Skip to main content
Erschienen in: European Radiology 3/2017

21.06.2016 | Molecular Imaging

Fluorescence molecular tomography of DiR-labeled mesenchymal stem cell implants for osteochondral defect repair in rabbit knees

verfasst von: Markus T. Berninger, Pouyan Mohajerani, Melanie Kimm, Stephan Masius, Xiaopeng Ma, Moritz Wildgruber, Bernhard Haller, Martina Anton, Andreas B. Imhoff, Vasilis Ntziachristos, Tobias D. Henning, Reinhard Meier

Erschienen in: European Radiology | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To assess labelling efficiency of rabbit mesenchymal stem cells (MSCs) using the near-infrared dye 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindotricarbocyanine iodide (DiR) and detection of labelled MSCs for osteochondral defect repair in a rabbit model using fluorescence molecular tomography–X-ray computed tomography (FMT-XCT).

Methods

MSCs were isolated from New Zealand White rabbits and labelled with DiR (1.25-20 μg/mL). Viability and induction of apoptosis were assessed by XTT- and Caspase-3/-7-testing. Chondrogenic potential was evaluated by measurement of glycosaminoglycans. Labelled cells and unlabeled controls (n = 3) underwent FMT-XCT imaging before and after chondrogenic differentiation. Osteochondral defects were created surgically in rabbit knees (n = 6). Unlabeled and labelled MSCs were implanted in fibrin-clots and imaged by FMT-XCT. Statistical analyses were performed using multiple regression models.

Results

DiR-labelling of MSCs resulted in a dose-dependent fluorescence signal on planar images in trans-illumination mode. No significant reduction in viability or induction of apoptosis was detected at concentrations below 10 μg DiR/mL (p > .05); the chondrogenic potential of MSCs was not affected (p > .05). FMT-XCT of labelled MSCs in osteochondral defects showed a significant signal of the transplant (p < .05) with additional high-resolution anatomical information about its osteochondral integration.

Conclusions

FMT-XCT allows for detection of stem cell implantation within osteochondral regeneration processes.

Key Points

DiR-labelling of MSCs shows no toxic side effects or impairment of chondrogenesis.
Fluorescence molecular tomography allows for detection of MSCs for osteochondral defect repair.
FMT-XCT helps to improve evaluation of cell implantation and osteochondral regeneration processes.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kon E, Delcogliano M, Filardo G et al (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28:116–124PubMed Kon E, Delcogliano M, Filardo G et al (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28:116–124PubMed
2.
Zurück zum Zitat Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 1:74–79CrossRefPubMed Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 1:74–79CrossRefPubMed
3.
Zurück zum Zitat Jing XH, Yang L, Duan XJ et al (2008) In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine 75:432–438CrossRefPubMed Jing XH, Yang L, Duan XJ et al (2008) In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine 75:432–438CrossRefPubMed
4.
Zurück zum Zitat Menetrey J, Unno-Veith F, Madry H, Van Breuseghem I (2010) Epidemiology and imaging of the subchondral bone in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc 18:463–471CrossRefPubMed Menetrey J, Unno-Veith F, Madry H, Van Breuseghem I (2010) Epidemiology and imaging of the subchondral bone in articular cartilage repair. Knee Surg Sports Traumatol Arthrosc 18:463–471CrossRefPubMed
5.
6.
Zurück zum Zitat Henning TD, Wendland MF, Golovko D et al (2009) Relaxation effects of ferucarbotran-labeled mesenchymal stem cells at 1.5T and 3T: discrimination of viable from lysed cells. Magn Reson Med 62:325–332CrossRefPubMedPubMedCentral Henning TD, Wendland MF, Golovko D et al (2009) Relaxation effects of ferucarbotran-labeled mesenchymal stem cells at 1.5T and 3T: discrimination of viable from lysed cells. Magn Reson Med 62:325–332CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Henning TD, Gawande R, Khurana A et al (2012) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells in cartilage defects: in vitro and in vivo investigations. Mol Imaging 11:197–209PubMedPubMedCentral Henning TD, Gawande R, Khurana A et al (2012) Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells in cartilage defects: in vitro and in vivo investigations. Mol Imaging 11:197–209PubMedPubMedCentral
8.
Zurück zum Zitat Bernstein MA, Huston J 3rd, Ward HA (2006) Imaging artifacts at 3.0T. J Magn Reson Imaging 24:735–746CrossRefPubMed Bernstein MA, Huston J 3rd, Ward HA (2006) Imaging artifacts at 3.0T. J Magn Reson Imaging 24:735–746CrossRefPubMed
9.
Zurück zum Zitat Bauer JS, Sidorenko I, Mueller D et al (2014) Prediction of bone strength by muCT and MDCT-based finite-element-models: how much spatial resolution is needed? Eur J Radiol 83:e36–e42CrossRefPubMed Bauer JS, Sidorenko I, Mueller D et al (2014) Prediction of bone strength by muCT and MDCT-based finite-element-models: how much spatial resolution is needed? Eur J Radiol 83:e36–e42CrossRefPubMed
10.
Zurück zum Zitat Ntziachristos V, Bremer C, Graves EE, Ripoll J, Weissleder R (2002) In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging 1:82–88CrossRefPubMed Ntziachristos V, Bremer C, Graves EE, Ripoll J, Weissleder R (2002) In vivo tomographic imaging of near-infrared fluorescent probes. Mol Imaging 1:82–88CrossRefPubMed
11.
Zurück zum Zitat Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320CrossRefPubMed Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320CrossRefPubMed
12.
Zurück zum Zitat Stuker F, Ripoll J, Rudin M (2011) Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3:229–274CrossRefPubMedPubMedCentral Stuker F, Ripoll J, Rudin M (2011) Fluorescence molecular tomography: principles and potential for pharmaceutical research. Pharmaceutics 3:229–274CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Leblond F, Davis SC, Valdes PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B 98:77–94CrossRefPubMed Leblond F, Davis SC, Valdes PA, Pogue BW (2010) Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J Photochem Photobiol B 98:77–94CrossRefPubMed
14.
Zurück zum Zitat Mohajerani P, Tzoumas S, Rosenthal A, Ntziachristos V (2015) Optical and optoacoustic model-based tomography. IEEE Signal Process Mag 32 Mohajerani P, Tzoumas S, Rosenthal A, Ntziachristos V (2015) Optical and optoacoustic model-based tomography. IEEE Signal Process Mag 32
15.
Zurück zum Zitat Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65:6330–6336CrossRefPubMed Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65:6330–6336CrossRefPubMed
16.
Zurück zum Zitat Gerofalakis A, Zacharakis G, Meyer H et al (2007) Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography. Mol Imaging 6:99–107 Gerofalakis A, Zacharakis G, Meyer H et al (2007) Three-dimensional in vivo imaging of green fluorescent protein-expressing T cells in mice with noncontact fluorescence molecular tomography. Mol Imaging 6:99–107
17.
Zurück zum Zitat Montet X, Figueiredo JL, Alencar H, Ntziachristos V, Mahmood U, Weissleder R (2007) Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242:751–758CrossRefPubMed Montet X, Figueiredo JL, Alencar H, Ntziachristos V, Mahmood U, Weissleder R (2007) Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242:751–758CrossRefPubMed
18.
Zurück zum Zitat Lambers FM, Stuker F, Weigt C et al (2013) Longitudinal in vivo imaging of bone formation and resorption using fluorescence molecular tomography. Bone 52:587–595CrossRefPubMed Lambers FM, Stuker F, Weigt C et al (2013) Longitudinal in vivo imaging of bone formation and resorption using fluorescence molecular tomography. Bone 52:587–595CrossRefPubMed
19.
Zurück zum Zitat Mohajerani P, Koch M, Thurmel K, et al. (2014) Fluorescence-aided tomographic imaging of synovitis in the human finger. Radiology:132128 Mohajerani P, Koch M, Thurmel K, et al. (2014) Fluorescence-aided tomographic imaging of synovitis in the human finger. Radiology:132128
20.
Zurück zum Zitat Ntziachristos V, Schellenberger EA, Ripoll J et al (2004) Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci U S A 101:12294–12299CrossRefPubMedPubMedCentral Ntziachristos V, Schellenberger EA, Ripoll J et al (2004) Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci U S A 101:12294–12299CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Zhang G, Liu F, Zhang B, He Y, Luo J, Bai J (2013) Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system. J Biomed Opt 18:040505CrossRefPubMed Zhang G, Liu F, Zhang B, He Y, Luo J, Bai J (2013) Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system. J Biomed Opt 18:040505CrossRefPubMed
22.
Zurück zum Zitat Eisenblatter M, Ehrchen J, Varga G et al (2009) In vivo optical imaging of cellular inflammatory response in granuloma formation using fluorescence-labeled macrophages. J Nucl Med 50:1676–1682CrossRefPubMed Eisenblatter M, Ehrchen J, Varga G et al (2009) In vivo optical imaging of cellular inflammatory response in granuloma formation using fluorescence-labeled macrophages. J Nucl Med 50:1676–1682CrossRefPubMed
23.
Zurück zum Zitat Carlson AL, Fujisaki J, Wu J et al (2013) Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label. PLoS One 8, e69257CrossRefPubMedPubMedCentral Carlson AL, Fujisaki J, Wu J et al (2013) Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label. PLoS One 8, e69257CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Berninger MT, Wexel G, Rummeny EJ, et al. (2013) Treatment of osteochondral defects in the Rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. J Vis Exp Berninger MT, Wexel G, Rummeny EJ, et al. (2013) Treatment of osteochondral defects in the Rabbit's knee joint by implantation of allogeneic mesenchymal stem cells in fibrin clots. J Vis Exp
25.
Zurück zum Zitat Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77:192–204CrossRefPubMed Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77:192–204CrossRefPubMed
26.
Zurück zum Zitat Bakhtina A, Tohfafarosh M, Lichtler A, Arinzeh TL (2014) Characterization and differentiation potential of rabbit mesenchymal stem cells for translational regenerative medicine. In Vitro Cell Dev Biol Anim 50:251–260CrossRefPubMed Bakhtina A, Tohfafarosh M, Lichtler A, Arinzeh TL (2014) Characterization and differentiation potential of rabbit mesenchymal stem cells for translational regenerative medicine. In Vitro Cell Dev Biol Anim 50:251–260CrossRefPubMed
27.
Zurück zum Zitat Lee JM, Yoo JK, Yoo H et al (2013) The novel miR-7515 decreases the proliferation and migration of human lung cancer cells by targeting c-Met. Mol Cancer Res 11:43–53CrossRefPubMed Lee JM, Yoo JK, Yoo H et al (2013) The novel miR-7515 decreases the proliferation and migration of human lung cancer cells by targeting c-Met. Mol Cancer Res 11:43–53CrossRefPubMed
28.
Zurück zum Zitat Nedopil A, Klenk C, Kim C et al (2010) MR signal characteristics of viable and apoptotic human mesenchymal stem cells in matrix-associated stem cell implants for treatment of osteoarthritis. Invest Radiol 45:634–640CrossRefPubMedPubMedCentral Nedopil A, Klenk C, Kim C et al (2010) MR signal characteristics of viable and apoptotic human mesenchymal stem cells in matrix-associated stem cell implants for treatment of osteoarthritis. Invest Radiol 45:634–640CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Lohan A, Marzahn U, El Sayed K et al (2014) Osteochondral articular defect repair using auricle-derived autologous chondrocytes in a rabbit model. Ann Anat 196:317–326CrossRefPubMed Lohan A, Marzahn U, El Sayed K et al (2014) Osteochondral articular defect repair using auricle-derived autologous chondrocytes in a rabbit model. Ann Anat 196:317–326CrossRefPubMed
30.
Zurück zum Zitat Schulz RB, Ale A, Sarantopoulos A et al (2010) Hybrid system for simultaneous fluorescence and X-Ray computed tomography. IEEE Trans Med Imaging 29:465–473CrossRefPubMed Schulz RB, Ale A, Sarantopoulos A et al (2010) Hybrid system for simultaneous fluorescence and X-Ray computed tomography. IEEE Trans Med Imaging 29:465–473CrossRefPubMed
31.
Zurück zum Zitat Ale A, Ermolayev V, Herzog E, Cohrs C, de Angelis MH, Ntziachristos V (2012) FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat Methods 9:615–620CrossRefPubMed Ale A, Ermolayev V, Herzog E, Cohrs C, de Angelis MH, Ntziachristos V (2012) FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography. Nat Methods 9:615–620CrossRefPubMed
32.
Zurück zum Zitat Schulz RB, Ale A, Sarantopoulos A et al (2010) Hybrid system for simultaneous fluorescence and X-Ray computed tomography. IEEE Trans Med Imag 29:465–473CrossRef Schulz RB, Ale A, Sarantopoulos A et al (2010) Hybrid system for simultaneous fluorescence and X-Ray computed tomography. IEEE Trans Med Imag 29:465–473CrossRef
33.
Zurück zum Zitat Mohajerani P, Hipp A, Willner M et al (2014) FMT-PCCT: hybrid fluorescence molecular tomography-x-ray phase-contrast CT imaging of mouse models. IEEE Trans Med Imaging 33:1434–1446CrossRefPubMed Mohajerani P, Hipp A, Willner M et al (2014) FMT-PCCT: hybrid fluorescence molecular tomography-x-ray phase-contrast CT imaging of mouse models. IEEE Trans Med Imaging 33:1434–1446CrossRefPubMed
34.
Zurück zum Zitat Arridge SR, Schweiger M, Hiraoka M, Delpy DT (1993) A finite element approach for modeling photon transport in tissue. Med Phys 20:299CrossRefPubMed Arridge SR, Schweiger M, Hiraoka M, Delpy DT (1993) A finite element approach for modeling photon transport in tissue. Med Phys 20:299CrossRefPubMed
35.
Zurück zum Zitat Fang QQ, Boas DA (2009) Tetrahedral mesh generation from volumetric binary and gray-scale images. 2009 Ieee International Symposium on Biomedical Imaging: From Nano to Macro, Vols 1 and 2:1142-1145 Fang QQ, Boas DA (2009) Tetrahedral mesh generation from volumetric binary and gray-scale images. 2009 Ieee International Symposium on Biomedical Imaging: From Nano to Macro, Vols 1 and 2:1142-1145
36.
Zurück zum Zitat Pierre Alliez, Laurent Rineau, Stéphane Tayeb, Jane Tournois, Yvinec M (2012) 3D Mesh GenerationCGAL User and Reference Manual. CGAL Editorial Board Pierre Alliez, Laurent Rineau, Stéphane Tayeb, Jane Tournois, Yvinec M (2012) 3D Mesh GenerationCGAL User and Reference Manual. CGAL Editorial Board
37.
Zurück zum Zitat Hyde D, Schulz R, Brooks D, Miller E, Ntziachristos V (2009) Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem. J Opt Soc Am Opt Image Sci Vis 26:919–923CrossRef Hyde D, Schulz R, Brooks D, Miller E, Ntziachristos V (2009) Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem. J Opt Soc Am Opt Image Sci Vis 26:919–923CrossRef
38.
Zurück zum Zitat Hyde D, Miller EL, Brooks DH, Ntziachristos V (2010) Data specific spatially varying regularization for multimodal fluorescence molecular tomography. IEEE Trans Med Imaging 29:365–374CrossRefPubMed Hyde D, Miller EL, Brooks DH, Ntziachristos V (2010) Data specific spatially varying regularization for multimodal fluorescence molecular tomography. IEEE Trans Med Imaging 29:365–374CrossRefPubMed
39.
Zurück zum Zitat Mohajerani P, Eftekhar AA, Huang J, Adibi A (2007) Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results. Appl Opt 46:1679–1685CrossRefPubMed Mohajerani P, Eftekhar AA, Huang J, Adibi A (2007) Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results. Appl Opt 46:1679–1685CrossRefPubMed
40.
Zurück zum Zitat Paige CC, Saunders MA (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. TOMS 8:43–71CrossRef Paige CC, Saunders MA (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. TOMS 8:43–71CrossRef
41.
Zurück zum Zitat Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223CrossRefPubMed Arbab AS, Yocum GT, Kalish H et al (2004) Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood 104:1217–1223CrossRefPubMed
42.
Zurück zum Zitat Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE (2008) Cell tracking with optical imaging. Eur Radiol 18:2021–2032CrossRefPubMed Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE (2008) Cell tracking with optical imaging. Eur Radiol 18:2021–2032CrossRefPubMed
43.
Zurück zum Zitat Meier R, Thuermel K, Noel PB et al (2014) Synovitis in patients with early inflammatory arthritis monitored with quantitative analysis of dynamic contrast-enhanced optical imaging and MR imaging. Radiology 270:176–185CrossRefPubMed Meier R, Thuermel K, Noel PB et al (2014) Synovitis in patients with early inflammatory arthritis monitored with quantitative analysis of dynamic contrast-enhanced optical imaging and MR imaging. Radiology 270:176–185CrossRefPubMed
44.
Zurück zum Zitat Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–614CrossRefPubMed Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–614CrossRefPubMed
45.
Zurück zum Zitat Sevick-Muraca EM, Sharma R, Rasmussen JC et al (2008) Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology 246:734–741CrossRefPubMedPubMedCentral Sevick-Muraca EM, Sharma R, Rasmussen JC et al (2008) Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study. Radiology 246:734–741CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Mortensen LJ, Levy O, Phillips JP et al (2013) Quantification of Mesenchymal Stem Cell (MSC) delivery to a target site using in vivo confocal microscopy. PLoS One 8, e78145CrossRefPubMedPubMedCentral Mortensen LJ, Levy O, Phillips JP et al (2013) Quantification of Mesenchymal Stem Cell (MSC) delivery to a target site using in vivo confocal microscopy. PLoS One 8, e78145CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Lam J, Lu S, Lee EJ et al (2014) Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model. Osteoarthr Cartil 22:1291–1300CrossRefPubMedPubMedCentral Lam J, Lu S, Lee EJ et al (2014) Osteochondral defect repair using bilayered hydrogels encapsulating both chondrogenically and osteogenically pre-differentiated mesenchymal stem cells in a rabbit model. Osteoarthr Cartil 22:1291–1300CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Iwasa J, Ochi M, Uchio Y, Katsube K, Adachi N, Kawasaki K (2003) Effects of cell density on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel. Artif Organs 27:249–255CrossRefPubMed Iwasa J, Ochi M, Uchio Y, Katsube K, Adachi N, Kawasaki K (2003) Effects of cell density on proliferation and matrix synthesis of chondrocytes embedded in atelocollagen gel. Artif Organs 27:249–255CrossRefPubMed
49.
Zurück zum Zitat Mauck RL, Seyhan SL, Ateshian GA, Hung CT (2002) Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 30:1046–1056CrossRefPubMed Mauck RL, Seyhan SL, Ateshian GA, Hung CT (2002) Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann Biomed Eng 30:1046–1056CrossRefPubMed
50.
Zurück zum Zitat Huang CY, Reuben PM, D'Ippolito G, Schiller PC, Cheung HS (2004) Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat Rec A: Discov Mol Cell Evol Biol 278:428–436CrossRef Huang CY, Reuben PM, D'Ippolito G, Schiller PC, Cheung HS (2004) Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat Rec A: Discov Mol Cell Evol Biol 278:428–436CrossRef
51.
Zurück zum Zitat Hui TY, Cheung KM, Cheung WL, Chan D, Chan BP (2008) In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials 29:3201–3212CrossRefPubMed Hui TY, Cheung KM, Cheung WL, Chan D, Chan BP (2008) In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials 29:3201–3212CrossRefPubMed
52.
Zurück zum Zitat Nejadnik H, Henning TD, Do T et al (2012) MR imaging features of gadofluorine-labeled matrix-associated stem cell implants in cartilage defects. PLoS One 7, e49971CrossRefPubMedPubMedCentral Nejadnik H, Henning TD, Do T et al (2012) MR imaging features of gadofluorine-labeled matrix-associated stem cell implants in cartilage defects. PLoS One 7, e49971CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat van Buul GM, Kotek G, Wielopolski PA et al (2011) Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides. PLoS One 6, e17001CrossRefPubMedPubMedCentral van Buul GM, Kotek G, Wielopolski PA et al (2011) Clinically translatable cell tracking and quantification by MRI in cartilage repair using superparamagnetic iron oxides. PLoS One 6, e17001CrossRefPubMedPubMedCentral
Metadaten
Titel
Fluorescence molecular tomography of DiR-labeled mesenchymal stem cell implants for osteochondral defect repair in rabbit knees
verfasst von
Markus T. Berninger
Pouyan Mohajerani
Melanie Kimm
Stephan Masius
Xiaopeng Ma
Moritz Wildgruber
Bernhard Haller
Martina Anton
Andreas B. Imhoff
Vasilis Ntziachristos
Tobias D. Henning
Reinhard Meier
Publikationsdatum
21.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 3/2017
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4457-5

Weitere Artikel der Ausgabe 3/2017

European Radiology 3/2017 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.