Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 4/2019

19.02.2019 | Research Article

Finite difference transmission line model for the design of safe multi-section cables in MRI

verfasst von: Alexia Missoffe, Thérèse Barbier, Jacques Felblinger

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective

To show the relevance of a simple finite difference transmission line model to help design safe implanted cables in 1.5T MRI’s using the multi-section cable approach.

Materials and methods

The transfer function and heating under a given incident field predicted by the finite difference model for two-section cables are compared to full-wave and experimental results. The finite difference model was then used to design a three-section cable considering the phase effects.

Results

The differences between the predicted transfer function given by the transmission line model with the full-wave results and the experimental results are, respectively, less than 10% and less than 5%. The predicted heating differed by less than 7% with the full-wave results and less than 25% with the experimental results. The optimum lengths of the three-section cable reduces by 51% the worst case heating at the electrodes compared to the best case unique section wire.

Discussion

The multi-section cable design can reduce the heating of cables in MRI taking into account phase effects. The finite difference transmission line model presented is a simple valuable tool to estimate the worst case heating of simple multi-section cables.
Literatur
1.
Zurück zum Zitat ISO/TS 10974:2018 Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device ISO/TS 10974:2018 Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device
2.
Zurück zum Zitat Yeung CJ, Susil RC, Atalar E (2002) RF safety of wires in interventional MRI: using a safety index. Magn Reson Med 47:187–193CrossRefPubMed Yeung CJ, Susil RC, Atalar E (2002) RF safety of wires in interventional MRI: using a safety index. Magn Reson Med 47:187–193CrossRefPubMed
3.
Zurück zum Zitat Langman DA, Goldberg IB, Finn JP, Ennis DB (2011) Pacemaker lead tip heating in abandoned and pacemaker-attached leads at 1.5 tesla MRI. J Magn Reson Imaging 33:426–431CrossRefPubMed Langman DA, Goldberg IB, Finn JP, Ennis DB (2011) Pacemaker lead tip heating in abandoned and pacemaker-attached leads at 1.5 tesla MRI. J Magn Reson Imaging 33:426–431CrossRefPubMed
4.
Zurück zum Zitat Langman DA, Goldberg IB, Judy J, Paul Finn J, Ennis DB (2012) The dependence of radiofrequency induced pacemaker lead tip heating on the electrical conductivity of the medium at the lead tip. Magn Reson Med 68:606–613CrossRefPubMed Langman DA, Goldberg IB, Judy J, Paul Finn J, Ennis DB (2012) The dependence of radiofrequency induced pacemaker lead tip heating on the electrical conductivity of the medium at the lead tip. Magn Reson Med 68:606–613CrossRefPubMed
5.
Zurück zum Zitat Gray RW, Bibens WT, Shellock FG (2005) Simple design changes to wires to substantially reduce MRI-induced heating at 1.5 T: implications for implanted leads. Magn Reson Imaging 23:887–891CrossRefPubMed Gray RW, Bibens WT, Shellock FG (2005) Simple design changes to wires to substantially reduce MRI-induced heating at 1.5 T: implications for implanted leads. Magn Reson Imaging 23:887–891CrossRefPubMed
6.
Zurück zum Zitat Bulkes C, Denker S (2011) MRI compatible implanted electronic medical lead Bulkes C, Denker S (2011) MRI compatible implanted electronic medical lead
7.
Zurück zum Zitat Foster AJ, Bobgan JM (2012) Lead with MRI compatible design features Foster AJ, Bobgan JM (2012) Lead with MRI compatible design features
8.
Zurück zum Zitat Cabot, Eugenia, Zastrow,Earl, Kuster, Niels (2014) Safety assessment of AIMDs under MRI exposure: Tier3 vs. Tier4 evaluation of local RF-induced heating. In: Proceedings from the International Symposium on Electromagnetic Compatibility, Tokyo, Japan, pp 237–240 Cabot, Eugenia, Zastrow,Earl, Kuster, Niels (2014) Safety assessment of AIMDs under MRI exposure: Tier3 vs. Tier4 evaluation of local RF-induced heating. In: Proceedings from the International Symposium on Electromagnetic Compatibility, Tokyo, Japan, pp 237–240
9.
Zurück zum Zitat Bottomley PA, Kumar A, Edelstein WA, Allen JM, Karmarkar PV (2010) Designing passive MRI-safe implantable conducting leads with electrodes. Med Phys 37:3828–3843CrossRefPubMed Bottomley PA, Kumar A, Edelstein WA, Allen JM, Karmarkar PV (2010) Designing passive MRI-safe implantable conducting leads with electrodes. Med Phys 37:3828–3843CrossRefPubMed
10.
Zurück zum Zitat Atalar E, Allen J, Bottomley P, Eldelstein W, Karmarkar PV (2011) MRI-safe high impedance lead systems Atalar E, Allen J, Bottomley P, Eldelstein W, Karmarkar PV (2011) MRI-safe high impedance lead systems
11.
Zurück zum Zitat Wahlstrand CD, Hrdlicka GA, Jr TEC, Hoegh TB, Olsen JM, Bolea SL (2010) MRI-safe implantable lead Wahlstrand CD, Hrdlicka GA, Jr TEC, Hoegh TB, Olsen JM, Bolea SL (2010) MRI-safe implantable lead
12.
Zurück zum Zitat Wahlstrand CD, Hoegh TB, Hrdlicka GA, Jr TEC, Olsen JM (2007) Lead electrode for use in an MRI-safe implantable medical device Wahlstrand CD, Hoegh TB, Hrdlicka GA, Jr TEC, Olsen JM (2007) Lead electrode for use in an MRI-safe implantable medical device
13.
Zurück zum Zitat Nordbeck P, Fidler F, Friedrich MT, Weiss I, Warmuth M, Gensler D, Herold V, Geistert W, Jakob PM, Ertl G, Ritter O, Ladd ME, Bauer WR, Quick HH (2012) Reducing RF-related heating of cardiac pacemaker leads in MRI: implementation and experimental verification of practical design changes. Magn Reson Med 68:1963–1972CrossRefPubMed Nordbeck P, Fidler F, Friedrich MT, Weiss I, Warmuth M, Gensler D, Herold V, Geistert W, Jakob PM, Ertl G, Ritter O, Ladd ME, Bauer WR, Quick HH (2012) Reducing RF-related heating of cardiac pacemaker leads in MRI: implementation and experimental verification of practical design changes. Magn Reson Med 68:1963–1972CrossRefPubMed
14.
Zurück zum Zitat Serano P, Angelone LM, Katnani H, Eskandar E, Bonmassar G (2015) A novel brain stimulation technology provides compatibility with MRI. Sci Rep 5:9805CrossRefPubMedPubMedCentral Serano P, Angelone LM, Katnani H, Eskandar E, Bonmassar G (2015) A novel brain stimulation technology provides compatibility with MRI. Sci Rep 5:9805CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Bonmassar G (2004) Resistive tapered stripline (RTS) in electroencephalogram recordings during MRI. IEEE Trans Microw Theory Tech 52:1992–1998CrossRef Bonmassar G (2004) Resistive tapered stripline (RTS) in electroencephalogram recordings during MRI. IEEE Trans Microw Theory Tech 52:1992–1998CrossRef
16.
Zurück zum Zitat Abernethy CE, Cangellaris AC, Prince JL (1996) A novel method of measuring microelectronic interconnect transmission line parameters and discontinuity equivalent electrical parameters using multiple reflections. IEEE Trans Compon Packag Manuf Technol Part B: 19:32–39CrossRef Abernethy CE, Cangellaris AC, Prince JL (1996) A novel method of measuring microelectronic interconnect transmission line parameters and discontinuity equivalent electrical parameters using multiple reflections. IEEE Trans Compon Packag Manuf Technol Part B: 19:32–39CrossRef
17.
Zurück zum Zitat Missoffe A, Kabil J, Vuissoz PA, Felblinger J (2018) Transmission line model of an implanted insulated cable for magnetic resonance imaging radiofrequency hazard evaluation. IEEE J Electromagn RF Microw Med Biol 1–1 Missoffe A, Kabil J, Vuissoz PA, Felblinger J (2018) Transmission line model of an implanted insulated cable for magnetic resonance imaging radiofrequency hazard evaluation. IEEE J Electromagn RF Microw Med Biol 1–1
18.
Zurück zum Zitat Acikel V, Atalar E (2011) Modeling of radio-frequency induced currents on lead wires during MR imaging using a modified transmission line method. Med Phys 38:6623–6632CrossRefPubMed Acikel V, Atalar E (2011) Modeling of radio-frequency induced currents on lead wires during MR imaging using a modified transmission line method. Med Phys 38:6623–6632CrossRefPubMed
19.
Zurück zum Zitat Acikel V, Uslubas A, Atalar E (2015) Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging. Med Phys 42:3922–3931CrossRefPubMed Acikel V, Uslubas A, Atalar E (2015) Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging. Med Phys 42:3922–3931CrossRefPubMed
20.
Zurück zum Zitat Yeung CJ, Susil RC, Atalar E (2002) RF heating due to conductive wires during MRI depends on the phase distribution of the transmit field. Magn Reson Med 48:1096–1098CrossRefPubMed Yeung CJ, Susil RC, Atalar E (2002) RF heating due to conductive wires during MRI depends on the phase distribution of the transmit field. Magn Reson Med 48:1096–1098CrossRefPubMed
21.
Zurück zum Zitat Park S-M, Kamondetdacha R, Nyenhuis JA (2007) Calculation of MRI-induced heating of an implanted medical lead wire with an electric field transfer function. J Magn Reson Imaging 26:1278–1285CrossRefPubMed Park S-M, Kamondetdacha R, Nyenhuis JA (2007) Calculation of MRI-induced heating of an implanted medical lead wire with an electric field transfer function. J Magn Reson Imaging 26:1278–1285CrossRefPubMed
22.
Zurück zum Zitat ASTM F2182-11a, Standard test method for measurement of radio frequency induced heating on or near passive implants during magnetic resonance imaging ASTM F2182-11a, Standard test method for measurement of radio frequency induced heating on or near passive implants during magnetic resonance imaging
23.
Zurück zum Zitat Hertel TW, Smith GS (2000) The insulated linear antenna-revisited. IEEE Trans Antennas Propag 48:914–920CrossRef Hertel TW, Smith GS (2000) The insulated linear antenna-revisited. IEEE Trans Antennas Propag 48:914–920CrossRef
25.
Zurück zum Zitat Nyenhuis J, Jallal J, Min X, Sison S, Mouchawar G (2015) Comparison of measurement and calculation of the electric field transfer function for an active implant lead in different media. 2015 Comput. Cardiol. Conf. CinC, pp 765–768 Nyenhuis J, Jallal J, Min X, Sison S, Mouchawar G (2015) Comparison of measurement and calculation of the electric field transfer function for an active implant lead in different media. 2015 Comput. Cardiol. Conf. CinC, pp 765–768
26.
Zurück zum Zitat Feng S, Qiang R, Kainz W, Chen J (2015) A technique to evaluate MRI-induced electric fields at the ends of practical implanted lead. IEEE Trans Microw Theory Tech 63:305–313CrossRef Feng S, Qiang R, Kainz W, Chen J (2015) A technique to evaluate MRI-induced electric fields at the ends of practical implanted lead. IEEE Trans Microw Theory Tech 63:305–313CrossRef
27.
Zurück zum Zitat Missoffe A, Aissani S (2017) Experimental setup for transfer function measurement to assess RF heating of medical leads in MRI: validation in the case of a single wire. Magn Reson Med 79:1766–1772CrossRefPubMed Missoffe A, Aissani S (2017) Experimental setup for transfer function measurement to assess RF heating of medical leads in MRI: validation in the case of a single wire. Magn Reson Med 79:1766–1772CrossRefPubMed
Metadaten
Titel
Finite difference transmission line model for the design of safe multi-section cables in MRI
verfasst von
Alexia Missoffe
Thérèse Barbier
Jacques Felblinger
Publikationsdatum
19.02.2019
Verlag
Springer International Publishing
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 4/2019
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-019-00744-4

Weitere Artikel der Ausgabe 4/2019

Magnetic Resonance Materials in Physics, Biology and Medicine 4/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.