study, there were a total of 72 pathogenic or likely pathogenic variants reported. Among them, 62 variants were included in HGMD, 4 variants were found in the PubMed database, and 2 variants were found in the Chinese Journal of Endocrine Metabolism and the Chinese Journal of Medical Genetics. Additionally, 67 of the 72 reports described the clinical features of the affected subjects in detail, so we focused on these reports when analyzing the phenotypes of AAS patients.
Clinical features of FGD1-related AAS
Summary of clinical features of patients with reported FGD1 variations
Clinical features | n/N | % |
---|---|---|
Short stature | 62/63 | 98.4 |
Specific facial features | 61/62 | 98.4 |
Hypertelorism | 56/62 | 90.3 |
Short nose | 55/61 | 90.2 |
Long philtrum | 46/61 | 75.4 |
Anteverted nares | 45/61 | 73.8 |
Ptosis | 38/61 | 62.3 |
Abnormal auricles/low ear position | 31/61 | 50.8 |
Downward slant of palpebral fissures | 29/61 | 47.5 |
Widow’s peak | 25/61 | 41.0 |
Crease below the lower lip | 17/61 | 27.9 |
Micrognathia | 7/61 | 11.5 |
Maxillary hypoplasia | 4/61 | 6.6 |
Skeletal deformities | 60/62 | 96.8 |
Deformity of hand | 60/62 | 96.8 |
Deformity of foot | 38/62 | 61.3 |
Joint hyperextension | 21/62 | 33.9 |
Thoracic skeletal malformation | 9/62 | 14.5 |
Genitourinary malformations | 56/59 | 94.9 |
Shawl scrotum | 46/62 | 74.2 |
Cryptorchidism | 37/62 | 59.7 |
Inguinal hernia | 18/59 | 30.5 |
Neuropsychiatric disorders | 34/66 | 51.5 |
Developmental retardation | 16/66 | 24.2 |
Mental impairment | 9/66 | 13.6 |
Attention disorder | 9/66 | 13.6 |
Intellectual disabilities | 9/66 | 13.6 |
Cardiovascular defects | 9/66 | 13.6 |
Ventricular septal defect | 3/66 | 4.5 |
Patent ductus arteriosus | 2/66 | 3.0 |
Vascular malformation | 2/66 | 3.0 |
Atrial septal defect | 1/66 | 1.5 |
Patent foramen ovale | 1/66 | 1.5 |
Variant spectrum of FGD1 gene
Classification of variants based on DNA variants, variant effect, and domain distribution
n | % | |
---|---|---|
DNA variants | ||
SNVs (substitutions) | 43 | 64.2 |
Deletions | 11 | 16.4 |
Insertions | 5 | 7.5 |
Duplications | 4 | 6.0 |
Large-scale deletions | 4 | 6.0 |
Total | 67 | 100 |
Variant effect | ||
Missense variants | 22 | 32.8 |
Frameshift variants | 19 | 28.4 |
Nonsense variants | 13 | 19.4 |
Splice-site variants | 8 | 11.9 |
Gross deletions | 4 | 6.0 |
Inframe deletion | 1 | 1.5 |
Total | 67 | 100 |
Domain location of variants | ||
PRD | 14 | 23.7 |
DH | 25 | 42.4 |
PH1 | 13 | 22.0 |
FYVE | 4 | 6.8 |
PH2 | 3 | 5.1 |
Total | 59 a | 100 |
Genotype–phenotype correlation analysis
Genotype–phenotype correlation analysis
Missense variants (N = 22) | Drastic variants (N = 43) | P-value | |
---|---|---|---|
Growth retardation | |||
Short stature | 19/19 (100.0%) | 42/43 (97.7%) | > 0.99 |
Height SDS | − 3.235 (0.39)a | − 2.816 (0.21)b | 0.31 |
Specific facial features | 18/19 (94.7%) | 42/42 (100.0%) | 0.31 |
Hypertelorism | 16/19 (84.2%) | 39/42 (92.9%) | 0.36 |
Short nose | 16/19 (84.2%) | 38/41 (92.7%) | 0.37 |
Long philtrum | 12/19 (63.2%) | 33/41 (80.5%) | 0.22 |
Anteverted nares | 12/19 (63.2%) | 32/41 (78.0%) | 0.35 |
Ptosis | 11/19 (57.9%) | 27/41 (65.9%) | 0.58 |
Abnormal auricles/low ear position | 9/19 (47.4%) | 21/41 (51.2%) | > 0.99 |
Downward slant of palpebral fissures | 8/19 (42.1%) | 21/41 (51.2%) | 0.41 |
Widow’s peak | 8/19 (42.1%) | 16/41 (39.0%) | > 0.99 |
Crease below the lower lip | 4/19 (21.1%) | 12/41 (29.3%) | 0.75 |
Micrognathia | 2/19 (10.5%) | 5/41 (12.2%) | > 0.99 |
Maxillary hypoplasia | 1/19 (5.3%) | 3/41 (7.3%) | > 0.99 |
Skeletal deformities | 18/20 (90.0%) | 41/41 (100.0%) | 0.10 |
Deformity of hand | 18/20 (90.0%) | 41/41 (100.0%) | 0.10 |
Deformity of foot | 8/20 (40.0%) | 29/41 (70.7%) | 0.03* |
Joint hyperextension | 7/20 (35.0%) | 14/41 (34.1%) | > 0.99 |
Thoracic skeletal malformation | 2/20 (10.0%) | 7/41 (17.1%) | 0.70 |
Genitourinary malformations | 15/20 (75%) | 40/41 (97.6%) | 0.01* |
Shawl scrotum | 11/20 (55%) | 34/41 (82.9%) | 0.03* |
Cryptorchidism | 7/20 (35%) | 30/41 (73.2%) | 0.006* |
Inguinal hernia | 6/19 (31.6%) | 12/39 (30.8%) | > 0.99 |
Neuropsychiatric disorders | 14/22 (63.6%) | 19/43 (43.8%) | 0.19 |
Developmental retardation | 8/22 (36.4%) | 7/43 (16.3%) | 0.12 |
Mental impairment | 3/22 (13.6%) | 6/43 (14.0%) | > 0.99 |
Attention disorder | 3/22 (13.6%) | 6/43 (14.0%) | > 0.99 |
Intellectual disabilities | 4/22 (18.2%) | 5/43 (11.6%) | > 0.99 |
Cardiovascular defects | 2/22 (9.1%) | 7/43 (12.5%) | 0.71 |
Ventricular septal defect | 1/22 (4.5%) | 2/43 (4.7%) | > 0.99 |
Patent ductus arteriosus | 0 | 2/43 (4.7%) | 0.55 |
Vascular malformation | 0 | 2/43 (4.7%) | 0.55 |
Atrial septal defect | 0 | 1/43 (2.3%) | > 0.99 |
Patent foramen ovale | 1/22 (4.5%) | 0 | 0.34 |
Correlation analysis between the affected domains and phenotypes
Location of missense variants | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Phenotypes | In PRD domain (A) | Outside PRD domain (B) | P-value A vs. B | In DH domain (C) | Outside DH domain (D) | P-value C vs. D | In PH1 domain (E) | Outside PH1 domain (F) | P-value E vs. F | In FYVE domain (G) | Outside FYVE domain (H) | P-value G vs. H |
Short stature | 2/2 (100%) | 17/17 (100%) | > 0.99 | 13/13 (100%) | 6/6 (100%) | > 0.99 | 3/3 (100%) | 16/16 (100%) | > 0.99 | 1/1 (100%) | 18/18 (100%) | > 0.99 |
Specific facial features | 1/2 (50%) | 17/17 (100%) | 0.11 | 13/13 (100%) | 5/6 (83.3%) | 0.32 | 3/3 (100%) | 15/16 (93.8%) | > 0.99 | 1/1 (100%) | 17/18 (94.4%) | > 0.99 |
Hypertelorism | 1/2 (50%) | 15/17 (88.2%) | 0.30 | 11/13 (84.6%) | 5/6 (83.3%) | > 0.99 | 3/3 (100%) | 13/16 (81.3%) | > 0.99 | 1/1 (100%) | 15/18 (83.3%) | > 0.99 |
Ptosis | 1/2 (50%) | 10/17 (58.8%) | > 0.99 | 8/13 (61.5%) | 3/6 (50%) | > 0.99 | 2/3 (66.7%) | 9/16 (56.3%) | > 0.99 | 0/1(0) | 11/18 (61.1%) | 0.42 |
Abnormal auricles/low ear position | 1/2 (50%) | 8/17 (47.1%) | > 0.99 | 7/13 (53.8%) | 2/6 (33.3%) | 0.63 | 1/3 (33.3%) | 8/16 (50%) | > 0.99 | 0/1(0) | 9/18 (50%) | > 0.99 |
Downward slant of palpebral fissures | 1/2 (50%) | 7/17 (41.2%) | > 0.99 | 5/13 (38.5%) | 3/6 (50%) | > 0.99 | 1/3 (33.3%) | 7/16 (43.8%) | > 0.99 | 1/1 (100%) | 7/18 (38.9%) | 0.42 |
Anteverted nares | 1/2 (50%) | 11/17 (64.7%) | > 0.99 | 8/13 (61.5%) | 4/6 (66.7%) | > 0.99 | 2/3 (66.7%) | 10/16 (62.5%) | > 0.99 | 1/1 (100%) | 11/18 (61.1%) | > 0.99 |
Short nose | 1/2 (50%) | 15/17 (88.2%) | 0.30 | 11/13 (84.6%) | 5/6 (83.3%) | > 0.99 | 3/3 (100%) | 13/16 (81.3%) | > 0.99 | 1/1 (100%) | 15/18 (83.3%) | > 0.99 |
Long philtrum | 1/2 (50%) | 11/17 (64.7%) | > 0.99 | 9/13 (69.2%) | 3/6 (50%) | 0.62 | 2/3 (66.7%) | 10/16 (62.5%) | > 0.99 | 0/1(0) | 12/18 (66.7%) | 0.37 |
Widow’s peak | 0/2 (0) | 8/17 (47.1%) | 0.50 | 6/13 (46.2%) | 2/6 (33.3%) | > 0.99 | 1/3 (33.3%) | 7/16 (43.8%) | > 0.99 | 1/1 (100%) | 7/18 (38.9%) | 0.42 |
Crease below the lower lip | 0/2 (0) | 4/17 (23.5%) | > 0.99 | 3/13 (23.1%) | 1/6 (16.7%) | > 0.99 | 1/3 (33.3%) | 3/16 (18.8%) | 0.53 | 0/1(0) | 4/18 (22.2%) | > 0.99 |
Micrognathia | 0/2 (0) | 2/17 (11.8%) | > 0.99 | 2/13 (15.4%) | 0/6(0) | > 0.99 | 0/3(0) | 2/16 (12.5%) | > 0.99 | 0/1(0) | 2/18 (11.1%) | > 0.99 |
Maxillary hypoplasia | 0/2 (0) | 1/17 (5.9%) | > 0.99 | 1/13 (7.7%) | 0/6(0) | > 0.99 | 0/3(0) | 1/16 (6.3%) | > 0.99 | 0/1(0) | 1/18 (5.6%) | > 0.99 |
Skeletal deformities | 1/2 (50%) | 17/18 (94.4%) | > 0.99 | 13/14 (92.9%) | 5/6 (83.3%) | 0.52 | 3/3 (100%) | 15/17 (88.2%) | > 0.99 | 1/1 (100%) | 17/19 (89.5%) | > 0.99 |
Deformity of hand | 1/2 (50%) | 17/18 (94.4%) | > 0.99 | 13/14 (92.9%) | 5/6 (83.3%) | 0.52 | 3/3 (100%) | 15/17 (88.2%) | > 0.99 | 1/1 (100%) | 17/19 (89.5%) | > 0.99 |
Deformity of foot | 0/2 (0) | 8/18 (44.4%) | 0.49 | 5/14 (35.7%) | 3/6 (50%) | 0.64 | 3/3 (100%) | 5/17 (29.4%) | 0.05 | 0/1(0) | 8/19 (42.1%) | > 0.99 |
Joint hyperextension | 1/2 (50%) | 6/18 (33.3%) | > 0.99 | 6/14 (42.9%) | 1/6 (16.7%) | 0.3544 | 0/3(0) | 7/17 (41.2%) | 0.5211 | 0/1(0) | 7/19 (36.8%) | > 0.99 |
Thoracic skeletal malformation | 0/2 (0) | 2/18 (11.1%) | > 0.99 | 2/14 (14.3%) | 0/6(0) | > 0.99 | 0/3(0) | 2/17 (11.8%) | > 0.99 | 0/1(0) | 2/19 (10.5%) | > 0.99 |
Genitourinary malformations | 1/2 (50%) | 14/16 (87.5%) | > 0.99 | 10/12 (83.3%) | 5/6 (83.3%) | > 0.99 | 3/3 (100%) | 12/15 (80%) | > 0.99 | 1/1 (100%) | 14/17 (82.4%) | > 0.99 |
Cryptorchidism | 1/2 (50%) | 6/18 (33.3%) | > 0.99 | 2/14 (14.3%) | 5/6 (83.3%) | 0.007* | 3/3 (100%) | 4/17 (23.5%) | 0.03 | 1/1 (100%) | 6/19 (31.6%) | 0.35 |
Shawl scrotum | 0/2 (0) | 11/18 (61.1%) | 0.19 | 8/14 (57.1%) | 3/6 (50%) | > 0.99 | 2/3 (66.7%) | 9/17 (52.9%) | > 0.99 | 1/1 (100%) | 10/19 (52.6%) | > 0.99 |
Inguinal hernia | 0/2 (0) | 6/17 (35.3%) | > 0.99 | 6/13 (46.2%) | 0/6(0) | 0.11 | 0/3(0) | 6/16 (37.5%) | 0.52 | 0/1(0) | 6/18 (33.3%) | > 0.99 |
Neuropsychiatric disorders | 2/2 (100%) | 12/20 (60%) | 0.52 | 9/15 (60%) | 5/7 (71.4%) | > 0.99 | 2/3 (66.7%) | 12/19 (63.2%) | > 0.99 | 1/2 (50%) | 13/20 (65%) | > 0.99 |
Developmental retardation | 2/2 (100%) | 6/20 (30%) | 0.12 | 5/15 (33.3%) | 3/7 (42.9%) | > 0.99 | 1/3 (33.3%) | 7/19 (36.8%) | > 0.99 | 0/2(0) | 8/20 (40%) | 0.52 |
Mental impairment | 2/2 (100%) | 1/20 (5%) | 0.01* | 1/15 (6.7%) | 2/7 (28.6%) | 0.23 | 0/3(0) | 3/19 (15.8%) | > 0.99 | 0/2(0) | 3/20 (15%) | > 0.99 |
Attention disorder | 0/2 (0) | 3/20 (15%) | > 0.99 | 3/15 (20%) | 0/7(0) | 0.52 | 0/3(0) | 3/19 (15.8%) | > 0.99 | 0/2(0) | 3/20 (15%) | > 0.99 |
Intellectual disabilities | 0/2 (0) | 4/20 (20%) | > 0.99 | 2/15 (13.3%) | 2/7 (28.6%) | 0.56 | 1/3 (33.3%) | 3/19 (15.8%) | 0.47 | 1/2 (50%) | 3/20 (15%) | 0.34 |
Cardiovascular defects | 1/2 (50%) | 1/20 (5%) | 0.18 | 0/16(0) | 2/6 (33.3%) | 0.06 | 1/3 (33.3%) | 1/19 (5.3%) | 0.26 | 0/2(0) | 2/20 (10%) | > 0.99 |
Discussion
In this study, we reported five Chinese children with typical clinical characteristics of AAS. Four novel variants in FGD1 were found in them, including two pathogenic canonical splice-site variants and two missense variants. We confirmed the diagnosis of AAS by bioinformatic analysis and cellular experiments according to the ACMG guidelines. With the consensus of their parents, three of them were treated with rhGH, and the follow-up data during growth hormone treatment were presented. Furthermore, we summarized the clinical and genetic characteristics of reported FGD1-related AAS patients and analyzed the genotype and phenotype association, which further deepened our understanding of AAS and FGD1 gene.
The typical clinical manifestations of AAS included developmental malformations of the face, bones, and genitalia. As demonstrated in Table 1 and Fig. 1a–e, all five patients in our study exhibited these typical AAS symptoms. We further analyzed the incidences of these symptoms by literature review, and the results showed the incidences of short stature, special facial features, skeletal deformities, and genitourinary abnormalities were as high as 94.9–98.4% in FGD1-related AAS patients. As previously reported, neuropsychiatric disorders and cardiovascular abnormalities were considered as rare symptoms of AAS [5]. However, in our literature review, we found that the incidence of neuropsychiatric disorders was relatively high (51.5%), and the incidence of cardiac malformations reached 13.6% in FGD1-related AAS patients. Consistently, among the five patients in our case series, case 2 and case 5 had mild intellectual disabilities and attention disorder, respectively, and case 1, case 3, and case 5 all had different types of cardiovascular malformations. These results suggested that the neuropsychiatric disorders and cardiovascular malformations were worth to be noted in FGD1-related AAS patients.
Noteworthy, it has been reported that the clinical manifestations of patients with FGD1 variations are heterogeneous [13]. Similarly, our literature review showed that the clinical phenotypes of patients with the same variant could be similar or completely different (Table S4). In our case series, although case 2 and case 3 had the same variant (R610L), they had slightly different symptoms as shown in Table 1, such as cryptorchidism, neuropsychiatric disorders, and cardiovascular defects. It suggested that other factors, like other genes, polymorphisms, epigenetic influences, and exogenous influences, could also have important effects on the phenotypes of AAS patients with FGD1 variants.
Nowadays, the treatment for patients with AAS mainly focuses on the improvement of symptoms, and there is a lack of targeted treatment strategies. Growth hormone was reported to be used to promote growth in AAS patients [17]. However, the available data were still limited. There were only three FGD1-related AAS patients reported to receive rhGH treatment, with two patients having improved height [18–20]. In our study, rhGH treatment showed height improvement in the patients, and there were no serious adverse reactions during the treatment. However, the only patient in whom a longer follow-up was available and which still showed a good reaction in growth, was the one with an abnormal GH study, and that possibly rhGH suppletion should be limited to such patients. These results suggested the effectiveness and safety of rhGH for height improvement in AAS patients within a limited follow-up period. Still, longer follow-up time and further investigations are needed to confirm the therapeutic effect of rhGH on more AAS patients.
At present, the vast majority of AAS cases are caused by variations in FGD1 gene located on X chromosome. In our study, single-nucleotide variations (SNVs) were the most common type of FGD1 variants by literature review, accounting for 64.2% of all variants. Consistently, all FGD1 variants in the 5 patients we reported were also SNVs. As the catalytic region of FGD1 protein, DH domain and its adjacent PH1 domain play the most important role in the GEF activity of FGD1, while other domains mainly play regulatory roles [21]. Further analysis of the domains corresponding to the variant sites revealed that DH domain was the hotspot region of FGD1 variations, which further suggested the importance of DH domain. In addition, in our study, variant R449C, which located in the DH domain, affected the function of FGD1 protein by decreasing the expression level of downstream molecules of FGD1. Another variant, R610L, in the PH1 domain, reduced the expression level of FGD1 protein and affected its subsequent function. These results reflected the importance of the DH domain and PH1 domain to FGD1 protein function.
There were a few in-depth studies about the genotype and phenotype correlation of AAS, and they stated that there was no clear genotype–phenotype correlation. In 2010, Orrico et al. presented the clinical and genetic data from 11 patients with FGD1 variations from a cohort of 60 AAS individuals studied, reporting 9 novel FGD1 variations. They did not find any evidence for phenotype–genotype correlations between the variant type and position and clinical features [5]. In 2017, Ge et al. analyzed the clinical manifestations of patients with AAS carrying FGD1 variants in different exons and introns but did not find a clear genotype–phenotype correlation [22]. Recently, Zanetti Drumond et al. summarized and analyzed the manifestations of 58 AAS patients with FGD1 variants and pointed out that reported phenotypes did not present a direct relation to the underlying genotypes [23]. Differently, our analysis revealed that individuals with drastic variants might have higher incidences of foot deformities, shawl scrotum, and cryptorchidism than individuals with missense variants. These results indicated the significance of FGD1 protein function in skeletal and genitourinary development. In addition, we found that the incidence of cryptorchidism was relatively lower in patients with missense variants in DH domain compared with those with missense variants outside DH domain. We speculated that the missense variants occurring in DH domain were relatively mild variants with less disruption of FGD1 protein function. The reason why we draw different conclusions from other studies may be due to our different research methods, or the small number of our study individuals, and this will not hold in larger groups. In general, our analysis confirmed the importance of DH domain for FGD1 protein and deepened our understanding of the structure and function of FGD1 gene.
The limitation of this study was the relatively small number of cases due to the rarity of the disease. Furthermore, given the limited data on family studies, we are currently unable to completely rule out the impact of ascertainment bias on the research results. More cases are needed for further detailed studies to explore the potential pathogenic mechanism, which would be helpful to find effective interventions for these patients. Furthermore, comparing the phenotypic differences among different ethnic groups would also be meaningful for diagnosing AAS patients.
Conclusion
In this study, we reported four novel pathogenic FGD1 variants in AAS patients and showed the potential efficacy and safety of rhGH treatment in improving height outcome of AAS patients. By literature review, we sorted out the phenotypic spectrum and variant spectrum of FGD1-related AAS patients. Further genotype–phenotype correlation analysis suggested the importance of FGD1 protein for skeletal and genitourinary development, as well as the significance of DH domain for FGD1 protein function. This study provides certain reference value for clinical diagnosis and genetic counseling of FGD1-related AAS patients.
Acknowledgements
We thank all the patients and their family members for participating in this study.
Declarations
Ethics approval
The study was performed according to the Declaration of Helsinki. The human study was approved by the Ethics Committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (TJ-IRB20180703).
Consent to participate
Written informed consents were obtained from the parents.
Consent for publication
Subjects or their legal representatives participating in this study provided written consent for publication of the results.
Competing interests
The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.