Skip to main content
Erschienen in: Journal of Clinical Monitoring and Computing 1/2019

24.05.2018 | Original Research

Forewarning of hypotensive events using a Bayesian artificial neural network in neurocritical care

verfasst von: Rob Donald, Tim Howells, Ian Piper, P. Enblad, P. Nilsson, I. Chambers, B. Gregson, G. Citerio, K. Kiening, J. Neumann, A. Ragauskas, J. Sahuquillo, R. Sinnott, A. Stell, the BrainIT Group

Erschienen in: Journal of Clinical Monitoring and Computing | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Traumatically brain injured (TBI) patients are at risk from secondary insults. Arterial hypotension, critically low blood pressure, is one of the most dangerous secondary insults and is related to poor outcome in patients. The overall aim of this study was to get proof of the concept that advanced statistical techniques (machine learning) are methods that are able to provide early warning of impending hypotensive events before they occur during neuro-critical care. A Bayesian artificial neural network (BANN) model predicting episodes of hypotension was developed using data from 104 patients selected from the BrainIT multi-center database. Arterial hypotension events were recorded and defined using the Edinburgh University Secondary Insult Grades (EUSIG) physiological adverse event scoring system. The BANN was trained on a random selection of 50% of the available patients (n = 52) and validated on the remaining cohort. A multi-center prospective pilot study (Phase 1, n = 30) was then conducted with the system running live in the clinical environment, followed by a second validation pilot study (Phase 2, n = 49). From these prospectively collected data, a final evaluation study was done on 69 of these patients with 10 patients excluded from the Phase 2 study because of insufficient or invalid data. Each data collection phase was a prospective non-interventional observational study conducted in a live clinical setting to test the data collection systems and the model performance. No prediction information was available to the clinical teams during a patient’s stay in the ICU. The final cohort (n = 69), using a decision threshold of 0.4, and including false positive checks, gave a sensitivity of 39.3% (95% CI 32.9–46.1) and a specificity of 91.5% (95% CI 89.0–93.7). Using a decision threshold of 0.3, and false positive correction, gave a sensitivity of 46.6% (95% CI 40.1–53.2) and specificity of 85.6% (95% CI 82.3–88.8). With a decision threshold of 0.3, > 15 min warning of patient instability can be achieved. We have shown, using advanced machine learning techniques running in a live neuro-critical care environment, that it would be possible to give neurointensive teams early warning of potential hypotensive events before they emerge, allowing closer monitoring and earlier clinical assessment in an attempt to prevent the onset of hypotension. The multi-centre clinical infrastructure developed to support the clinical studies provides a solid base for further collaborative research on data quality, false positive correction and the display of early warning data in a clinical setting.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat American College of Surgeons. Advanced trauma life support. 2011. American College of Surgeons. Advanced trauma life support. 2011.
2.
Zurück zum Zitat Jones P, Andrews P, Midgley S, Anderson S, Piper I, Tocher J, Housley A, Corrie J, Slattery J, Dearden M, Douglas Miller J. Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol. 1994;6:4–14.CrossRefPubMed Jones P, Andrews P, Midgley S, Anderson S, Piper I, Tocher J, Housley A, Corrie J, Slattery J, Dearden M, Douglas Miller J. Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol. 1994;6:4–14.CrossRefPubMed
3.
Zurück zum Zitat Marmarou A, Anderson RL, Ward JD, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75:S59–66.CrossRef Marmarou A, Anderson RL, Ward JD, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75:S59–66.CrossRef
4.
5.
Zurück zum Zitat BrainIT. Brain-it core dataset, manual of operations, data element definitions. 2009. BrainIT. Brain-it core dataset, manual of operations, data element definitions. 2009.
6.
Zurück zum Zitat Piper I, Chambers I, Citerio G, Enblad P, Gregson B, Howells T, Kiening K, Mattern J, Nilsson P, Ragauskas A, Sahuquillo J, Donald R, Sinnott R, Stell A. The brain monitoring with information technology (BrainIT) collaborative network: EC feasibility study results and future direction. Acta Neurochir. 2010;152(11):1859–71. https://doi.org/10.1007/s00701-010-0719-1.CrossRefPubMed Piper I, Chambers I, Citerio G, Enblad P, Gregson B, Howells T, Kiening K, Mattern J, Nilsson P, Ragauskas A, Sahuquillo J, Donald R, Sinnott R, Stell A. The brain monitoring with information technology (BrainIT) collaborative network: EC feasibility study results and future direction. Acta Neurochir. 2010;152(11):1859–71. https://​doi.​org/​10.​1007/​s00701-010-0719-1.CrossRefPubMed
7.
Zurück zum Zitat AvertIT. Avert-it project (FP7-217049-AVERT-IT). 2008. AvertIT. Avert-it project (FP7-217049-AVERT-IT). 2008.
8.
Zurück zum Zitat Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks. 1989;2(3):183–192.CrossRef Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Networks. 1989;2(3):183–192.CrossRef
9.
Zurück zum Zitat Bishop CM. Neural networks for pattern recognition. Oxford University Press; 1995. Bishop CM. Neural networks for pattern recognition. Oxford University Press; 1995.
10.
Zurück zum Zitat Ripley BR. Pattern recognition and neural networks. Cambridge University Press; 1996. Ripley BR. Pattern recognition and neural networks. Cambridge University Press; 1996.
11.
Zurück zum Zitat MacKay DJC. Probable networks and plausible predictions—a review of practical bayesian methods for supervised neural networks. Network. 1995;6:469–505.CrossRef MacKay DJC. Probable networks and plausible predictions—a review of practical bayesian methods for supervised neural networks. Network. 1995;6:469–505.CrossRef
12.
Zurück zum Zitat Neal RM. Bayesian learning for neural networks. Springer, Lecture Notes in Statistics. 1996. Neal RM. Bayesian learning for neural networks. Springer, Lecture Notes in Statistics. 1996.
13.
Zurück zum Zitat Stell A, Sinnott R, Jiang J, Donald R, Chambers I, Citerio G, Enblad P, Gregson B, Howells T, Kiening K, Nilsson P, Ragauskas A, Sahuquillo J, Piper I. Federating distributed clinical data for the prediction of adverse hypotensive events. Philos Trans R Soc. 2009;367(1898):2679–90.CrossRef Stell A, Sinnott R, Jiang J, Donald R, Chambers I, Citerio G, Enblad P, Gregson B, Howells T, Kiening K, Nilsson P, Ragauskas A, Sahuquillo J, Piper I. Federating distributed clinical data for the prediction of adverse hypotensive events. Philos Trans R Soc. 2009;367(1898):2679–90.CrossRef
14.
Zurück zum Zitat Hanfelt JJ, Slack RS, Gehan EA. A modification of simon’s optimal design for phase ii trials when the criterion is median sample size. Control Clin Trials. 1999;20:555–66.CrossRefPubMed Hanfelt JJ, Slack RS, Gehan EA. A modification of simon’s optimal design for phase ii trials when the criterion is median sample size. Control Clin Trials. 1999;20:555–66.CrossRefPubMed
15.
Zurück zum Zitat Simon R. Optimal two-stage designs for phase ii clinical trials. Control Clin Trials. 10:1–10, 1989.CrossRefPubMed Simon R. Optimal two-stage designs for phase ii clinical trials. Control Clin Trials. 10:1–10, 1989.CrossRefPubMed
16.
Zurück zum Zitat Crawley M. The R book (Second Edition). New York: Wiley; 2012. Crawley M. The R book (Second Edition). New York: Wiley; 2012.
17.
Zurück zum Zitat Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–96.CrossRefPubMed Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–96.CrossRefPubMed
18.
Zurück zum Zitat Bijker JB, vanKlei WA, Vergouwe Y, .Eleveld DJ, van Wolfswinkel L, Moons KGM, Kalkman CJ. Intraoperative hypotension and 1-year mortality after noncardiac surgery. Anesthesiology. 2009;111(6):1217–26.CrossRefPubMed Bijker JB, vanKlei WA, Vergouwe Y, .Eleveld DJ, van Wolfswinkel L, Moons KGM, Kalkman CJ. Intraoperative hypotension and 1-year mortality after noncardiac surgery. Anesthesiology. 2009;111(6):1217–26.CrossRefPubMed
19.
Zurück zum Zitat Smiley R. Fast fourier transforms as prophecy: predicting hypotension during spinal anes-thesia. Anesthesiology. 2005;102(6):1079–80.CrossRefPubMed Smiley R. Fast fourier transforms as prophecy: predicting hypotension during spinal anes-thesia. Anesthesiology. 2005;102(6):1079–80.CrossRefPubMed
20.
Zurück zum Zitat Moody GB, Lehman LH. Predicting acute hypotensive episodes: the10th annual physionet/computers in cardiology challenge. Comput Cardiol. 2009;36:541–4.PubMedPubMedCentral Moody GB, Lehman LH. Predicting acute hypotensive episodes: the10th annual physionet/computers in cardiology challenge. Comput Cardiol. 2009;36:541–4.PubMedPubMedCentral
21.
Zurück zum Zitat Henriques JH, Rocha TR. Prediction of acute hypotensive episodes using neural network multi-models. Comput Cardiol. 2009;36:549–52. Henriques JH, Rocha TR. Prediction of acute hypotensive episodes using neural network multi-models. Comput Cardiol. 2009;36:549–52.
22.
Zurück zum Zitat Chen X, Xu D, Zhang G, Mukkamala R. Forecasting acute hypotensive episodes in intensive care patients based on a peripheral arterial blood pressure waveform. Comput Cardiol. 2009;36:545–8. Chen X, Xu D, Zhang G, Mukkamala R. Forecasting acute hypotensive episodes in intensive care patients based on a peripheral arterial blood pressure waveform. Comput Cardiol. 2009;36:545–8.
23.
Zurück zum Zitat Mneimneh MA, Povinelli RJ. A rule-based approach toward the prediction of acute hypotensive episodes. Comput Cardiol. 2009;36:557–60. Mneimneh MA, Povinelli RJ. A rule-based approach toward the prediction of acute hypotensive episodes. Comput Cardiol. 2009;36:557–60.
24.
Zurück zum Zitat Gabutti L, Vadilonga D, Mombelli G, Burnier M, Marone C. Artificial neural networks improve the prediction of kt/v, follow-up dietary protein intake and hypotension risk in haemodialysis patients. Nephrol Dial Transplant. 2004;19:1204–11.CrossRefPubMed Gabutti L, Vadilonga D, Mombelli G, Burnier M, Marone C. Artificial neural networks improve the prediction of kt/v, follow-up dietary protein intake and hypotension risk in haemodialysis patients. Nephrol Dial Transplant. 2004;19:1204–11.CrossRefPubMed
25.
Zurück zum Zitat Reich DL, Hossain S, Krol M, Baez B, Patel P, Bernstein A, Bodian CA. Predictors of hypotension after induction of general anesthesia. Anesth Analg. 2005;101(3):622–8.CrossRefPubMed Reich DL, Hossain S, Krol M, Baez B, Patel P, Bernstein A, Bodian CA. Predictors of hypotension after induction of general anesthesia. Anesth Analg. 2005;101(3):622–8.CrossRefPubMed
26.
Zurück zum Zitat Lehman L, Saeed M, Moody G, Mark R. Similarity-based searching in multi-parameter time series databases. Comput Cardiol. 2008;35:653–6.PubMedPubMedCentral Lehman L, Saeed M, Moody G, Mark R. Similarity-based searching in multi-parameter time series databases. Comput Cardiol. 2008;35:653–6.PubMedPubMedCentral
27.
Zurück zum Zitat Dasta JF, McLaughlin TP, Mody SH, Piech CT. Daily cost of an intensive care unit day: the contribution of mechanical ventilation. Crit Care Med. 2005;33(6):1266–71.CrossRefPubMed Dasta JF, McLaughlin TP, Mody SH, Piech CT. Daily cost of an intensive care unit day: the contribution of mechanical ventilation. Crit Care Med. 2005;33(6):1266–71.CrossRefPubMed
28.
Zurück zum Zitat Donald R, Howells T, Piper I, Chambers I, Citerio G, Enblad P, Gregson B, Kiening K, Mattern J, Nilsson P, Ragauskas A, Sahuquillo J, Sinnott R, Stell A. Trigger characteristics of EUSIG-defined hypotensive events. Acta Neurochir Suppl. 2012;114:45 – 9.CrossRefPubMed Donald R, Howells T, Piper I, Chambers I, Citerio G, Enblad P, Gregson B, Kiening K, Mattern J, Nilsson P, Ragauskas A, Sahuquillo J, Sinnott R, Stell A. Trigger characteristics of EUSIG-defined hypotensive events. Acta Neurochir Suppl. 2012;114:45 – 9.CrossRefPubMed
32.
Zurück zum Zitat Docherty AB, Lone NI. Exploiting big data for critical care research. Curr Opin Crit Care. 2015;21(5):467–72.CrossRefPubMed Docherty AB, Lone NI. Exploiting big data for critical care research. Curr Opin Crit Care. 2015;21(5):467–72.CrossRefPubMed
33.
Zurück zum Zitat Celi LA, Mark RG, Stone DJ, Montgomery RA. “Big Data” in the intensive care unit. Closing the data loop. Am J Respir Crit Care Med. 2013;187(11):1157–60.CrossRefPubMed Celi LA, Mark RG, Stone DJ, Montgomery RA. “Big Data” in the intensive care unit. Closing the data loop. Am J Respir Crit Care Med. 2013;187(11):1157–60.CrossRefPubMed
34.
Zurück zum Zitat Figini S, Maggi M. Performance of credit risk prediction models via proper loss functions. Technical report, Universita di Pavia, Department of Economics and Management, 2014. Figini S, Maggi M. Performance of credit risk prediction models via proper loss functions. Technical report, Universita di Pavia, Department of Economics and Management, 2014.
Metadaten
Titel
Forewarning of hypotensive events using a Bayesian artificial neural network in neurocritical care
verfasst von
Rob Donald
Tim Howells
Ian Piper
P. Enblad
P. Nilsson
I. Chambers
B. Gregson
G. Citerio
K. Kiening
J. Neumann
A. Ragauskas
J. Sahuquillo
R. Sinnott
A. Stell
the BrainIT Group
Publikationsdatum
24.05.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Clinical Monitoring and Computing / Ausgabe 1/2019
Print ISSN: 1387-1307
Elektronische ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-018-0139-y

Weitere Artikel der Ausgabe 1/2019

Journal of Clinical Monitoring and Computing 1/2019 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.