Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 7/2019

17.04.2019 | Original Article

Flexible and comprehensive patient-specific mitral valve silicone models with chordae tendineae made from 3D-printable molds

verfasst von: Sandy Engelhardt, Simon Sauerzapf, Bernhard Preim, Matthias Karck, Ivo Wolf, Raffaele De Simone

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 7/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Given the multitude of challenges surgeons face during mitral valve repair surgery, they should have a high confidence in handling of instruments and in the application of surgical techniques before they enter the operating room. Unfortunately, opportunities for surgical training of minimally invasive repair are very limited, leading to a situation where most surgeons undergo a steep learning curve while operating the first patients.

Methods

In order to provide a realistic tool for surgical training, a commercial simulator was augmented by flexible patient-specific mitral valve replica. In an elaborated production pipeline, finalized after many optimization cycles, models were segmented from 3D ultrasound and then 3D-printable molds were computed automatically and printed in rigid material, the lower part being water-soluble. After silicone injection, the silicone model was dissolved from the mold and anchored in the simulator.

Results

To our knowledge, our models are the first to comprise the full mitral valve apparatus, i.e., the annulus, leaflets, chordae tendineae and papillary muscles. Nine different valve molds were automatically created according to the proposed workflow (seven prolapsed valves and two valves with functional mitral insufficiency). From these mold geometries, 16 replica were manufactured. A material test revealed that EcoflexTM 00-30 is the most suitable material for leaflet-mimicking tissue out of seven mixtures. Production time was around 36 h per valve. Twelve surgeons performed various surgical techniques, e.g., annuloplasty, neo-chordae implantation, triangular leaflet resection, and assessed the realism of the valves very positively.

Conclusion

The standardized production process guarantees a high anatomical recapitulation of the silicone valves to the segmented models and the ultrasound data. Models are of unprecedented quality and maintain a high realism during haptic interaction with instruments and suture material.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Engelhardt S, De Simone R, Full PM, Karck M, Wolf I (2018) Improving surgical training phantoms by hyperrealism: deep unpaired image-to-image translation from real surgeries. In: Frangi A, Schnabel J, Davatzikos C, Alberola-López C, Fichtinger G (eds) Medical image computing and computer assisted intervention—MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, vol 11070. Springer, Cham. https://doi.org/10.1007/978-3-030-00928-1_84 Engelhardt S, De Simone R, Full PM, Karck M, Wolf I (2018) Improving surgical training phantoms by hyperrealism: deep unpaired image-to-image translation from real surgeries. In: Frangi A, Schnabel J, Davatzikos C, Alberola-López C, Fichtinger G (eds) Medical image computing and computer assisted intervention—MICCAI 2018. MICCAI 2018. Lecture Notes in Computer Science, vol 11070. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-030-00928-1_​84
2.
Zurück zum Zitat Engelhardt S, Lichtenberg N, Al-Maisary S, De Simone R, Rauch H, Roggenbach J, Müller S, Karck M, Meinzer HP, Wolf I (2015) Towards automatic assessment of the mitral valve coaptation zone from 4D ultrasound. In: van Assen H, Bovendeerd P, Delhaas T (eds) Functional imaging and modeling of the heart. FIMH 2015. Lecture Notes in Computer Science, vol 9126. Springer, Cham, pp 137–145. https://doi.org/10.1007/978-3-319-20309-6_16 Engelhardt S, Lichtenberg N, Al-Maisary S, De Simone R, Rauch H, Roggenbach J, Müller S, Karck M, Meinzer HP, Wolf I (2015) Towards automatic assessment of the mitral valve coaptation zone from 4D ultrasound. In: van Assen H, Bovendeerd P, Delhaas T (eds) Functional imaging and modeling of the heart. FIMH 2015. Lecture Notes in Computer Science, vol 9126. Springer, Cham, pp 137–145. https://​doi.​org/​10.​1007/​978-3-319-20309-6_​16
3.
Zurück zum Zitat Engelhardt S, Sauerzapf S, Al-Maisary S, Karck M, Preim B, Wolf I, De Simone R (2018) Elastic mitral valve silicone replica made from 3D-printable molds offer advanced surgical training. In: Maier A, Deserno T, Handels H, Maier-Hein K, Palm C, Tolxdorff T (eds) Bildverarbeitung für die Medizin 2018. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56537-7_33 Engelhardt S, Sauerzapf S, Al-Maisary S, Karck M, Preim B, Wolf I, De Simone R (2018) Elastic mitral valve silicone replica made from 3D-printable molds offer advanced surgical training. In: Maier A, Deserno T, Handels H, Maier-Hein K, Palm C, Tolxdorff T (eds) Bildverarbeitung für die Medizin 2018. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://​doi.​org/​10.​1007/​978-3-662-56537-7_​33
5.
Zurück zum Zitat Engelhardt S, Wolf I, Al-Maisary S, Schmidt H, Meinzer HP, Karck M, De Simone R (2016) Intraoperative quantitative mitral valve analysis using optical tracking technology. Ann Thorac Surg 101(5):1950–6CrossRefPubMed Engelhardt S, Wolf I, Al-Maisary S, Schmidt H, Meinzer HP, Karck M, De Simone R (2016) Intraoperative quantitative mitral valve analysis using optical tracking technology. Ann Thorac Surg 101(5):1950–6CrossRefPubMed
6.
Zurück zum Zitat Ginty O, Moore J, Peters T, Bainbridge D (2018) Modeling patient-specific deformable mitral valves. J Cardiothorac Vasc Anesth 32(3):1368–1373CrossRefPubMed Ginty O, Moore J, Peters T, Bainbridge D (2018) Modeling patient-specific deformable mitral valves. J Cardiothorac Vasc Anesth 32(3):1368–1373CrossRefPubMed
7.
Zurück zum Zitat Holzhey DM, Seeburger J, Misfeld M, Borger MA, Mohr FW (2013) Learning minimally invasive mitral valve surgery: a cumulative sum sequential probability analysis of 3895 operations from a single high-volume center. Circulation 128(5):483–491CrossRefPubMed Holzhey DM, Seeburger J, Misfeld M, Borger MA, Mohr FW (2013) Learning minimally invasive mitral valve surgery: a cumulative sum sequential probability analysis of 3895 operations from a single high-volume center. Circulation 128(5):483–491CrossRefPubMed
8.
Zurück zum Zitat Ilina A, Lasso A, Jolley MA, Wohler B, Nguyen A, Scanlan A, Baum Z, McGowan F, Fichtinger G (2017) Patient-specific pediatric silicone heart valve models based on 3D ultrasound. In: Proceeding of the SPIE 10135, p 1013516 Ilina A, Lasso A, Jolley MA, Wohler B, Nguyen A, Scanlan A, Baum Z, McGowan F, Fichtinger G (2017) Patient-specific pediatric silicone heart valve models based on 3D ultrasound. In: Proceeding of the SPIE 10135, p 1013516
9.
Zurück zum Zitat Kenngott HG, Wünscher JJ, Wagner M, Preukschas A, Wekerle AL, Neher P, Suwelack S, Speidel S, Nickel F, Oladokun D, Maier-Hein L, Dillmann R, Meinzer HP, Müller-Stich BP (2015) OpenHELP (Heidelberg laparoscopy phantom): development of an open-source surgical evaluation and training tool. Surg Endosc 29(11):3338–3347CrossRefPubMedPubMedCentral Kenngott HG, Wünscher JJ, Wagner M, Preukschas A, Wekerle AL, Neher P, Suwelack S, Speidel S, Nickel F, Oladokun D, Maier-Hein L, Dillmann R, Meinzer HP, Müller-Stich BP (2015) OpenHELP (Heidelberg laparoscopy phantom): development of an open-source surgical evaluation and training tool. Surg Endosc 29(11):3338–3347CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kotsis SV (2013) KC Chung: Application of see one, do one, teach one concept in surgical training. Plastic Reconstr Surg 131(5):1194–1201CrossRef Kotsis SV (2013) KC Chung: Application of see one, do one, teach one concept in surgical training. Plastic Reconstr Surg 131(5):1194–1201CrossRef
11.
Zurück zum Zitat Lee CH, Oomen PJA, Rabbah JP, Yoganathan A, Gorman RC, Gorman JH, Amini R, Sacks MS (2013) A high-fidelity and micro-anatomically accurate 3D finite element model for simulations of functional mitral valve. In: Ourselin S, Rueckert D, Smith N (eds) Functional imaging and modeling of the heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg Lee CH, Oomen PJA, Rabbah JP, Yoganathan A, Gorman RC, Gorman JH, Amini R, Sacks MS (2013) A high-fidelity and micro-anatomically accurate 3D finite element model for simulations of functional mitral valve. In: Ourselin S, Rueckert D, Smith N (eds) Functional imaging and modeling of the heart. FIMH 2013. Lecture Notes in Computer Science, vol 7945. Springer, Berlin, Heidelberg
12.
Zurück zum Zitat Mathur A, Ma Z, Loskill P, Jeeawoody S, Healy K (2015) In vitro cardiac tissue models: current status and future prospects. Adv Drug Deliv Rev 96:203–13CrossRefPubMedPubMedCentral Mathur A, Ma Z, Loskill P, Jeeawoody S, Healy K (2015) In vitro cardiac tissue models: current status and future prospects. Adv Drug Deliv Rev 96:203–13CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Ramphal PS, Coore DN, Craven MP, Forbes NF, Newman SM, Coye AA, Little SG, Silvera BC (2005) A high fidelity tissue-based cardiac surgical simulator. Eur J Cardiothorac Surg 27(5):910–916CrossRefPubMed Ramphal PS, Coore DN, Craven MP, Forbes NF, Newman SM, Coye AA, Little SG, Silvera BC (2005) A high fidelity tissue-based cardiac surgical simulator. Eur J Cardiothorac Surg 27(5):910–916CrossRefPubMed
14.
Zurück zum Zitat Scanlan AB, Nguyen A, Ilina A, Lasso A, Cripe L, Jegatheeswaran A, Silvestro E, McGowan FX, Mascio CE, Fuller S, Spray TL, Cohen MS, Fichtinger G, Jolley MA (2017) Comparison of 3D echocardiogram-derived 3D printed valve models to molded models for simulated repair of pediatric atrioventricular valves. Pediatr Cardiol 39:1–10 Scanlan AB, Nguyen A, Ilina A, Lasso A, Cripe L, Jegatheeswaran A, Silvestro E, McGowan FX, Mascio CE, Fuller S, Spray TL, Cohen MS, Fichtinger G, Jolley MA (2017) Comparison of 3D echocardiogram-derived 3D printed valve models to molded models for simulated repair of pediatric atrioventricular valves. Pediatr Cardiol 39:1–10
15.
Zurück zum Zitat Stephens SE, Liachenko S, Ingels NB, Wenk JF, Jensen MO (2017) High resolution imaging of the mitral valve in the natural state with 7 Tesla MRI. PLoS ONE 12(8):1–18CrossRef Stephens SE, Liachenko S, Ingels NB, Wenk JF, Jensen MO (2017) High resolution imaging of the mitral valve in the natural state with 7 Tesla MRI. PLoS ONE 12(8):1–18CrossRef
16.
Zurück zum Zitat Van Praet KM, Stamm C, Sündermann SH, Meyer A, Unbehaun A, Montagner M, Shafti TZN, Jacobs S, Falk V, Kempfert J (2018) Minimally invasive surgical mitral valve repair: state of the art review. Interv Cardiol 13(1):14–19PubMedPubMedCentral Van Praet KM, Stamm C, Sündermann SH, Meyer A, Unbehaun A, Montagner M, Shafti TZN, Jacobs S, Falk V, Kempfert J (2018) Minimally invasive surgical mitral valve repair: state of the art review. Interv Cardiol 13(1):14–19PubMedPubMedCentral
17.
Zurück zum Zitat Vukicevic M, Puperi D, Jane GAK, Little S (2017) 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng 45(2):508–519CrossRefPubMed Vukicevic M, Puperi D, Jane GAK, Little S (2017) 3D printed modeling of the mitral valve for catheter-based structural interventions. Ann Biomed Eng 45(2):508–519CrossRefPubMed
18.
Zurück zum Zitat Witschey W, Pouch A, McGarvey J, Ikeuchi K, Contijoch F, Levack M, Yushkevick P, Sehgal C, Jackson B, Gorman R, Gorman J (2014) Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg 98:691CrossRefPubMedPubMedCentral Witschey W, Pouch A, McGarvey J, Ikeuchi K, Contijoch F, Levack M, Yushkevick P, Sehgal C, Jackson B, Gorman R, Gorman J (2014) Three-dimensional ultrasound-derived physical mitral valve modeling. Ann Thorac Surg 98:691CrossRefPubMedPubMedCentral
Metadaten
Titel
Flexible and comprehensive patient-specific mitral valve silicone models with chordae tendineae made from 3D-printable molds
verfasst von
Sandy Engelhardt
Simon Sauerzapf
Bernhard Preim
Matthias Karck
Ivo Wolf
Raffaele De Simone
Publikationsdatum
17.04.2019
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 7/2019
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-01971-9

Weitere Artikel der Ausgabe 7/2019

International Journal of Computer Assisted Radiology and Surgery 7/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.