Skip to main content
Erschienen in: Inflammation 4/2019

01.04.2019 | ORIGINAL ARTICLE

Formononetin Antagonizes the Interleukin-1β-Induced Catabolic Effects Through Suppressing Inflammation in Primary Rat Chondrocytes

verfasst von: In-A Cho, Tae-Hyeon Kim, HyangI Lim, Jong-Hyun Park, Kyeong-Rok Kang, Sook-Young Lee, Chun Sung Kim, Do Kyung Kim, Heung-Joong Kim, Sun-Kyoung Yu, Su-Gwan Kim, Jae-Sung Kim

Erschienen in: Inflammation | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

In the present study, we demonstrated the anti-catabolic effects of formononetin, a phytoestrogen derived from herbal plants, against interleukin-1β (IL-1β)-induced severe catabolic effects in primary rat chondrocytes and articular cartilage. Formononetin did not affect the viability of primary rat chondrocytes in both short- (24 h) and long-term (21 days) treatment periods. Furthermore, formononetin effectively antagonized the IL-1β-induced catabolic effects including the decrease in proteoglycan content, suppression of pericellular matrix formation, and loss of proteoglycan through the decreased expression of cartilage-degrading enzymes like matrix metalloproteinase (MMP)-13, MMP-1, and MMP-3 in primary rat chondrocytes. Moreover, catabolic oxidative stress mediators like nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, and prostaglandin E2 were significantly downregulated by formononetin in primary rat chondrocytes treated with IL-1β. Sequentially, the upregulation of pro-inflammatory cytokines (like IL-1α, IL-1β, IL-6, and tumor necrosis factor α), chemokines (like fractalkine, monocyte chemoattractant protein-1, and macrophage inflammatory protein-3α), and vascular endothelial growth factor were significantly downregulated by formononetin in primary rat chondrocytes treated with IL-1β. These data suggest that formononetin may suppress IL-1β-induced severe catabolic effects and osteoarthritic condition. Furthermore, formononetin may be a promising candidate for the treatment and prevention of osteoarthritis.
Literatur
1.
Zurück zum Zitat Goldring, M.B., and S.R. Goldring. 2007. Osteoarthritis. Journal of Cellular Physiology 213: 626–634.CrossRefPubMed Goldring, M.B., and S.R. Goldring. 2007. Osteoarthritis. Journal of Cellular Physiology 213: 626–634.CrossRefPubMed
2.
Zurück zum Zitat Barr, A.J., T.M. Campbell, D. Hopkinson, S.R. Kingsbury, M.A. Bowes, and P.G. Conaghan. 2015. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis. Arthritis Research & Therapy 17: 228.CrossRef Barr, A.J., T.M. Campbell, D. Hopkinson, S.R. Kingsbury, M.A. Bowes, and P.G. Conaghan. 2015. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis. Arthritis Research & Therapy 17: 228.CrossRef
3.
Zurück zum Zitat Xie, F., B. Kovic, X. Jin, X. He, M. Wang, and C. Silvestre. 2016. Economic and humanistic burden of osteoarthritis: A systematic review of large sample studies. Pharmacoeconomics 34: 1087–1100.CrossRefPubMed Xie, F., B. Kovic, X. Jin, X. He, M. Wang, and C. Silvestre. 2016. Economic and humanistic burden of osteoarthritis: A systematic review of large sample studies. Pharmacoeconomics 34: 1087–1100.CrossRefPubMed
4.
Zurück zum Zitat Chen, D., J. Shen, W. Zhao, T. Wang, L. Han, J.L. Hamilton, and H.J. Im. 2017. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Research 5: 16044.CrossRefPubMedPubMedCentral Chen, D., J. Shen, W. Zhao, T. Wang, L. Han, J.L. Hamilton, and H.J. Im. 2017. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Research 5: 16044.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Zhang, W., H. Ouyang, C.R. Dass, and J. Xu. 2016. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Research 4: 15040.CrossRefPubMedPubMedCentral Zhang, W., H. Ouyang, C.R. Dass, and J. Xu. 2016. Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Research 4: 15040.CrossRefPubMedPubMedCentral
6.
7.
Zurück zum Zitat Kim, H., D. Kang, Y. Cho, and J.H. Kim. 2015. Epigenetic regulation of chondrocyte catabolism and anabolism in osteoarthritis. Molecules and Cells 38: 677–684.CrossRefPubMedPubMedCentral Kim, H., D. Kang, Y. Cho, and J.H. Kim. 2015. Epigenetic regulation of chondrocyte catabolism and anabolism in osteoarthritis. Molecules and Cells 38: 677–684.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Lee, A.S., M.B. Ellman, D. Yan, J.S. Kroin, B.J. Cole, A.J. van Wijnen, and H.J. Im. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440–447.CrossRefPubMedPubMedCentral Lee, A.S., M.B. Ellman, D. Yan, J.S. Kroin, B.J. Cole, A.J. van Wijnen, and H.J. Im. 2013. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527: 440–447.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Akkiraju, H., and A. Nohe. 2015. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. Journal of Developmental Biology 3: 177–192.CrossRefPubMedPubMedCentral Akkiraju, H., and A. Nohe. 2015. Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. Journal of Developmental Biology 3: 177–192.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Nie, T., S. Zhao, L. Mao, Y. Yang, W. Sun, X. Lin, S. Liu, K. Li, Y. Sun, P. Li, Z. Zhou, S. Lin, X. Hui, A. Xu, C.W. Ma, Y. Xu, C. Wang, P.R. Dunbar, and D. Wu. 2018. The natural compound, formononetin, extracted from Astragalus membranaceus increases adipocyte thermogenesis by modulating PPARgamma activity. British Journal of Pharmacology 175: 1439–1450.CrossRefPubMedPubMedCentral Nie, T., S. Zhao, L. Mao, Y. Yang, W. Sun, X. Lin, S. Liu, K. Li, Y. Sun, P. Li, Z. Zhou, S. Lin, X. Hui, A. Xu, C.W. Ma, Y. Xu, C. Wang, P.R. Dunbar, and D. Wu. 2018. The natural compound, formononetin, extracted from Astragalus membranaceus increases adipocyte thermogenesis by modulating PPARgamma activity. British Journal of Pharmacology 175: 1439–1450.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Mu, H., Y.H. Bai, S.T. Wang, Z.M. Zhu, and Y.W. Zhang. 2009. Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover). Phytomedicine 16: 314–319.CrossRefPubMed Mu, H., Y.H. Bai, S.T. Wang, Z.M. Zhu, and Y.W. Zhang. 2009. Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover). Phytomedicine 16: 314–319.CrossRefPubMed
12.
Zurück zum Zitat Ma, Z., W. Ji, Q. Fu, and S. Ma. 2013. Formononetin inhibited the inflammation of LPS-induced acute lung injury in mice associated with induction of PPAR gamma expression. Inflammation 36: 1560–1566.CrossRefPubMed Ma, Z., W. Ji, Q. Fu, and S. Ma. 2013. Formononetin inhibited the inflammation of LPS-induced acute lung injury in mice associated with induction of PPAR gamma expression. Inflammation 36: 1560–1566.CrossRefPubMed
13.
Zurück zum Zitat Wu, J., X. Ke, N. Ma, W. Wang, W. Fu, H. Zhang, M. Zhao, X. Gao, X. Hao, and Z. Zhang. 2016. Formononetin, an active compound of Astragalus membranaceus (Fisch) Bunge, inhibits hypoxia-induced retinal neovascularization via the HIF-1alpha/VEGF signaling pathway. Drug Design, Development and Therapy 10: 3071–3081.CrossRefPubMedPubMedCentral Wu, J., X. Ke, N. Ma, W. Wang, W. Fu, H. Zhang, M. Zhao, X. Gao, X. Hao, and Z. Zhang. 2016. Formononetin, an active compound of Astragalus membranaceus (Fisch) Bunge, inhibits hypoxia-induced retinal neovascularization via the HIF-1alpha/VEGF signaling pathway. Drug Design, Development and Therapy 10: 3071–3081.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Xia, B., Chen Di, J. Zhang, S. Hu, H. Jin, and P. Tong. 2014. Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcified Tissue International 95: 495–505.CrossRefPubMedPubMedCentral Xia, B., Chen Di, J. Zhang, S. Hu, H. Jin, and P. Tong. 2014. Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcified Tissue International 95: 495–505.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Cameron, M., and S. Chrubasik. 2014. Oral herbal therapies for treating osteoarthritis. Cochrane Database of Systematic Reviews CD002947. Cameron, M., and S. Chrubasik. 2014. Oral herbal therapies for treating osteoarthritis. Cochrane Database of Systematic Reviews CD002947.
17.
Zurück zum Zitat Rezuș, E., A. Cardoneanu, A. Burlui, A. Luca, C. Codreanu, B.I. Tamba, G.D. Stanciu, N. Dima, C. Bădescu, and C. Rezuș. 2019. The link between inflammaging and degenerative joint diseases. International Journal of Molecular Sciences: 20. Rezuș, E., A. Cardoneanu, A. Burlui, A. Luca, C. Codreanu, B.I. Tamba, G.D. Stanciu, N. Dima, C. Bădescu, and C. Rezuș. 2019. The link between inflammaging and degenerative joint diseases. International Journal of Molecular Sciences: 20.
18.
Zurück zum Zitat Nees, T.A., N. Rosshirt, T. Reiner, M. Schiltenwolf, and B. Moradi. 2018. Inflammation and osteoarthritis-related pain. Der Schmerz. Nees, T.A., N. Rosshirt, T. Reiner, M. Schiltenwolf, and B. Moradi. 2018. Inflammation and osteoarthritis-related pain. Der Schmerz.
19.
Zurück zum Zitat Mathiessen, A., and P.G. Conaghan. 2017. Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Research & Therapy 19: 18.CrossRef Mathiessen, A., and P.G. Conaghan. 2017. Synovitis in osteoarthritis: Current understanding with therapeutic implications. Arthritis Research & Therapy 19: 18.CrossRef
20.
Zurück zum Zitat Abramson, S.B. 2008. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Research & Therapy 10: S2.CrossRef Abramson, S.B. 2008. Nitric oxide in inflammation and pain associated with osteoarthritis. Arthritis Research & Therapy 10: S2.CrossRef
21.
Zurück zum Zitat Notoya, K., D.V. Jovanovic, P. Reboul, J. Martel-Pelletier, F. Mineau, and J.P. Pelletier. 2000. The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. Journal of Immunology 165: 3402–3410.CrossRef Notoya, K., D.V. Jovanovic, P. Reboul, J. Martel-Pelletier, F. Mineau, and J.P. Pelletier. 2000. The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. Journal of Immunology 165: 3402–3410.CrossRef
22.
Zurück zum Zitat Park, J.Y., M.H. Pillinger, and S.B. Abramson. 2006. Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases. Clinical Immunology 119: 229–240.CrossRefPubMed Park, J.Y., M.H. Pillinger, and S.B. Abramson. 2006. Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases. Clinical Immunology 119: 229–240.CrossRefPubMed
23.
Zurück zum Zitat Schuerwegh, A.J., E.J. Dombrecht, W.J. Stevens, J.F. Van Offel, C.H. Bridts, and L.S. De Clerck. 2003. Influence of pro-inflammatory (IL-1 alpha, IL-6, TNF-alpha, IFN-gamma) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthritis and Cartilage 11: 681–687.CrossRefPubMed Schuerwegh, A.J., E.J. Dombrecht, W.J. Stevens, J.F. Van Offel, C.H. Bridts, and L.S. De Clerck. 2003. Influence of pro-inflammatory (IL-1 alpha, IL-6, TNF-alpha, IFN-gamma) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthritis and Cartilage 11: 681–687.CrossRefPubMed
24.
Zurück zum Zitat Caglic, D., U. Repnik, C. Jedeszko, G. Kosec, C. Miniejew, M. Kindermann, O. Vasiljeva, et al. 2013. The proinflammatory cytokines interleukin-1alpha and tumor necrosis factor alpha promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes. Biological Chemistry 394: 307–316.CrossRefPubMed Caglic, D., U. Repnik, C. Jedeszko, G. Kosec, C. Miniejew, M. Kindermann, O. Vasiljeva, et al. 2013. The proinflammatory cytokines interleukin-1alpha and tumor necrosis factor alpha promote the expression and secretion of proteolytically active cathepsin S from human chondrocytes. Biological Chemistry 394: 307–316.CrossRefPubMed
25.
Zurück zum Zitat Richardson, D.W., and G.R. Dodge. 2000. Effects of interleukin-1beta and tumor necrosis factor-alpha on expression of matrix-related genes by cultured equine articular chondrocytes. American Journal of Veterinary Research 61: 624–630.CrossRefPubMed Richardson, D.W., and G.R. Dodge. 2000. Effects of interleukin-1beta and tumor necrosis factor-alpha on expression of matrix-related genes by cultured equine articular chondrocytes. American Journal of Veterinary Research 61: 624–630.CrossRefPubMed
26.
Zurück zum Zitat Heraud, F., A. Heraud, and M.F. Harmand. 2000. Apoptosis in normal and osteoarthritic human articular cartilage. Annals of the Rheumatic Diseases 59: 959–965.CrossRefPubMedPubMedCentral Heraud, F., A. Heraud, and M.F. Harmand. 2000. Apoptosis in normal and osteoarthritic human articular cartilage. Annals of the Rheumatic Diseases 59: 959–965.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Mohtai, M., M.K. Gupta, B. Donlon, B. Ellison, J. Cooke, G. Gibbons, D.J. Schurman, and R.L. Smith. 1996. Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. Journal of Orthopaedic Research 14: 67–73.CrossRefPubMed Mohtai, M., M.K. Gupta, B. Donlon, B. Ellison, J. Cooke, G. Gibbons, D.J. Schurman, and R.L. Smith. 1996. Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. Journal of Orthopaedic Research 14: 67–73.CrossRefPubMed
28.
Zurück zum Zitat Zhou, R., X. Wu, Z. Wang, J. Ge, and F. Chen. 2015. Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. International Immunopharmacology 29: 748–760.CrossRefPubMed Zhou, R., X. Wu, Z. Wang, J. Ge, and F. Chen. 2015. Interleukin-6 enhances acid-induced apoptosis via upregulating acid-sensing ion channel 1a expression and function in rat articular chondrocytes. International Immunopharmacology 29: 748–760.CrossRefPubMed
29.
Zurück zum Zitat Sandell, L.J., X. Xing, C. Franz, S. Davies, L.W. Chang, and D. Patra. 2008. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthritis and Cartilage 16: 1560–1571.CrossRefPubMedPubMedCentral Sandell, L.J., X. Xing, C. Franz, S. Davies, L.W. Chang, and D. Patra. 2008. Exuberant expression of chemokine genes by adult human articular chondrocytes in response to IL-1beta. Osteoarthritis and Cartilage 16: 1560–1571.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Zou, Y., Y. Li, L. Lu, Y. Lin, W. Liang, Z. Su, X. Wang, H. Yang, J. Wang, C. Yu, L. Huo, and Y. Ye. 2013. Correlation of fractalkine concentrations in serum and synovial fluid with the radiographic severity of knee osteoarthritis. Annals of Clinical Biochemistry 50: 571–575.CrossRefPubMed Zou, Y., Y. Li, L. Lu, Y. Lin, W. Liang, Z. Su, X. Wang, H. Yang, J. Wang, C. Yu, L. Huo, and Y. Ye. 2013. Correlation of fractalkine concentrations in serum and synovial fluid with the radiographic severity of knee osteoarthritis. Annals of Clinical Biochemistry 50: 571–575.CrossRefPubMed
31.
Zurück zum Zitat Huo, L.W., Y.L. Ye, G.W. Wang, and Y.G. Ye. 2015. Fractalkine (CX3CL1): A biomarker reflecting symptomatic severity in patients with knee osteoarthritis. Journal of Investigative Medicine 63: 626–631.CrossRefPubMed Huo, L.W., Y.L. Ye, G.W. Wang, and Y.G. Ye. 2015. Fractalkine (CX3CL1): A biomarker reflecting symptomatic severity in patients with knee osteoarthritis. Journal of Investigative Medicine 63: 626–631.CrossRefPubMed
32.
Zurück zum Zitat Klosowska, K., M.V. Volin, N. Huynh, K.K. Chong, M.M. Halloran, and J.M. Woods. 2009. Fractalkine functions as a chemoattractant for osteoarthritis synovial fibroblasts and stimulates phosphorylation of mitogen-activated protein kinases and Akt. Clinical & Experimental Immunology 156: 312–319.CrossRef Klosowska, K., M.V. Volin, N. Huynh, K.K. Chong, M.M. Halloran, and J.M. Woods. 2009. Fractalkine functions as a chemoattractant for osteoarthritis synovial fibroblasts and stimulates phosphorylation of mitogen-activated protein kinases and Akt. Clinical & Experimental Immunology 156: 312–319.CrossRef
33.
Zurück zum Zitat Wojdasiewicz, P., L.A. Poniatowski, A. Kotela, J. Deszczynski, I. Kotela, and D. Szukiewicz. 2014. The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: Occurrence and potential role in osteoarthritis. Archivum Immunologiae et Therapiae Experimentalis 62: 395–403.CrossRefPubMedPubMedCentral Wojdasiewicz, P., L.A. Poniatowski, A. Kotela, J. Deszczynski, I. Kotela, and D. Szukiewicz. 2014. The chemokine CX3CL1 (fractalkine) and its receptor CX3CR1: Occurrence and potential role in osteoarthritis. Archivum Immunologiae et Therapiae Experimentalis 62: 395–403.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Xu, Y.K., Y. Ke, B. Wang, and J.H. Lin. 2015. The role of MCP-1-CCR2 ligand-receptor axis in chondrocyte degradation and disease progress in knee osteoarthritis. Biological Research 48: 64.CrossRefPubMedPubMedCentral Xu, Y.K., Y. Ke, B. Wang, and J.H. Lin. 2015. The role of MCP-1-CCR2 ligand-receptor axis in chondrocyte degradation and disease progress in knee osteoarthritis. Biological Research 48: 64.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Alaaeddine, N., J. Antoniou, M. Moussa, G. Hilal, G. Kreichaty, I. Ghanem, W. Abouchedid, E. Saghbini, and J.A. Di Battista. 2015. The chemokine CCL20 induces proinflammatory and matrix degradative responses in cartilage. Inflammation Research 64: 721–731.CrossRefPubMed Alaaeddine, N., J. Antoniou, M. Moussa, G. Hilal, G. Kreichaty, I. Ghanem, W. Abouchedid, E. Saghbini, and J.A. Di Battista. 2015. The chemokine CCL20 induces proinflammatory and matrix degradative responses in cartilage. Inflammation Research 64: 721–731.CrossRefPubMed
36.
Zurück zum Zitat Lingaraj, K., C.K. Poh, and W. Wang. 2010. Vascular endothelial growth factor (VEGF) is expressed during articular cartilage growth and re-expressed in osteoarthritis. Annals of the Academy of Medicine, Singapore 39: 399–403.PubMed Lingaraj, K., C.K. Poh, and W. Wang. 2010. Vascular endothelial growth factor (VEGF) is expressed during articular cartilage growth and re-expressed in osteoarthritis. Annals of the Academy of Medicine, Singapore 39: 399–403.PubMed
37.
Zurück zum Zitat Zhang, X., R. Crawford, and Y. Xiao. 2016. Inhibition of vascular endothelial growth factor with shRNA in chondrocytes ameliorates osteoarthritis. Journal of Molecular Medicine 94: 787–798.CrossRefPubMed Zhang, X., R. Crawford, and Y. Xiao. 2016. Inhibition of vascular endothelial growth factor with shRNA in chondrocytes ameliorates osteoarthritis. Journal of Molecular Medicine 94: 787–798.CrossRefPubMed
38.
Zurück zum Zitat Barranco, C. 2014. Osteoarthritis: Animal data show VEGF blocker inhibits post-traumatic OA. Nature Reviews Rheumatology 10: 638.CrossRefPubMed Barranco, C. 2014. Osteoarthritis: Animal data show VEGF blocker inhibits post-traumatic OA. Nature Reviews Rheumatology 10: 638.CrossRefPubMed
40.
Zurück zum Zitat Hamilton, J.L., M. Nagao, B.R. Levine, D. Chen, B.R. Olsen, and H.J. Im. 2016. Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain. Journal of Bone and Mineral Research 31: 911–924.CrossRefPubMedPubMedCentral Hamilton, J.L., M. Nagao, B.R. Levine, D. Chen, B.R. Olsen, and H.J. Im. 2016. Targeting VEGF and its receptors for the treatment of osteoarthritis and associated pain. Journal of Bone and Mineral Research 31: 911–924.CrossRefPubMedPubMedCentral
Metadaten
Titel
Formononetin Antagonizes the Interleukin-1β-Induced Catabolic Effects Through Suppressing Inflammation in Primary Rat Chondrocytes
verfasst von
In-A Cho
Tae-Hyeon Kim
HyangI Lim
Jong-Hyun Park
Kyeong-Rok Kang
Sook-Young Lee
Chun Sung Kim
Do Kyung Kim
Heung-Joong Kim
Sun-Kyoung Yu
Su-Gwan Kim
Jae-Sung Kim
Publikationsdatum
01.04.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01005-1

Weitere Artikel der Ausgabe 4/2019

Inflammation 4/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.