Skip to main content
Erschienen in: Virology Journal 1/2016

Open Access 01.12.2016 | Short report

First identification of mammalian orthoreovirus type 3 in diarrheic pigs in Europe

verfasst von: Davide Lelli, Maria Serena Beato, Lara Cavicchio, Antonio Lavazza, Chiara Chiapponi, Stefania Leopardi, Laura Baioni, Paola De Benedictis, Ana Moreno

Erschienen in: Virology Journal | Ausgabe 1/2016

Abstract

Mammalian Orthoreoviruses 3 (MRV3) have been described in diarrheic pigs from USA and Asia. We firstly detected MRV3 in Europe (Italy) in piglets showing severe diarrhea associated with Porcine Epidemic Diarrhea. The virus was phylogenetically related to European reoviruses of human and bat origin and to US and Chinese pig MRV3.

Main text

The Reoviridae family consists of two subfamilies: Spinareovirinae and Sedoreovirinae, including 9 and 6 genera, respectively. These are icosahedric non-enveloped viruses with a segmented genome of 10 to 12 double-stranded RNA (dsRNA) segments [1]. Viruses belonging to this highly diverse family infect a variety of host species including mammals, reptiles, fish, birds, protozoa, fungi, plants, and insects.
The species Mammalian orthoreovirus (MRV) has been divided into three serotypes according to the capacity of type-specific antisera to neutralize virus infectivity and inhibit hemagglutination, with the prototype isolates being type 1 Lang (T1L), type 2 Jones (T2J), type 3 Dearing (T3D) and Abney (T3A). Recently, this classification has been confirmed through the molecular analyses of the S1 gene encoding for the σ1 protein, which is involved in virus attachment [1]. Moreover, a putative type 4 Ndelle (T4N) has been also proposed [2].
MRVs have long been considered non-pathogenic, although mild respiratory and enteric diseases have occasionally been reported in young animals and children. Several evidences have recently shown that MRVs can cause severe diseases. Cases of neonatal diarrhea and neurological symptoms in children were associated both with MRV2 and MRV3 in Europe and North America [35]. These findings highlight the zoonotic potential of MRVs, though the mechanisms of their pathogenicity are not fully understood [5].
Additionally, MRV3 has been recently isolated from piglets with severe diarrhea and respiratory symptoms in China, Korea and the US, also in association with coronaviruses of Porcine Epidemic Diarrhea (PEDV) and Transmissible Gastroenteritis (TGEV), and with Porcine A-C rotaviruses (GARVs, GCRVs) [68]. In particular, MRV3 was proven to be pathogenic to pigs [7]. We here report the first isolation and characterization of MRV3 from swine fecal samples in Europe.
In 2015 an important epidemic wave of PED with multiple outbreaks occurred in Italy [9]. Over 200 cases were registered, mainly in high-density pig farm area (Po Valley). The disease was characterized by high morbidity and variable levels of mortality in suckling pigs showing diarrhea and enteritis. These cases were similar to those detected in other European countries, all caused by S-INDEL strains very closely related to each other and to the US Ohio851 strain [9, 10]. A first attempt to isolate PEDV was conducted collecting eleven swine fecal samples at the beginning of the epidemic, between February and March 2015. VERO C1008 cells (ATCC® CRL-1586) were employed according to a previously published method [11]. CPE was detected after the first cell passage in one sample. The supernatant from cell culture showing cytopathic effect (CPE) was submitted to negative staining Transmission Electron microscopy (nsTEM). The nsTEM examination of CPE positive cell culture revealed icosahedral, non-enveloped virus particles with morphological characteristics referable to Reoviridae. RNA was extracted from cell culture and fecal samples using the Nucleospin RNA II kit (Macherey-Nagel, Germany), and analyzed for the presence of MRV using RT-PCR targeting the L1 and S1 fragments, slightly modified from Lelli et al, 2013 [12]. Fecal samples were analyzed by RT-PCR which evidenced the presence of MRV in one fecal sample and in the respective isolate.
Full genome sequencing was conducted using an Illumina MiSeq platform from the isolated virus. Briefly, 100 μl of cell culture supernatants were treated with 250 units of Omnicleave endonuclease (Epicentre, Tebu-bio, Milan, Italy) at 37 °C for 2 h. Viral RNA was extracted from treated supernatants using One for all Vet kit (QIAGEN, Milan, Italy). Sequencing libraries were prepared using TruSeq RNA sample preparation kit v2 (Illumina Inc. San Diego, CA, USA) and sequencing was performed on a Miseq Instrument with MiSeq Reagent Nano Kit v2, 300 cycles (Illumina Inc. San Diego, CA, USA). Sequencing reads were de-novo assembled by Seqman NGen DNASTAR application (version 11.2.1) (DNASTAR, Madison, WI, USA). Genome sequences were available into GenBank under accession numbers KX343200-KX343209.
The phylogenetic trees were constructed with the maximum likelihood method within the MEGA 6.0 software with bootstrap analyses involving 1000 replicates [13]. The best-fit model of the nucleotide substitution was determined using the jModelTest v.0.1.1. The preferred model was the GTR + G model. The topologies were verified with the neighbor-joining method and the Kimura two-parameter model using MEGA 6.0.
The complete genome of the isolate (MRV3/Swine/Italy/224660-4/2015) included segments L1 to L3, M1 to M3 and S1 to S4; each segment showed the highest nucleotide similarity to the sequences reported in Table 1.
Table 1
Highest nucleotide identities for each gene segment of the novel MRV3/Swine/Italy/224660-4/2015
Swine-MRV3 Italy 2015
% similarity
MRV strain
Serotype
Lineage
Host
Country
GenBank Acession No.
L1
91.9
T3D
3
II
Human
USA
HM159613
L2
98.9
T3/Pip. kuhlii/Italy/5515-2/2012
3
III
Bat
Italy
KU194659
98.7
T3/bat/Germany/342/08
3
III
Bat
Germany
JQ412756
98.7
SI-MRV01
3
III
Human
Slovenia
KF154725
L3
93.7
Abney
3
II
Human
USA
GU589579
M1
91.8
MRV2 Tou5
2
-
Human
France
GU196309
89.6
SHR-A
3
IV
Pig
China
JX415468
M2
91.0
BatMRV1-IT2011
1
-
Bat
Italy
KT900699
M3
91.4
BM-100
3
III
Pig
USA
KM820749
90.5
GD-1
3
IV
Pig
China
JX486062
S1
98.4
SI-MRV01
3
III
Human
Slovenia
KF154730
98.2
T3/Pip. kuhlii/Italy/5515-2/2012
3
III
Bat
Italy
JQ979272
97.7
T3/bat/Germany/342/08
3
III
Bat
Germany
JQ412761
S2
93.7
T1 Lang
1
-
Human
USA
L19774
92.4
T3 Abney
3
II
Human
USA
GU589584
S3
93.9
T3/bovine/Maryland /cl. 31/1959
3
III
Bovine
USA
U35357
92.4
FS03
3
III
Pig
USA
KM820762
S4
94.5
SHR-A
3
IV
Pig
China
JX415473
Note: L large segments, M medium segments, S small segments
Based on S1 phylogeny, the novel swine MRV strain belonged to the lineage III of the MRV3 and was closely related to human and bat strains and two US porcine MRV3s recently described as associated to PED outbreaks [7] (Fig. 1). It shares the highest nucleotide identity with a human MRV3 Sl-MRV01 (98.4 %) detected from a child with acute gastroenteritis in Slovenia [4] and with an Italian MRV3 bat isolate T3/Pipistrellus Kuhlii/Italy/5515-2/2012 (98.2 %) [12]. The other segments L1, L3, M1, M3, S2, S3 and S4 of the Italian strain were related to US porcine MRV3 (Fig. 2a, c, d, f, g, h and i); In particular S2 and S3 phylogeny indicated monophyletic groups with US and Chinese pig MRV3 strains and human T1L whereas the S4 phylogeny revealed a separated group formed by Italian, US and Chinese pig MRV3 strains. Interestingly, the other two segments L2 and M2 were closely related to MRVs of bat origin, belonging to serotype 3 and 1 respectively [12, 14] (Fig. 2b and e).
In this study, we describe the finding of a MRV3 associated with a PED outbreak in Italy. A similar association was reported in the US during the 2013-2015 PED epidemic, with mortality up to 100 % in affected farms [7]. Porcine MRV3s, placed in lineage IV and frequently associated with other enteric viruses [6], were also described in pigs suffering diarrhea in South Korea. Interestingly, the Italian and US porcine MRV3 associated to PED outbreaks were characterized by a S1 gene highly related to European bat strains and both fall into lineage III, differently from the South East Asian MRV3 porcine isolates. The study of potential synergic effects between PEDV and MRV3 is crucial, considering the PED impact on the swine industry.
Based on the L2 and S1 genetic distances, it appears that the swine and bat Italian MRV3 are highly correlated. Such evidence arises questions on the epidemiological link between pigs and Kuhl’s pipistrelle common in anthropized and urban environments. However, the absence of data on the MRVs distribution and genetic characteristics in Europe prevents any hypothesis on the most likely epidemiological links between bats, pigs and humans. The distribution of MRV3 among pigs and bats could probably be widespread in Europe, although it still needs to be further investigated. Pigs harbor a variety of viruses in their gastro-intestinal tract; not all of them cause diseases but many are related to human viruses, including Noroviruses, Rotaviruses and Astroviruses [15]. The findings reported herein highlight the arising potential role of pigs as a reservoir and amplification host of emerging zoonotic viruses.

Abbreviations

dsRNA, double strand RNA; GARVs, GCRVs, porcine A-C rotaviruses; MRV3, mammalian orthoreovirus type 3; nsTEM, negative staining transmission electron microscopy; PEDV, porcine epidemic diarrhea; T1L, type 1 Lang; T2J, type 2 Jones; T3A, type 3 Abney; T3D, type 3 Dearing; T4N, type 4 Ndelle; TGEV, transmissible gastroenteritis

Acknowledgments

Authors thank Mrs Monica Mion, Anna Tirelli, Francesca Faccin and Loredana Zingarello for their invaluable technical support and Francesca Ellero for English revisions.

Authors’ contributions

DL and MSB designed the study, conducted laboratory analyses and drafted the manuscript. LC, SL and PDB were involved in virological analysis and interpretation of the results. CC and LB performed the next-generation sequencing and data analysis. AL performed electron microscopy, partecipated in study coordination and helped to draft the manuscript.AM performed the molecular genetic studies and phylogenetic analysis and wrote the manuscript. All of the authors have read and approved the final manuscript.

Authors’ information

DL is a veterinary virologist at the Virology Department of IZSLER. His activity of study and research deals with virological and serological diagnosis of viral diseases of livestock and wildlife species and in the development and validation of diagnostic ELISAs and molecular assays. Emerging and zoonotic viruses, viruses associated with bats and arthropod-borne viruses are currently the major topics of his studies. MSB is a veterinary virologist at the Diagnostic Virology laboratory of IZSVe. She has worked nine years in the field of avian influenza research and control and in the last 3 years she has dedicated her activity in the diagnosis and research of swine viral diseases with particular focus on swine influenza and swine enteric viruses.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
Not applicable.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Day JM. The diversity of the orthoreoviruses: molecular taxonomy and phylogenetic divides. Infect Genet Evol. 2009;9:390–400.CrossRefPubMed Day JM. The diversity of the orthoreoviruses: molecular taxonomy and phylogenetic divides. Infect Genet Evol. 2009;9:390–400.CrossRefPubMed
2.
Zurück zum Zitat Attoui H, Biagini P, Stirling J, Mertens PPC, Cantaloube J, Meyer A, et al. Sequence characterization of Ndelle virus genome segments 1, 5, 7, 8, and 10: evidence for reassignment to the genus Orthoreovirus, family Reoviridae. Biochem Biophys Res Commun. 2001;287:583–8.CrossRefPubMed Attoui H, Biagini P, Stirling J, Mertens PPC, Cantaloube J, Meyer A, et al. Sequence characterization of Ndelle virus genome segments 1, 5, 7, 8, and 10: evidence for reassignment to the genus Orthoreovirus, family Reoviridae. Biochem Biophys Res Commun. 2001;287:583–8.CrossRefPubMed
3.
Zurück zum Zitat Ouattara LA, Barin F, Barthez MA, Bonnaud B, Roingeard P, Goudeau A, et al. Novel human reovirus isolated from children with acute necrotizing encephalopathy. Emerg Infect Dis. 2011;17:1436–44.PubMedPubMedCentral Ouattara LA, Barin F, Barthez MA, Bonnaud B, Roingeard P, Goudeau A, et al. Novel human reovirus isolated from children with acute necrotizing encephalopathy. Emerg Infect Dis. 2011;17:1436–44.PubMedPubMedCentral
4.
Zurück zum Zitat Steyer A, Gutiérrez-Aguire I, Kolenc M, Koren S, Kutnjak D, Pokorn M, et al. High similarity of novel orthoreovirus detected in a child hospitalized with acute gastroenteritis to mammalian orthoreoviruses found in bats in Europe. J Clin Microbiol. 2013;51:3818–25.CrossRefPubMedPubMedCentral Steyer A, Gutiérrez-Aguire I, Kolenc M, Koren S, Kutnjak D, Pokorn M, et al. High similarity of novel orthoreovirus detected in a child hospitalized with acute gastroenteritis to mammalian orthoreoviruses found in bats in Europe. J Clin Microbiol. 2013;51:3818–25.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Tyler KL, Barton ES, Ibach M, Robinson C, Campbell JA, O’Donnell SM, et al. Isolation and molecular characterization of novel type 3 reovirus from a child with meningitis. J Infect Dis. 2004;189:1664–75.CrossRefPubMed Tyler KL, Barton ES, Ibach M, Robinson C, Campbell JA, O’Donnell SM, et al. Isolation and molecular characterization of novel type 3 reovirus from a child with meningitis. J Infect Dis. 2004;189:1664–75.CrossRefPubMed
6.
Zurück zum Zitat Kwon HJ, Kim HH, Kim HJ, Park JG, Son KY, Jung J, et al. Detection and molecular characterization of porcine type 3 orthoreoviruses circulating in South Korea. Vet Microbiol. 2012;157:456–63.CrossRefPubMed Kwon HJ, Kim HH, Kim HJ, Park JG, Son KY, Jung J, et al. Detection and molecular characterization of porcine type 3 orthoreoviruses circulating in South Korea. Vet Microbiol. 2012;157:456–63.CrossRefPubMed
7.
Zurück zum Zitat Narayanappa AT, Sooryanarain H, Deventhiran J, Cao D, Venkatachalam BA, Kambiranda D, et al. A novel pathogenic mammalian orthoreovirus from diarrheic pigs and swine blood meal in the United States. mBio. 2015;6:e00593–15. Narayanappa AT, Sooryanarain H, Deventhiran J, Cao D, Venkatachalam BA, Kambiranda D, et al. A novel pathogenic mammalian orthoreovirus from diarrheic pigs and swine blood meal in the United States. mBio. 2015;6:e00593–15.
8.
Zurück zum Zitat Zhang C, Liu L, Wang P, Liu S, Lin W, Hu F, et al. A potentially novel reovirus isolated from swine in northeastern China in 2007. Virus Genes. 2011;43:342–9.CrossRefPubMed Zhang C, Liu L, Wang P, Liu S, Lin W, Hu F, et al. A potentially novel reovirus isolated from swine in northeastern China in 2007. Virus Genes. 2011;43:342–9.CrossRefPubMed
9.
Zurück zum Zitat European Food Safety Authority. Collection and review of updated scientific epidemiological data on porcine epidemic diarrhea. EFSA J. 2016;14:4375.CrossRef European Food Safety Authority. Collection and review of updated scientific epidemiological data on porcine epidemic diarrhea. EFSA J. 2016;14:4375.CrossRef
10.
Zurück zum Zitat Boniotti MB, Papetti A, Lavazza A, Alborali G, Sozzi E, Chiapponi C, et al. Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy. Emerg Infect Dis. 2016;22:83–7.CrossRefPubMedPubMedCentral Boniotti MB, Papetti A, Lavazza A, Alborali G, Sozzi E, Chiapponi C, et al. Porcine epidemic diarrhea virus and discovery of a recombinant swine enteric coronavirus, Italy. Emerg Infect Dis. 2016;22:83–7.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Chen F, Zhu Y, Wu M, Ku X, Ye S, Li Z, et al. Comparative genomic analysis of classical and variant virulent parental/attenuated strains of porcine epidemic diarrhea virus. Viruses. 2015;7:5525–38.CrossRefPubMedPubMedCentral Chen F, Zhu Y, Wu M, Ku X, Ye S, Li Z, et al. Comparative genomic analysis of classical and variant virulent parental/attenuated strains of porcine epidemic diarrhea virus. Viruses. 2015;7:5525–38.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Lelli D, Moreno A, Lavazza A, Bresaola M, Canelli E, Boniotti MB, et al. Identification of Mammalian orthoreovirus type 3 in Italian bats. Zoonoses Public Health. 2013;60:84–92.CrossRefPubMed Lelli D, Moreno A, Lavazza A, Bresaola M, Canelli E, Boniotti MB, et al. Identification of Mammalian orthoreovirus type 3 in Italian bats. Zoonoses Public Health. 2013;60:84–92.CrossRefPubMed
13.
Zurück zum Zitat Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CrossRefPubMed Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CrossRefPubMed
14.
Zurück zum Zitat Lelli D, Moreno A, Steyer A, Nagliˇc T, Chiapponi C, Prosperi A, et al. Detection and characterization of a novel reassortant mammalian orthoreovirus in bats in Europe. Viruses. 2015;7:5844–54.CrossRefPubMedPubMedCentral Lelli D, Moreno A, Steyer A, Nagliˇc T, Chiapponi C, Prosperi A, et al. Detection and characterization of a novel reassortant mammalian orthoreovirus in bats in Europe. Viruses. 2015;7:5844–54.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Machnowska P, Ellerbroek L, Johne R. Detection and characterization of potentially zoonotic viruses in faeces of pigs at slaughter in Germany. Vet Microbiol. 2014;168:60–8.CrossRefPubMed Machnowska P, Ellerbroek L, Johne R. Detection and characterization of potentially zoonotic viruses in faeces of pigs at slaughter in Germany. Vet Microbiol. 2014;168:60–8.CrossRefPubMed
Metadaten
Titel
First identification of mammalian orthoreovirus type 3 in diarrheic pigs in Europe
verfasst von
Davide Lelli
Maria Serena Beato
Lara Cavicchio
Antonio Lavazza
Chiara Chiapponi
Stefania Leopardi
Laura Baioni
Paola De Benedictis
Ana Moreno
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2016
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-016-0593-4

Weitere Artikel der Ausgabe 1/2016

Virology Journal 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.