Skip to main content
Erschienen in: Journal of Inherited Metabolic Disease 3/2012

01.05.2012 | Original Article

Fluorous iminoalditols act as effective pharmacological chaperones against gene products from GLB1 alleles causing GM1-gangliosidosis and Morquio B disease

verfasst von: Katrin M. Fantur, Tanja M. Wrodnigg, Arnold E. Stütz, Bettina M. Pabst, Eduard Paschke

Erschienen in: Journal of Inherited Metabolic Disease | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

Unlike replacement therapy by infusion of exogenous recombinant lysosomal enzymes, pharmacological chaperones aim at a gain of function of endogenous gene products. Deficits resulting from missense mutations may become treatable by small, competitive inhibitors binding to the catalytical site and thus correcting the erroneous conformation of mutant enzymes. This may prevent their premature degradation and normalize intracellular trafficking as well as biological half-life. A major limitation currently arises from the huge number of individual missense mutations and the lack of knowledge on the structural requirements for specific interaction with mutant protein domains. Our previous work on mutations of the β-galactosidase (β-gal) gene, causing GM1 gangliosidosis (GM1) and Morquio B disease (MBD), respectively, characterized clinical phenotypes as well as biosynthesis, intracellular transport and subcellular localization of mutants. We recently identified an effective chaperone, DL-HexDGJ (Methyl 6-{[N2-(dansyl)-N6-(1,5-dideoxy-D-galactitol-1,5-diyl)- L-lysyl]amino} hexanoate), among a series of N-modified 1-deoxygalactonojirimycin derivatives carrying a dansyl group in its N-acyl moiety. Using novel and flexible synthetic routes, we now report on the effects of two oligofluoroalkyl-derivatives of 1-deoxygalactonojirimycin, Ph(TFM)2OHex-DGJ (N-(α,α-di-trifluoromethyl) benzyloxyhexyl-1,5-dideoxy-1,5-imino-d-galactitol) and (TFM)3OHex-DGJ (N-(Nonafluoro-tert-butyloxy)hexyl-1,5-dideoxy-1,5-imino-d-galactitol) on the β-gal activity of GM1 and MBD fibroblasts. Both compounds are competitive inhibitors and increase the residual enzyme activities up to tenfold over base line activity in GM1 fibroblasts with chaperone-sensitive mutations. Western blots showed that this was due to a normalization of protein transport and intralysosomal maturation. The fact that the novel compounds were effective at very low concentrations (0.5–10 μM) in the cell culture medium as well as their novel chemical character suggest future testing in animal models. This may contribute to new aspects for efficient and personalized small molecule treatment of lysosomal storage diseases.
Literatur
Zurück zum Zitat Arbisser AI, Donnelly KA, Scott CI et al. (1977) Morquio-like syndrome with β-galactosidase deficiency and normal hexosamine sulfatase activity: mucopolysaccharidosis IVB. Am J Med Genet 1:195–205PubMedCrossRef Arbisser AI, Donnelly KA, Scott CI et al. (1977) Morquio-like syndrome with β-galactosidase deficiency and normal hexosamine sulfatase activity: mucopolysaccharidosis IVB. Am J Med Genet 1:195–205PubMedCrossRef
Zurück zum Zitat Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13:93R–104RPubMedCrossRef Asano N (2003) Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13:93R–104RPubMedCrossRef
Zurück zum Zitat Bagshaw RD, Zhang S, Hinek A, Skomorowski MA, Whelan D, Clarke JT, Callahan JW (2002) Novel mutations (Asn 484 Lys, Thr 500 Ala, Gly 438 Glu) in Morquio B disease. Biochim Biophys Acta 1588:247–253PubMed Bagshaw RD, Zhang S, Hinek A, Skomorowski MA, Whelan D, Clarke JT, Callahan JW (2002) Novel mutations (Asn 484 Lys, Thr 500 Ala, Gly 438 Glu) in Morquio B disease. Biochim Biophys Acta 1588:247–253PubMed
Zurück zum Zitat Begley DJ, Pontikis CC, Scarpa M (2008) Lysosomal storage diseases and the blood-brain barrier. Curr Pharm Des 14:1566–1580PubMedCrossRef Begley DJ, Pontikis CC, Scarpa M (2008) Lysosomal storage diseases and the blood-brain barrier. Curr Pharm Des 14:1566–1580PubMedCrossRef
Zurück zum Zitat Benjamin ER, Flanagan JJ, Schilling A et al. (2009) The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines. J Inherit Metab Dis 32:424–440PubMedCrossRef Benjamin ER, Flanagan JJ, Schilling A et al. (2009) The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines. J Inherit Metab Dis 32:424–440PubMedCrossRef
Zurück zum Zitat Brunetti-Pierri N, Scaglia F (2008) GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol Genet Metab 94:391–396PubMedCrossRef Brunetti-Pierri N, Scaglia F (2008) GM1 gangliosidosis: review of clinical, molecular, and therapeutic aspects. Mol Genet Metab 94:391–396PubMedCrossRef
Zurück zum Zitat Caciotti A, Donati MA, D’Azzo A et al. (2009) The potential action of galactose as a “chemical chaperone”: Increase of beta galactosidase activity in fibroblasts from an adult GM1-gangliosidosis patient. Eur J Paediatr Neurol 13:160–164PubMedCrossRef Caciotti A, Donati MA, D’Azzo A et al. (2009) The potential action of galactose as a “chemical chaperone”: Increase of beta galactosidase activity in fibroblasts from an adult GM1-gangliosidosis patient. Eur J Paediatr Neurol 13:160–164PubMedCrossRef
Zurück zum Zitat Callahan JW (1999) Molecular basis of GM1 gangliosidosis and Morquio disease, type B. Structure-function studies of lysosomal beta-galactosidase and the non-lysosomal beta-galactosidase-like protein. Biochim Biophys Acta 1455:85–103PubMed Callahan JW (1999) Molecular basis of GM1 gangliosidosis and Morquio disease, type B. Structure-function studies of lysosomal beta-galactosidase and the non-lysosomal beta-galactosidase-like protein. Biochim Biophys Acta 1455:85–103PubMed
Zurück zum Zitat Fan JQ (2008) A counterintuitive approach to treat enzyme deficiencies: use of enzyme inhibitors for restoring mutant enzyme activity. Biol Chem 389:1–11PubMed Fan JQ (2008) A counterintuitive approach to treat enzyme deficiencies: use of enzyme inhibitors for restoring mutant enzyme activity. Biol Chem 389:1–11PubMed
Zurück zum Zitat Fantur K, Hofer D, Schitter G et al. (2010) DLHex-DGJ, a novel derivative of 1-deoxygalactonojirimycin with pharmacological chaperone activity in human GM1-gangliosidosis fibroblasts. Mol Genet Metab 100:262–268PubMedCrossRef Fantur K, Hofer D, Schitter G et al. (2010) DLHex-DGJ, a novel derivative of 1-deoxygalactonojirimycin with pharmacological chaperone activity in human GM1-gangliosidosis fibroblasts. Mol Genet Metab 100:262–268PubMedCrossRef
Zurück zum Zitat Groebe H, Krins M, Schmidberger von Figura K et al. (1980) Morquio syndrome (mucopolysaccharidosis IVB) associated with β-galactosidase deficiency. Report of two cases. Am J Hum Genet 32:23–26 Groebe H, Krins M, Schmidberger von Figura K et al. (1980) Morquio syndrome (mucopolysaccharidosis IVB) associated with β-galactosidase deficiency. Report of two cases. Am J Hum Genet 32:23–26
Zurück zum Zitat Higaki K, Li L, Bahrudin U et al. (2011) Chemical chaperone therapy: chaperone effect on mutant enzyme and cellular pathophysiology in β-galactosidase deficiency. Hum Mutat. doi:10.1002/humu.21516 Higaki K, Li L, Bahrudin U et al. (2011) Chemical chaperone therapy: chaperone effect on mutant enzyme and cellular pathophysiology in β-galactosidase deficiency. Hum Mutat. doi:10.​1002/​humu.​21516
Zurück zum Zitat Hinek A (1996) Biological roles of the non-integrin elastin/laminin receptor. Biol Chem 377:471–480PubMed Hinek A (1996) Biological roles of the non-integrin elastin/laminin receptor. Biol Chem 377:471–480PubMed
Zurück zum Zitat Hofer D, Paul K, Fantur K et al. (2009) GM1 gangliosidosis and Morquio B disease: expression analysis of missense mutations affecting the catalytic site of acid beta-galactosidase. Hum Mutat 30:1214–1221PubMedCrossRef Hofer D, Paul K, Fantur K et al. (2009) GM1 gangliosidosis and Morquio B disease: expression analysis of missense mutations affecting the catalytic site of acid beta-galactosidase. Hum Mutat 30:1214–1221PubMedCrossRef
Zurück zum Zitat Hofer D, Paul K, Fantur K et al. (2010) Phenotype determining alleles in GM1 gangliosidosis patients bearing novel GLB1 mutations. Clin Genet 78:236–246PubMedCrossRef Hofer D, Paul K, Fantur K et al. (2010) Phenotype determining alleles in GM1 gangliosidosis patients bearing novel GLB1 mutations. Clin Genet 78:236–246PubMedCrossRef
Zurück zum Zitat Iwasaki H, Watanabe H, Iida M et al. (2006) Fibroblast screening for chaperone therapy in beta-galactosidosis. Brain Dev 28:482–486PubMedCrossRef Iwasaki H, Watanabe H, Iida M et al. (2006) Fibroblast screening for chaperone therapy in beta-galactosidosis. Brain Dev 28:482–486PubMedCrossRef
Zurück zum Zitat Kaye EM, Shalish C, Livermore J et al. (1997) Breakefield, β-galactosidase gene mutations in patients with slowly progressive GM1 gangliosidosis. J Child Neurol 12:242–247PubMedCrossRef Kaye EM, Shalish C, Livermore J et al. (1997) Breakefield, β-galactosidase gene mutations in patients with slowly progressive GM1 gangliosidosis. J Child Neurol 12:242–247PubMedCrossRef
Zurück zum Zitat Khanna R, Soska R, Lun Y et al. (2010) The pharmacological chaperone 1-deoxygalactonojirimycin reduces tissue globotriaosylceramide levels in a mouse model of Fabry disease. Mol Ther 18:23–33PubMedCrossRef Khanna R, Soska R, Lun Y et al. (2010) The pharmacological chaperone 1-deoxygalactonojirimycin reduces tissue globotriaosylceramide levels in a mouse model of Fabry disease. Mol Ther 18:23–33PubMedCrossRef
Zurück zum Zitat Leinekugel P, Michel S, Conzelmann E et al. (1992) Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 88:513–523PubMedCrossRef Leinekugel P, Michel S, Conzelmann E et al. (1992) Quantitative correlation between the residual activity of β-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet 88:513–523PubMedCrossRef
Zurück zum Zitat Li X, Turanek J, Knötigova P, Kudlackova H, Masek J, Pennington DB, Rankin SE, Knutson BL, Lehmler H-J (2008) Synthesis and biocompatibility evaluation of fluorinated, single-tailed glucopyranoside surfactants. New J Chem 32:2169–2179CrossRef Li X, Turanek J, Knötigova P, Kudlackova H, Masek J, Pennington DB, Rankin SE, Knutson BL, Lehmler H-J (2008) Synthesis and biocompatibility evaluation of fluorinated, single-tailed glucopyranoside surfactants. New J Chem 32:2169–2179CrossRef
Zurück zum Zitat Li X, Turanek J, Knötigova P, Kudlackova H, Masek J, Parkin S, Rankin SE, Knutson BL, Lehmler HJ (2009) Hydrophobic tail length, degree of fluorination and headgroup stereochemistry are determinants of the biocompatibility of (fluorinated) carbohydrate surfactants. Colloids Surf B Biointerfaces 73:65–74PubMedCrossRef Li X, Turanek J, Knötigova P, Kudlackova H, Masek J, Parkin S, Rankin SE, Knutson BL, Lehmler HJ (2009) Hydrophobic tail length, degree of fluorination and headgroup stereochemistry are determinants of the biocompatibility of (fluorinated) carbohydrate surfactants. Colloids Surf B Biointerfaces 73:65–74PubMedCrossRef
Zurück zum Zitat Lowry OH, Rosebrough NJ, Farr AL et al. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed Lowry OH, Rosebrough NJ, Farr AL et al. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275PubMed
Zurück zum Zitat Matalon R, Arbogast B, Justice P et al. (1974) Morquio’s syndrome. Deficiency of a chondroitin sulfate N-acetylhexosamine sulfate sulfatase. Biochem Biophys Res Commun 61:759–765PubMedCrossRef Matalon R, Arbogast B, Justice P et al. (1974) Morquio’s syndrome. Deficiency of a chondroitin sulfate N-acetylhexosamine sulfate sulfatase. Biochem Biophys Res Commun 61:759–765PubMedCrossRef
Zurück zum Zitat Matsuda J, Suzuki O, Oshima A et al. (2003) Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. Proc Natl Acad Sci USA 100:15912–15917PubMedCrossRef Matsuda J, Suzuki O, Oshima A et al. (2003) Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis. Proc Natl Acad Sci USA 100:15912–15917PubMedCrossRef
Zurück zum Zitat Mourreau H, Galjart NJ, Willemsen R et al. (1992) Human lysosomal protective protein. Glycosylation, intracellular transport, and association with beta-galactosidase in the endoplasmic reticulum. J Biol Chem 267:17949–17956 Mourreau H, Galjart NJ, Willemsen R et al. (1992) Human lysosomal protective protein. Glycosylation, intracellular transport, and association with beta-galactosidase in the endoplasmic reticulum. J Biol Chem 267:17949–17956
Zurück zum Zitat Nishimoto J, Nanba E, Inui K et al. (1991) GM1-Gangliosidosis (Genetic β-galactosidase Deficiency): Identification of Four Mutations in Different Clinical Phenotypes among Japanese Patients. Am J Hum Genet 49:566–574PubMed Nishimoto J, Nanba E, Inui K et al. (1991) GM1-Gangliosidosis (Genetic β-galactosidase Deficiency): Identification of Four Mutations in Different Clinical Phenotypes among Japanese Patients. Am J Hum Genet 49:566–574PubMed
Zurück zum Zitat O’Brien JS (1989) β-galactosidase deficiency (GM1-gangliosidosis, galactosialidosis, and Morquio syndrome type B); ganglioside sialidase deficiency (mucolipidosis IV). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic Basis of Inherited Disease, 6th edn. McGraw-Hill, New York, pp 1797–1806 O’Brien JS (1989) β-galactosidase deficiency (GM1-gangliosidosis, galactosialidosis, and Morquio syndrome type B); ganglioside sialidase deficiency (mucolipidosis IV). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic Basis of Inherited Disease, 6th edn. McGraw-Hill, New York, pp 1797–1806
Zurück zum Zitat Okada S, O’Brien JS (1968) Generalized gangliosidosis: Beta-galactosidase deficiency. Science 160:1002–1004PubMedCrossRef Okada S, O’Brien JS (1968) Generalized gangliosidosis: Beta-galactosidase deficiency. Science 160:1002–1004PubMedCrossRef
Zurück zum Zitat Okamura-Oho Y, Zhang S, Hilson W et al. (1996) Early proteolytic cleavage with loss of a C-terminal fragment underlies altered processing of the beta-galactosidase precursor in galactosialidosis. Biochem J 313(Pt 3):787–794PubMed Okamura-Oho Y, Zhang S, Hilson W et al. (1996) Early proteolytic cleavage with loss of a C-terminal fragment underlies altered processing of the beta-galactosidase precursor in galactosialidosis. Biochem J 313(Pt 3):787–794PubMed
Zurück zum Zitat Okumiya T, Sakuraba H, Kase R et al. (2003) Imbalanced substrate specifity of mutant beta-galactosidase in patients with Morquio B disease. Mol Genet Metab 78:51–58PubMedCrossRef Okumiya T, Sakuraba H, Kase R et al. (2003) Imbalanced substrate specifity of mutant beta-galactosidase in patients with Morquio B disease. Mol Genet Metab 78:51–58PubMedCrossRef
Zurück zum Zitat Oshima A, Yoshida K, Itoh K et al. (1994) Intracellular processing and maturation of mutant gene products in hereditary beta-galactosidase deficiency (beta-galactosidosis). Hum Genet 93:109–114PubMedCrossRef Oshima A, Yoshida K, Itoh K et al. (1994) Intracellular processing and maturation of mutant gene products in hereditary beta-galactosidase deficiency (beta-galactosidosis). Hum Genet 93:109–114PubMedCrossRef
Zurück zum Zitat Oshima A, Yoshida K, Shimmoto M et al. (1991) Human beta-galactosidase gene mutations in Morquio B disease. Am J Hum Genet 49:1091–1093PubMed Oshima A, Yoshida K, Shimmoto M et al. (1991) Human beta-galactosidase gene mutations in Morquio B disease. Am J Hum Genet 49:1091–1093PubMed
Zurück zum Zitat Parenti G (2009) Treating lysosomal storage diseases with pharmacological chaperones. From concept to clinics. EMBO Mol Med 1:268–279PubMedCrossRef Parenti G (2009) Treating lysosomal storage diseases with pharmacological chaperones. From concept to clinics. EMBO Mol Med 1:268–279PubMedCrossRef
Zurück zum Zitat Paschke E, Kresse H (1982) Morquio disease type B: activation of GM1-β-galactosidase by GM1-activator protein. Biochem Biophys Res Commun 109:568–575PubMedCrossRef Paschke E, Kresse H (1982) Morquio disease type B: activation of GM1-β-galactosidase by GM1-activator protein. Biochem Biophys Res Commun 109:568–575PubMedCrossRef
Zurück zum Zitat Pshezhetsky AV, Ashmarina M (2001) Lysosomal multienzyme complex: biochemistry, genetics, and molecular pathophysiology. Prog Nucleic Acid Res Mol Biol 69:81–114PubMedCrossRef Pshezhetsky AV, Ashmarina M (2001) Lysosomal multienzyme complex: biochemistry, genetics, and molecular pathophysiology. Prog Nucleic Acid Res Mol Biol 69:81–114PubMedCrossRef
Zurück zum Zitat Roze E, Paschke E, Lopez N, Eck T, Yoshida K, Maurel-Ollivier A, Doummar D, Caillaud C, Galanaud D, Billette de Villemeur T, Vidailhet M, Roubergue A (2005) Dystonia and parkinsonism in GM1 type 3 gangliosidosis. Mov Disord 20(10):1366–1369PubMedCrossRef Roze E, Paschke E, Lopez N, Eck T, Yoshida K, Maurel-Ollivier A, Doummar D, Caillaud C, Galanaud D, Billette de Villemeur T, Vidailhet M, Roubergue A (2005) Dystonia and parkinsonism in GM1 type 3 gangliosidosis. Mov Disord 20(10):1366–1369PubMedCrossRef
Zurück zum Zitat Schitter G, Steiner AJ, Pototschnig G et al. (2010) Fluorous iminoalditols: a new family of glycosidase inhibitors and pharmacological chaperones. Chembiochem 11:2026–2033PubMedCrossRef Schitter G, Steiner AJ, Pototschnig G et al. (2010) Fluorous iminoalditols: a new family of glycosidase inhibitors and pharmacological chaperones. Chembiochem 11:2026–2033PubMedCrossRef
Zurück zum Zitat Steiner AJ, Schitter G, Stütz AE et al. (2008) 1-deoxygalactonojirimycin-lysine hybrids as potent D-galactosidase inhibitors. Bioorg Med Chem 16:10216–10220PubMedCrossRef Steiner AJ, Schitter G, Stütz AE et al. (2008) 1-deoxygalactonojirimycin-lysine hybrids as potent D-galactosidase inhibitors. Bioorg Med Chem 16:10216–10220PubMedCrossRef
Zurück zum Zitat Suzuki Y (2008) Chemical chaperone therapy for G(M1)-gangliosidosis. Cell Mol Life Sci 65:351–353PubMedCrossRef Suzuki Y (2008) Chemical chaperone therapy for G(M1)-gangliosidosis. Cell Mol Life Sci 65:351–353PubMedCrossRef
Zurück zum Zitat Suzuki Y, Ogawa S, Sakakibara Y (2009) Chaperone therapy for neuronopathic lysosomal diseases: competitive inhibitors as chemical chaperones for enhancement of mutant enzyme activites. Perspect Medicin Chem 3:7–19PubMed Suzuki Y, Ogawa S, Sakakibara Y (2009) Chaperone therapy for neuronopathic lysosomal diseases: competitive inhibitors as chemical chaperones for enhancement of mutant enzyme activites. Perspect Medicin Chem 3:7–19PubMed
Zurück zum Zitat Suzuki Y, Oshima A, Nanba E (2001) β-galactosidase deficiency (β-galactosidosis): GM1 gangliosidosis and Morquio B disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, New York, pp 3775–3809 Suzuki Y, Oshima A, Nanba E (2001) β-galactosidase deficiency (β-galactosidosis): GM1 gangliosidosis and Morquio B disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The Metabolic and Molecular Bases of Inherited Disease. McGraw-Hill, New York, pp 3775–3809
Zurück zum Zitat Suzuki K, Suzuki KI, Kamoshita S (1969) Chemical pathology of GM1-gangliosidosis (generalized gangliosidosis). J Neuropathol Exp Neurol 28:25–73PubMedCrossRef Suzuki K, Suzuki KI, Kamoshita S (1969) Chemical pathology of GM1-gangliosidosis (generalized gangliosidosis). J Neuropathol Exp Neurol 28:25–73PubMedCrossRef
Zurück zum Zitat Tominaga L, Ogawa Y, Taniguchi M et al. (2001) Galactonojirimycin derivatives restore mutant human beta-galactosidase activities expressed in fibroblasts from enzyme-deficient knockout mouse. Brain Dev 23:284–287PubMedCrossRef Tominaga L, Ogawa Y, Taniguchi M et al. (2001) Galactonojirimycin derivatives restore mutant human beta-galactosidase activities expressed in fibroblasts from enzyme-deficient knockout mouse. Brain Dev 23:284–287PubMedCrossRef
Zurück zum Zitat Van der Spoel A, Bonten E, d’Azzo A (1998) Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A. EMBO J 17:1588–1597PubMedCrossRef Van der Spoel A, Bonten E, d’Azzo A (1998) Transport of human lysosomal neuraminidase to mature lysosomes requires protective protein/cathepsin A. EMBO J 17:1588–1597PubMedCrossRef
Zurück zum Zitat Yamamoto Y, Hake CA, Martin BM et al. (1990) Isolation, characterization, and mapping of a human acid beta-galactosidase cDNA. DNA Cell Biol 9:119–127PubMedCrossRef Yamamoto Y, Hake CA, Martin BM et al. (1990) Isolation, characterization, and mapping of a human acid beta-galactosidase cDNA. DNA Cell Biol 9:119–127PubMedCrossRef
Zurück zum Zitat Yang CF, Wu JY, Tsai FJ (2010) Three novel beta-galactosidase gene mutations in Han Chinese patients with GM1 gangliosidosis are correlated with disease severity. J Biomed Sci 17:79PubMedCrossRef Yang CF, Wu JY, Tsai FJ (2010) Three novel beta-galactosidase gene mutations in Han Chinese patients with GM1 gangliosidosis are correlated with disease severity. J Biomed Sci 17:79PubMedCrossRef
Zurück zum Zitat Yoshida K, Oshima A, Shimmoto M et al. (1991) Human beta-galactosidase gene mutations in GM1-gangliosidosis: a common mutation among Japanese adult/chronic cases. Am J Hum Genet 49:435–442PubMed Yoshida K, Oshima A, Shimmoto M et al. (1991) Human beta-galactosidase gene mutations in GM1-gangliosidosis: a common mutation among Japanese adult/chronic cases. Am J Hum Genet 49:435–442PubMed
Zurück zum Zitat Zhou XY, van der Spoel A, Rottier R et al. (1996) Molecular and biochemical analysis of protective protein/cathepsin A mutations: correlation with clinical severity in galactosialidosis. Hum Mol Genet 5:1977–1987PubMedCrossRef Zhou XY, van der Spoel A, Rottier R et al. (1996) Molecular and biochemical analysis of protective protein/cathepsin A mutations: correlation with clinical severity in galactosialidosis. Hum Mol Genet 5:1977–1987PubMedCrossRef
Metadaten
Titel
Fluorous iminoalditols act as effective pharmacological chaperones against gene products from GLB1 alleles causing GM1-gangliosidosis and Morquio B disease
verfasst von
Katrin M. Fantur
Tanja M. Wrodnigg
Arnold E. Stütz
Bettina M. Pabst
Eduard Paschke
Publikationsdatum
01.05.2012
Verlag
Springer Netherlands
Erschienen in
Journal of Inherited Metabolic Disease / Ausgabe 3/2012
Print ISSN: 0141-8955
Elektronische ISSN: 1573-2665
DOI
https://doi.org/10.1007/s10545-011-9409-2

Weitere Artikel der Ausgabe 3/2012

Journal of Inherited Metabolic Disease 3/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.