Skip to main content
Erschienen in:

03.04.2023 | Original Paper

FGF4 and FGF9 have synergistic effects on odontoblast differentiation

verfasst von: Tatsuki Hoshino, Shoko Onodera, Motoyoshi Kimura, Makoto Suematsu, Tatsuya Ichinohe, Toshifumi Azuma

Erschienen in: Medical Molecular Morphology | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

The purpose of this study was to investigate whether fibroblast growth factor 4 (FGF4) and FGF9 are active in dentin differentiation. Dentin matrix protein 1 (Dmp1) -2A-Cre transgenic mice, which express the Cre-recombinase in Dmp1-expressing cells, were crossed with CAG-tdTomato mice as reporter mouse. The cell proliferation and tdTomato expressions were observed. The mesenchymal cell separated from neonatal molar tooth germ were cultured with or without FGF4, FGF9, and with or without their inhibitors ferulic acid and infigratinib (BGJ398) for 21 days. Their phenotypes were evaluated by cell count, flow cytometry, and real-time PCR. Immunohistochemistry for FGFR1, 2, and 3 expression and the expression of DMP1 were performed. FGF4 treatment of mesenchymal cells obtained promoted the expression of all odontoblast markers. FGF9 failed to enhance dentin sialophosphoprotein (Dspp) expression levels. Runt-related transcription factor 2 (Runx2) was upregulated until day 14 but was downregulated on day 21. Compared to Dmp1-negative cells, Dmp1-positive cells expressed higher levels of all odontoblast markers, except for Runx2. Simultaneous treatment with FGF4 and FGF9 had a synergistic effect on odontoblast differentiation, suggesting that they may play a role in odontoblast maturation.
Literatur
1.
Zurück zum Zitat Ruch JV, Lesot H, Be`que-Kirn C (1995) Odontoblast differentiation. Int J Dev Biol 39:51–68PubMed Ruch JV, Lesot H, Be`que-Kirn C (1995) Odontoblast differentiation. Int J Dev Biol 39:51–68PubMed
2.
Zurück zum Zitat Zhang YD, Chen Z, Song YQ, Liu C, Chen YP (2005) Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 15:301–316CrossRefPubMed Zhang YD, Chen Z, Song YQ, Liu C, Chen YP (2005) Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 15:301–316CrossRefPubMed
4.
Zurück zum Zitat Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92:19–29CrossRefPubMed Jernvall J, Thesleff I (2000) Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev 92:19–29CrossRefPubMed
5.
Zurück zum Zitat Oshima M, Tsuji T (2014) Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology 102:123–136CrossRefPubMed Oshima M, Tsuji T (2014) Functional tooth regenerative therapy: tooth tissue regeneration and whole-tooth replacement. Odontology 102:123–136CrossRefPubMed
6.
Zurück zum Zitat Kettunen P, Thesleff I (1998) Expression and function of FGFs-4, -8, -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 211:256–268CrossRefPubMed Kettunen P, Thesleff I (1998) Expression and function of FGFs-4, -8, -9 suggest functional redundancy and repetitive use as epithelial signals during tooth morphogenesis. Dev Dyn 211:256–268CrossRefPubMed
7.
Zurück zum Zitat Tompkins K (2006) Molecular mechanisms of cytodifferentiation in mammalian tooth development. Connect Tissue Res 47:111–118CrossRefPubMed Tompkins K (2006) Molecular mechanisms of cytodifferentiation in mammalian tooth development. Connect Tissue Res 47:111–118CrossRefPubMed
8.
Zurück zum Zitat Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18–27CrossRefPubMed Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18–27CrossRefPubMed
9.
Zurück zum Zitat Kettunen P, Laurikkala J, Itaranta P, Vainio S, Thesleff I (2000) Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn 219:322–332CrossRefPubMed Kettunen P, Laurikkala J, Itaranta P, Vainio S, Thesleff I (2000) Associations of FGF-3 and FGF-10 with signaling networks regulating tooth morphogenesis. Dev Dyn 219:322–332CrossRefPubMed
10.
Zurück zum Zitat Nadiri A, Kuchler-Bopp S, Haikel Y, Lesot H (2004) Immunolocalization of BMP-2/-4, FGF-4, and WNT10b in the developing mouse first lower molar. J Histochem Cytochem 52:103–112CrossRefPubMed Nadiri A, Kuchler-Bopp S, Haikel Y, Lesot H (2004) Immunolocalization of BMP-2/-4, FGF-4, and WNT10b in the developing mouse first lower molar. J Histochem Cytochem 52:103–112CrossRefPubMed
11.
Zurück zum Zitat Li CY, Prochazka J, Goodwin AF, Klein OD (2014) Fibroblast growth factor signaling in mammalian tooth development. Odontology 102:1–13CrossRefPubMed Li CY, Prochazka J, Goodwin AF, Klein OD (2014) Fibroblast growth factor signaling in mammalian tooth development. Odontology 102:1–13CrossRefPubMed
12.
Zurück zum Zitat Du W, Du W, Yu H (2018) The role of fibroblast growth factors in tooth development and incisor renewal. Stem Cells Int 11:7549160 Du W, Du W, Yu H (2018) The role of fibroblast growth factors in tooth development and incisor renewal. Stem Cells Int 11:7549160
13.
Zurück zum Zitat Kettunen P, Karavanova I, Thesleff I (1998) Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, -2, -3, and of FGFR4; and stimulation of cell proliferation by FGF-2, -4, -8, and -9. Dev Genet 22:374–385CrossRefPubMed Kettunen P, Karavanova I, Thesleff I (1998) Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, -2, -3, and of FGFR4; and stimulation of cell proliferation by FGF-2, -4, -8, and -9. Dev Genet 22:374–385CrossRefPubMed
14.
Zurück zum Zitat Thesleff I, Keranen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18CrossRefPubMed Thesleff I, Keranen S, Jernvall J (2001) Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res 15:14–18CrossRefPubMed
15.
Zurück zum Zitat Thesleff I (2003) Epithelial-mesenchymal signaling regulating tooth morphogenesis. J Cell Sci 116:1647–1648CrossRefPubMed Thesleff I (2003) Epithelial-mesenchymal signaling regulating tooth morphogenesis. J Cell Sci 116:1647–1648CrossRefPubMed
16.
Zurück zum Zitat Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11:181–190CrossRefPubMedPubMedCentral Klein OD, Minowada G, Peterkova R, Kangas A, Yu BD, Lesot H, Peterka M, Jernvall J, Martin GR (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11:181–190CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Kimura M, Saito A, Onodera S, Nakamura T, Suematsu M, Shintani S, Azuma T (2022) The concurrent stimulation by Wnt and FGF8 signaling induces differentiation of dental mesenchymal cells into odontoblast-like cells. Med Mol Morphol 55(1):8–19CrossRefPubMed Kimura M, Saito A, Onodera S, Nakamura T, Suematsu M, Shintani S, Azuma T (2022) The concurrent stimulation by Wnt and FGF8 signaling induces differentiation of dental mesenchymal cells into odontoblast-like cells. Med Mol Morphol 55(1):8–19CrossRefPubMed
18.
Zurück zum Zitat Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768CrossRefPubMed Niswander L, Martin GR (1992) Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development 114:755–768CrossRefPubMed
19.
Zurück zum Zitat MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT (1997) Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem 272:835–842CrossRefPubMed MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT (1997) Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem 272:835–842CrossRefPubMed
20.
Zurück zum Zitat Ye L, MacDougall M, Zhang S, Xie Y, Zhang J, Li Z, Lu Y, Mishina Y, Feng JQ (2004) Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem 279(18):19141–19148CrossRefPubMed Ye L, MacDougall M, Zhang S, Xie Y, Zhang J, Li Z, Lu Y, Mishina Y, Feng JQ (2004) Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem 279(18):19141–19148CrossRefPubMed
21.
Zurück zum Zitat Ye L, Mishina Y, Chen D, Huang H, Dallas MR, Sivakumar P, Kunieda T, Tsutsui TW, Boskey A, Bonewald LF, Feng JQ (2005) Dmp1 deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J Biol Chem 280(7):6197–6203CrossRefPubMed Ye L, Mishina Y, Chen D, Huang H, Dallas MR, Sivakumar P, Kunieda T, Tsutsui TW, Boskey A, Bonewald LF, Feng JQ (2005) Dmp1 deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J Biol Chem 280(7):6197–6203CrossRefPubMed
22.
Zurück zum Zitat Narayanan K, Gajjeraman S, Ramachandran A, Hao J, George A (2006) Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J Biol Chem 281:19064–19071CrossRefPubMed Narayanan K, Gajjeraman S, Ramachandran A, Hao J, George A (2006) Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J Biol Chem 281:19064–19071CrossRefPubMed
23.
Zurück zum Zitat Qin C, D’Souza R, Feng JQ (2007) Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res 86:1134–1141CrossRefPubMed Qin C, D’Souza R, Feng JQ (2007) Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res 86:1134–1141CrossRefPubMed
24.
Zurück zum Zitat Chen Y, Zhang Y, Ramachandran A, George A (2016) DSPP Is essential for normal development of the dental-craniofacial complex. J Dent Res 95:302–310CrossRefPubMed Chen Y, Zhang Y, Ramachandran A, George A (2016) DSPP Is essential for normal development of the dental-craniofacial complex. J Dent Res 95:302–310CrossRefPubMed
25.
Zurück zum Zitat Liu C, Gu S, Sun C, Ye W, Song Z, Zhang Y, Chen Y (2013) FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development 140(21):4375–4385CrossRefPubMedPubMedCentral Liu C, Gu S, Sun C, Ye W, Song Z, Zhang Y, Chen Y (2013) FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development 140(21):4375–4385CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Wilkie AOM, Morriss-Kay GM, Jones EY, Heath JK (1995) Functions of fibroblast growth factors and their receptors. Curr Biol 5:500–507CrossRefPubMed Wilkie AOM, Morriss-Kay GM, Jones EY, Heath JK (1995) Functions of fibroblast growth factors and their receptors. Curr Biol 5:500–507CrossRefPubMed
27.
Zurück zum Zitat Kelleher FC, O’Sullivan H, Smyth E, McDremott R, Viterbo A (2013) Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis 34:2198–2205CrossRefPubMed Kelleher FC, O’Sullivan H, Smyth E, McDremott R, Viterbo A (2013) Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis 34:2198–2205CrossRefPubMed
28.
Zurück zum Zitat Tucker A, Sharpe P (2004) The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5:499–508CrossRefPubMed Tucker A, Sharpe P (2004) The cutting-edge of mammalian development; how the embryo makes teeth. Nat Rev Genet 5:499–508CrossRefPubMed
29.
Zurück zum Zitat Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, Chuang HH, Macdougall M (2005) Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem 280(33):29717–29727CrossRefPubMed Chen S, Rani S, Wu Y, Unterbrink A, Gu TT, Gluhak-Heinrich J, Chuang HH, Macdougall M (2005) Differential regulation of dentin sialophosphoprotein expression by Runx2 during odontoblast cytodifferentiation. J Biol Chem 280(33):29717–29727CrossRefPubMed
30.
Zurück zum Zitat Camilleri S, McDonald F (2006) Review Runx2 and dental development. Eur J Oral Sci 114:361–373CrossRefPubMed Camilleri S, McDonald F (2006) Review Runx2 and dental development. Eur J Oral Sci 114:361–373CrossRefPubMed
31.
Zurück zum Zitat Miyazaki T, Kanatani N, Rokutanda S, Yoshida C, Toyosawa S, Nakamura R, Takada S, Komori T (2008) Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol 71:131–146CrossRefPubMed Miyazaki T, Kanatani N, Rokutanda S, Yoshida C, Toyosawa S, Nakamura R, Takada S, Komori T (2008) Inhibition of the terminal differentiation of odontoblasts and their transdifferentiation into osteoblasts in Runx2 transgenic mice. Arch Histol Cytol 71:131–146CrossRefPubMed
33.
Zurück zum Zitat Guagnano V, Kauffmann A, Wohrle S (2012) FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov 2(12):1118–1133CrossRefPubMed Guagnano V, Kauffmann A, Wohrle S (2012) FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov 2(12):1118–1133CrossRefPubMed
34.
Zurück zum Zitat Yang G, Jiang J, Lu W (2015) Ferulic acid exerts anti-angiogenic and anti-tumor activity by targeting fibroblast growth factor receptor 1-mediated angiogenesis. Int J Mol Sci 16(10):24011–24031CrossRefPubMedPubMedCentral Yang G, Jiang J, Lu W (2015) Ferulic acid exerts anti-angiogenic and anti-tumor activity by targeting fibroblast growth factor receptor 1-mediated angiogenesis. Int J Mol Sci 16(10):24011–24031CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Braga R (2019) Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater 35:3–14CrossRefPubMed Braga R (2019) Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater 35:3–14CrossRefPubMed
36.
Zurück zum Zitat Mullane EM, Dong Z, Sedgley CM, Hu JCC, Botero TM, Holland GR, Nor JE (2008) Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 87:1144–1148CrossRefPubMed Mullane EM, Dong Z, Sedgley CM, Hu JCC, Botero TM, Holland GR, Nor JE (2008) Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res 87:1144–1148CrossRefPubMed
37.
Zurück zum Zitat Kobayashi Y, Nouet J, Baljinnyam E, Siddiqui Z, Fine DH, Fraidenraich D, Kumar VA, Shimizu E (2022) iPSC-derived cranial neural crest-like cells can replicate dental pulp tissue with the aid of angiogenic hydrogel. Bioact Mater 14:290–301CrossRefPubMed Kobayashi Y, Nouet J, Baljinnyam E, Siddiqui Z, Fine DH, Fraidenraich D, Kumar VA, Shimizu E (2022) iPSC-derived cranial neural crest-like cells can replicate dental pulp tissue with the aid of angiogenic hydrogel. Bioact Mater 14:290–301CrossRefPubMed
Metadaten
Titel
FGF4 and FGF9 have synergistic effects on odontoblast differentiation
verfasst von
Tatsuki Hoshino
Shoko Onodera
Motoyoshi Kimura
Makoto Suematsu
Tatsuya Ichinohe
Toshifumi Azuma
Publikationsdatum
03.04.2023
Verlag
Springer Nature Singapore
Erschienen in
Medical Molecular Morphology / Ausgabe 3/2023
Print ISSN: 1860-1480
Elektronische ISSN: 1860-1499
DOI
https://doi.org/10.1007/s00795-023-00351-2

Neu im Fachgebiet Pathologie

Pathologie der Milz

Nach einer Beschreibung der Milzanatomie und Darstellung der diagnostisch wichtigsten immunhistochemischen Färbungen zur Identifizierung der normalen Milzkompartimente werden am Beispiel eines nordafrikanischen Patienten mit rezentem …

Molekular definierte Nierenzellkarzinome 2025

Im Zuge der Überarbeitung der WHO-Klassifikation im Jahr 2022 konnten für mehrere Nierenzellkarzinome (NZK), die sich zuvor nicht eindeutig den bis dahin definierten Tumortypen zuordnen ließen, jedoch gemeinsame morphologische und molekulare …

Wichtige Änderungen in der WHO-Klassifikation der Hodentumoren 2022

In der 5. Auflage der „WHO-Klassifikation der Tumoren der ableitenden Harnwege und des männlichen Genitaltrakts“ sind bedeutende Anpassungen an den bisherigen Klassifikationen vorgenommen worden. Diese betreffen bei den Keimzelltumoren des Hodens …

DNA mixture deconvolution using fully continuous models EuroForMix and EFMrep

  • Open Access
  • Originalien

Mixture deconvolution is a powerful tool for inferring individual DNA profiles from DNA mixtures for subsequent transmission to a database or database queries. To carry out deconvolution, a mixed trace can be interpreted either manually by an …