Skip to main content
Erschienen in: Brain Structure and Function 4/2016

29.04.2015 | Original Article

Forward masking in the medial nucleus of the trapezoid body of the rat

verfasst von: Fei Gao, Albert S. Berrebi

Erschienen in: Brain Structure and Function | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Perception of acoustic stimuli is modulated by the temporal and spectral relationship between sound components. Forward masking experiments show that the perception threshold for a probe tone is significantly impaired by a preceding masker stimulus. Forward masking has been systematically studied at the level of the auditory nerve, cochlear nucleus, inferior colliculus and auditory cortex, but not yet in the superior olivary complex. The medial nucleus of the trapezoid body (MNTB), a principal cell group of the superior olive, plays an essential role in sound localization. The MNTB receives excitatory input from the contralateral cochlear nucleus via the calyces of Held and innervates the ipsilateral lateral and medial superior olives, as well as the superior paraolivary nucleus. Here, we performed single-unit extracellular recordings in the MNTB of rats. Using a forward masking paradigm previously employed in studies of the inferior colliculus and auditory nerve, we determined response thresholds for a 20-ms characteristic frequency pure tone (the probe), and then presented it in conjunction with another tone (the masker) that was varied in intensity, duration, and frequency; we also systematically varied the masker-to-probe delay. Probe response thresholds increased and response magnitudes decreased when a masker was presented. The forward suppression effects were greater when masker level and masker duration were increased, when the masker frequency approached the MNTB unit’s characteristic frequency, and as the masker-to-probe delay was shortened. Probe threshold shifts showed an exponential decay as the masker-to-probe delay increased.
Literatur
Zurück zum Zitat Antunes FM, Malmierca MS (2014) An overview of stimulus-specific adaptation in the auditory thalamus. Brain Topogr 27:480–489CrossRefPubMed Antunes FM, Malmierca MS (2014) An overview of stimulus-specific adaptation in the auditory thalamus. Brain Topogr 27:480–489CrossRefPubMed
Zurück zum Zitat Backoff PM, Shadduck Palombi P, Caspary DM (1997) Glycinergic and GABAergic inputs affect short-term suppression in the cochlear nucleus. Hear Res 110:155–163CrossRefPubMed Backoff PM, Shadduck Palombi P, Caspary DM (1997) Glycinergic and GABAergic inputs affect short-term suppression in the cochlear nucleus. Hear Res 110:155–163CrossRefPubMed
Zurück zum Zitat Banks MI, Smith PH (1992) Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J Neurosci 12:2819–2837PubMed Banks MI, Smith PH (1992) Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J Neurosci 12:2819–2837PubMed
Zurück zum Zitat Bartlett EL, Wang X (2005) Long-lasting modulation by stimulus context in primate auditory cortex. J Neurophysiol 94:83–104CrossRefPubMed Bartlett EL, Wang X (2005) Long-lasting modulation by stimulus context in primate auditory cortex. J Neurophysiol 94:83–104CrossRefPubMed
Zurück zum Zitat Bleeck S, Sayles M, Ingham NJ, Winter IM (2006) The time course of recovery from suppression and facilitation from single units in the mammalian cochlear nucleus. Hear Res 212:176–184CrossRefPubMed Bleeck S, Sayles M, Ingham NJ, Winter IM (2006) The time course of recovery from suppression and facilitation from single units in the mammalian cochlear nucleus. Hear Res 212:176–184CrossRefPubMed
Zurück zum Zitat Boettcher FA, Salvi RJ, Saunders SS (1990) Recovery from short-term adaptation in single neurons in the cochlear nucleus. Hear Res 48:125–144CrossRefPubMed Boettcher FA, Salvi RJ, Saunders SS (1990) Recovery from short-term adaptation in single neurons in the cochlear nucleus. Hear Res 48:125–144CrossRefPubMed
Zurück zum Zitat Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol 31:442–454PubMed Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol 31:442–454PubMed
Zurück zum Zitat Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547CrossRefPubMed Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547CrossRefPubMed
Zurück zum Zitat Brosch M, Schreiner CE (1997) Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol 77:923–943PubMed Brosch M, Schreiner CE (1997) Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol 77:923–943PubMed
Zurück zum Zitat Brosch M, Schulz A, Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. J Neurophysiol 82:1542–1559PubMed Brosch M, Schulz A, Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. J Neurophysiol 82:1542–1559PubMed
Zurück zum Zitat Caird D, Klinke R (1983) Processing of binaural stimuli by cat superior olivary complex neurons. Exp Brain Res 52:385–399CrossRefPubMed Caird D, Klinke R (1983) Processing of binaural stimuli by cat superior olivary complex neurons. Exp Brain Res 52:385–399CrossRefPubMed
Zurück zum Zitat Calford MB, Semple MN (1995) Monaural inhibition in cat auditory cortex. J Neurophysiol 73:1876–1891PubMed Calford MB, Semple MN (1995) Monaural inhibition in cat auditory cortex. J Neurophysiol 73:1876–1891PubMed
Zurück zum Zitat Church MW, Gritzke R (1987) Effects of ketamine anesthesia on the rat brain-stem auditory evoked potential as a function of dose and stimulus intensity. Electroencephalogr Clin Neurophysiol 67:570–583CrossRefPubMed Church MW, Gritzke R (1987) Effects of ketamine anesthesia on the rat brain-stem auditory evoked potential as a function of dose and stimulus intensity. Electroencephalogr Clin Neurophysiol 67:570–583CrossRefPubMed
Zurück zum Zitat Delgutte B (1980) Representation of speech-like sounds in the discharge patterns of auditory-nerve fibers. J Acoust Soc Am 68:843–857CrossRefPubMed Delgutte B (1980) Representation of speech-like sounds in the discharge patterns of auditory-nerve fibers. J Acoust Soc Am 68:843–857CrossRefPubMed
Zurück zum Zitat Faure PA, Fremouw T, Casseday JH, Covey E (2003) Temporal masking reveals properties of sound-evoked inhibition in duration-tuned neurons of the inferior colliculus. J Neurosci 23:3052–3065PubMed Faure PA, Fremouw T, Casseday JH, Covey E (2003) Temporal masking reveals properties of sound-evoked inhibition in duration-tuned neurons of the inferior colliculus. J Neurosci 23:3052–3065PubMed
Zurück zum Zitat Felix RA, Fridberger A, Leijon S, Berrebi AS, Magnusson AK (2011) Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. J Neurosci 31:12566–12578CrossRefPubMedPubMedCentral Felix RA, Fridberger A, Leijon S, Berrebi AS, Magnusson AK (2011) Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. J Neurosci 31:12566–12578CrossRefPubMedPubMedCentral
Zurück zum Zitat Felix RA, Kadner A, Berrebi AS (2012) Effects of ketamine on response properties of neurons in the superior paraolivary nucleus of the mouse. Neuroscience 201:307–319CrossRefPubMedPubMedCentral Felix RA, Kadner A, Berrebi AS (2012) Effects of ketamine on response properties of neurons in the superior paraolivary nucleus of the mouse. Neuroscience 201:307–319CrossRefPubMedPubMedCentral
Zurück zum Zitat Finlayson PG (1999) Post-stimulatory suppression, facilitation and tuning for delays shape responses of inferior colliculus neurons to sequential pure tones. Hear Res 131:177–194CrossRefPubMed Finlayson PG (1999) Post-stimulatory suppression, facilitation and tuning for delays shape responses of inferior colliculus neurons to sequential pure tones. Hear Res 131:177–194CrossRefPubMed
Zurück zum Zitat Finlayson PG (2002) Paired-tone stimuli reveal reductions and alterations in temporal processing in inferior colliculus neurons of aged animals. J Assoc Res Otolaryngol 3:321–331CrossRefPubMedPubMedCentral Finlayson PG (2002) Paired-tone stimuli reveal reductions and alterations in temporal processing in inferior colliculus neurons of aged animals. J Assoc Res Otolaryngol 3:321–331CrossRefPubMedPubMedCentral
Zurück zum Zitat Finlayson PG, Adam TJ (1997) Excitatory and inhibitory response adaptation in the superior olive complex affects binaural acoustic processing. Hear Res 103:1–18CrossRefPubMed Finlayson PG, Adam TJ (1997) Excitatory and inhibitory response adaptation in the superior olive complex affects binaural acoustic processing. Hear Res 103:1–18CrossRefPubMed
Zurück zum Zitat Fishman YI, Arezzo JC, Steinschneider M (2004) Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration. J Acoust Soc Am 116:1656–1670CrossRefPubMed Fishman YI, Arezzo JC, Steinschneider M (2004) Auditory stream segregation in monkey auditory cortex: effects of frequency separation, presentation rate, and tone duration. J Acoust Soc Am 116:1656–1670CrossRefPubMed
Zurück zum Zitat Fitzpatrick DC, Kuwada S, Batra R, Trahiotis C (1995) Neural responses to simple simulated echoes in the auditory brain stem of the unanesthetized rabbit. J Neurophysiol 74:2469–2486PubMed Fitzpatrick DC, Kuwada S, Batra R, Trahiotis C (1995) Neural responses to simple simulated echoes in the auditory brain stem of the unanesthetized rabbit. J Neurophysiol 74:2469–2486PubMed
Zurück zum Zitat Fitzpatrick DC, Kuwada S, Kim DO, Parham K, Batra R (1999) Responses of neurons to click-pairs as simulated echoes: auditory nerve to auditory cortex. J Acoust Soc Am 106:3460–3472CrossRefPubMed Fitzpatrick DC, Kuwada S, Kim DO, Parham K, Batra R (1999) Responses of neurons to click-pairs as simulated echoes: auditory nerve to auditory cortex. J Acoust Soc Am 106:3460–3472CrossRefPubMed
Zurück zum Zitat Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73:263–284CrossRefPubMed Friauf E, Ostwald J (1988) Divergent projections of physiologically characterized rat ventral cochlear nucleus neurons as shown by intra-axonal injection of horseradish peroxidase. Exp Brain Res 73:263–284CrossRefPubMed
Zurück zum Zitat Furukawa S, Maki K, Kashino M, Riquimaroux H (2005) Dependency of the interaural phase difference sensitivities of inferior collicular neurons on a preceding tone and its implications in neural population coding. J Neurophysiol 93:3313–3326CrossRefPubMed Furukawa S, Maki K, Kashino M, Riquimaroux H (2005) Dependency of the interaural phase difference sensitivities of inferior collicular neurons on a preceding tone and its implications in neural population coding. J Neurophysiol 93:3313–3326CrossRefPubMed
Zurück zum Zitat Gao F, Felix RA II, Berrebi AS (2013) Forward suppression in the medial nucleus of the trapezoid body-Superior paraolivary nucleus (MNTB/SPON) circuit of the rat. Soc Neurosci Abstr 636:12 Gao F, Felix RA II, Berrebi AS (2013) Forward suppression in the medial nucleus of the trapezoid body-Superior paraolivary nucleus (MNTB/SPON) circuit of the rat. Soc Neurosci Abstr 636:12
Zurück zum Zitat Glendenning KK, Hutson KA, Nudo RJ, Masterton RB (1985) Acoustic chiasm II: anatomical basis of binaurality in lateral superior olive of cat. J Comp Neurol 232:261–285CrossRefPubMed Glendenning KK, Hutson KA, Nudo RJ, Masterton RB (1985) Acoustic chiasm II: anatomical basis of binaurality in lateral superior olive of cat. J Comp Neurol 232:261–285CrossRefPubMed
Zurück zum Zitat Harris DM, Dallos P (1979) Forward masking of auditory nerve fiber responses. J Neurophysiol 42:1083–1107PubMed Harris DM, Dallos P (1979) Forward masking of auditory nerve fiber responses. J Neurophysiol 42:1083–1107PubMed
Zurück zum Zitat Held H (1893) Die centrale Gehörleitung. Arch Anat Physiol Anat Abt 17:201–248 Held H (1893) Die centrale Gehörleitung. Arch Anat Physiol Anat Abt 17:201–248
Zurück zum Zitat Jesteadt W, Bacon SP, Lehman JR (1982) Forward masking as a function of frequency, masker level, and signal delay. J Acoust Soc Am 71:950–962CrossRefPubMed Jesteadt W, Bacon SP, Lehman JR (1982) Forward masking as a function of frequency, masker level, and signal delay. J Acoust Soc Am 71:950–962CrossRefPubMed
Zurück zum Zitat Kadner A, Berrebi AS (2008) Encoding of temporal features of auditory stimuli in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat. Neuroscience 151:868–887CrossRefPubMedPubMedCentral Kadner A, Berrebi AS (2008) Encoding of temporal features of auditory stimuli in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat. Neuroscience 151:868–887CrossRefPubMedPubMedCentral
Zurück zum Zitat Kadner A, Kulesza RJ Jr, Berrebi AS (2006) Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. J Neurophysiol 95:1499–1508CrossRefPubMed Kadner A, Kulesza RJ Jr, Berrebi AS (2006) Neurons in the medial nucleus of the trapezoid body and superior paraolivary nucleus of the rat may play a role in sound duration coding. J Neurophysiol 95:1499–1508CrossRefPubMed
Zurück zum Zitat Kaltenbach JA, Meleca RJ, Falzarano PR, Myers SF, Simpson TH (1993) Forward masking properties of neurons in the dorsal cochlear nucleus: possible role in the process of echo suppression. Hear Res 67:35–44CrossRefPubMed Kaltenbach JA, Meleca RJ, Falzarano PR, Myers SF, Simpson TH (1993) Forward masking properties of neurons in the dorsal cochlear nucleus: possible role in the process of echo suppression. Hear Res 67:35–44CrossRefPubMed
Zurück zum Zitat Kelly JB, Liscum A, van Adel B, Ito M (1998) Projections from the superior olive and lateral lemniscus to tonotopic regions of the rat’s inferior colliculus. Hear Res 116:43–54CrossRefPubMed Kelly JB, Liscum A, van Adel B, Ito M (1998) Projections from the superior olive and lateral lemniscus to tonotopic regions of the rat’s inferior colliculus. Hear Res 116:43–54CrossRefPubMed
Zurück zum Zitat Kidd G, Feth LL (1982) Effects of masker duration in pure-tone forward masking. J Acoust Soc Am 72:1384–1386CrossRefPubMed Kidd G, Feth LL (1982) Effects of masker duration in pure-tone forward masking. J Acoust Soc Am 72:1384–1386CrossRefPubMed
Zurück zum Zitat Kidd G, Mason CR, Feth LL (1984) Temporal integration of forward masking in listeners having sensorineural hearing loss. J Acoust Soc Am 75:937–944CrossRefPubMed Kidd G, Mason CR, Feth LL (1984) Temporal integration of forward masking in listeners having sensorineural hearing loss. J Acoust Soc Am 75:937–944CrossRefPubMed
Zurück zum Zitat Kulesza RJ, Spirou GA, Berrebi AS (2003) Physiological response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 89:2299–2312CrossRefPubMed Kulesza RJ, Spirou GA, Berrebi AS (2003) Physiological response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 89:2299–2312CrossRefPubMed
Zurück zum Zitat Kulesza RJ, Kadner A, Berrebi AS (2007) Distinct roles for glycine and GABA in shaping the response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 97:1610–1620CrossRefPubMed Kulesza RJ, Kadner A, Berrebi AS (2007) Distinct roles for glycine and GABA in shaping the response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 97:1610–1620CrossRefPubMed
Zurück zum Zitat Lenn NJ, Reese TS (1966) The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am J Anat 118:375–389CrossRefPubMed Lenn NJ, Reese TS (1966) The fine structure of nerve endings in the nucleus of the trapezoid body and the ventral cochlear nucleus. Am J Anat 118:375–389CrossRefPubMed
Zurück zum Zitat Litovsky RY, Yin TC (1998a) Physiological studies of the precedence effect in the inferior colliculus of the cat. I. Correlates of psychophysics. J Neurophysiol 80:1285–1301PubMed Litovsky RY, Yin TC (1998a) Physiological studies of the precedence effect in the inferior colliculus of the cat. I. Correlates of psychophysics. J Neurophysiol 80:1285–1301PubMed
Zurück zum Zitat Litovsky RY, Yin TC (1998b) Physiological studies of the precedence effect in the inferior colliculus of the cat. II. Neural mechanisms. J Neurophysiol 80:1302–1316PubMed Litovsky RY, Yin TC (1998b) Physiological studies of the precedence effect in the inferior colliculus of the cat. II. Neural mechanisms. J Neurophysiol 80:1302–1316PubMed
Zurück zum Zitat Malmierca MS, Hackett TA (2010) Structural organization of the ascending auditory pathway. In: Rees A, Palmer AR (eds) The oxford handbook of auditory science: the auditory brain. Oxford University, Oxford, pp 9–41 Malmierca MS, Hackett TA (2010) Structural organization of the ascending auditory pathway. In: Rees A, Palmer AR (eds) The oxford handbook of auditory science: the auditory brain. Oxford University, Oxford, pp 9–41
Zurück zum Zitat Malone BJ, Scott BH, Semple MN (2002) Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques. J Neurosci 22:4625–4638PubMed Malone BJ, Scott BH, Semple MN (2002) Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques. J Neurosci 22:4625–4638PubMed
Zurück zum Zitat McKenna TM, Weinberger NM, Diamond DM (1989) Responses of single auditory cortical neurons to tone sequences. Brain Res 481:142–153CrossRefPubMed McKenna TM, Weinberger NM, Diamond DM (1989) Responses of single auditory cortical neurons to tone sequences. Brain Res 481:142–153CrossRefPubMed
Zurück zum Zitat Mickey BJ, Middlebrooks JC (2001) Responses of auditory cortical neurons to pairs of sounds: correlates of fusion and localization. J Neurophysiol 86:1333–1350PubMed Mickey BJ, Middlebrooks JC (2001) Responses of auditory cortical neurons to pairs of sounds: correlates of fusion and localization. J Neurophysiol 86:1333–1350PubMed
Zurück zum Zitat Mickey BJ, Middlebrooks JC (2005) Sensitivity of auditory cortical neurons to the locations of leading and lagging sounds. J Neurophysiol 94:979–989CrossRefPubMed Mickey BJ, Middlebrooks JC (2005) Sensitivity of auditory cortical neurons to the locations of leading and lagging sounds. J Neurophysiol 94:979–989CrossRefPubMed
Zurück zum Zitat Moore BC, Glasberg BR, Plack CJ, Biswas AK (1988) The shape of the ear’s temporal window. J Acoust Soc Am 83:1102–1116CrossRefPubMed Moore BC, Glasberg BR, Plack CJ, Biswas AK (1988) The shape of the ear’s temporal window. J Acoust Soc Am 83:1102–1116CrossRefPubMed
Zurück zum Zitat Morest DK (1968) The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res 9:288–311CrossRefPubMed Morest DK (1968) The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res 9:288–311CrossRefPubMed
Zurück zum Zitat Nakamoto KT, Zhang J, Kitzes LM (2006) Temporal nonlinearity during recovery from sequential inhibition by neurons in the cat primary auditory cortex. J Neurophysiol 95:1897–1907CrossRefPubMed Nakamoto KT, Zhang J, Kitzes LM (2006) Temporal nonlinearity during recovery from sequential inhibition by neurons in the cat primary auditory cortex. J Neurophysiol 95:1897–1907CrossRefPubMed
Zurück zum Zitat Nelson PC, Smith ZM, Young ED (2009) Wide-dynamic-range forward suppression in marmoset inferior colliculus neurons is generated centrally and accounts for perceptual masking. J Neurosci 29:2553–2562CrossRefPubMedPubMedCentral Nelson PC, Smith ZM, Young ED (2009) Wide-dynamic-range forward suppression in marmoset inferior colliculus neurons is generated centrally and accounts for perceptual masking. J Neurosci 29:2553–2562CrossRefPubMedPubMedCentral
Zurück zum Zitat Palombi PS, Backoff PM, Caspary DM (1994) Paired tone facilitation in dorsal cochlear nucleus neurons: a short-term potentiation model testable in vivo. Hear Res 75:175–183CrossRefPubMed Palombi PS, Backoff PM, Caspary DM (1994) Paired tone facilitation in dorsal cochlear nucleus neurons: a short-term potentiation model testable in vivo. Hear Res 75:175–183CrossRefPubMed
Zurück zum Zitat Parham K, Zhao H, Kim D (1996) Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes. J Neurophysiol 76:17–29PubMed Parham K, Zhao H, Kim D (1996) Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes. J Neurophysiol 76:17–29PubMed
Zurück zum Zitat Parham K, Zhao HB, Ye Y, Kim DO (1998) Responses of anteroventral cochlear nucleus neurons of the unanesthetized decerebrate cat to click pairs as simulated echoes. Hear Res 125:131–146CrossRefPubMed Parham K, Zhao HB, Ye Y, Kim DO (1998) Responses of anteroventral cochlear nucleus neurons of the unanesthetized decerebrate cat to click pairs as simulated echoes. Hear Res 125:131–146CrossRefPubMed
Zurück zum Zitat Pecka M, Brand A, Behrend O, Grothe B (2008) Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. J Neurosci 28:6914–6925CrossRefPubMed Pecka M, Brand A, Behrend O, Grothe B (2008) Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. J Neurosci 28:6914–6925CrossRefPubMed
Zurück zum Zitat Plack CJ, Oxenham AJ (1998) Basilar-membrane nonlinearity and the growth of forward masking. J Acoust Soc Am 103:1598–1608CrossRefPubMed Plack CJ, Oxenham AJ (1998) Basilar-membrane nonlinearity and the growth of forward masking. J Acoust Soc Am 103:1598–1608CrossRefPubMed
Zurück zum Zitat Reale RA, Brugge JF (2000) Directional sensitivity of neurons in the primary auditory (AI) cortex of the cat to successive sounds ordered in time and space. J Neurophysiol 84:435–450PubMed Reale RA, Brugge JF (2000) Directional sensitivity of neurons in the primary auditory (AI) cortex of the cat to successive sounds ordered in time and space. J Neurophysiol 84:435–450PubMed
Zurück zum Zitat Relkin EM, Pelli DG (1987) Probe tone thresholds in the auditory nerve measured by two-interval forced-choice procedures. J Acoust Soc Am 82:1679–1691CrossRefPubMed Relkin EM, Pelli DG (1987) Probe tone thresholds in the auditory nerve measured by two-interval forced-choice procedures. J Acoust Soc Am 82:1679–1691CrossRefPubMed
Zurück zum Zitat Relkin EM, Turner CW (1988) A reexamination of forward masking in the auditory nerve. J Acoust Soc Am 84:584–591CrossRefPubMed Relkin EM, Turner CW (1988) A reexamination of forward masking in the auditory nerve. J Acoust Soc Am 84:584–591CrossRefPubMed
Zurück zum Zitat Scholl B, Gao X, Wehr M (2008) Level dependence of contextual modulation in auditory cortex. J Neurophysiol 99:1616–1627CrossRefPubMed Scholl B, Gao X, Wehr M (2008) Level dependence of contextual modulation in auditory cortex. J Neurophysiol 99:1616–1627CrossRefPubMed
Zurück zum Zitat Shore SE (1995) Recovery of forward-masked responses in ventral cochlear nucleus neurons. Hear Res 82:31–43CrossRefPubMed Shore SE (1995) Recovery of forward-masked responses in ventral cochlear nucleus neurons. Hear Res 82:31–43CrossRefPubMed
Zurück zum Zitat Smith RL (1977) Short-term adaptation in single auditory nerve fibers: some poststimulatory effects. J Neurophysiol 40:1098–1111PubMed Smith RL (1977) Short-term adaptation in single auditory nerve fibers: some poststimulatory effects. J Neurophysiol 40:1098–1111PubMed
Zurück zum Zitat Smith DI, Mills JH (1989) Anesthesia effects: auditory brain-stem response. Electroencephalogr Clin Neurophysiol 72:422–428CrossRefPubMed Smith DI, Mills JH (1989) Anesthesia effects: auditory brain-stem response. Electroencephalogr Clin Neurophysiol 72:422–428CrossRefPubMed
Zurück zum Zitat Smith DI, Mills JH (1991) Low-frequency component of the gerbil brainstem response: response characteristics and anesthesia effects. Hear Res 54:1–10CrossRefPubMed Smith DI, Mills JH (1991) Low-frequency component of the gerbil brainstem response: response characteristics and anesthesia effects. Hear Res 54:1–10CrossRefPubMed
Zurück zum Zitat Smith PH, Joris PX, Yin TC (1998) Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol 79:3127–3142PubMed Smith PH, Joris PX, Yin TC (1998) Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol 79:3127–3142PubMed
Zurück zum Zitat Sommer I, Lingenhohl K, Friauf E (1993) Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology. Exp Brain Res 95:223–239CrossRefPubMed Sommer I, Lingenhohl K, Friauf E (1993) Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology. Exp Brain Res 95:223–239CrossRefPubMed
Zurück zum Zitat Spirou GA, Brownell WE, Zidanic M (1990) Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J Neurophysiol 63:1169–1190PubMed Spirou GA, Brownell WE, Zidanic M (1990) Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J Neurophysiol 63:1169–1190PubMed
Zurück zum Zitat Srinivasan G, Friauf E, Lohrke S (2004) Functional glutamatergic and glycinergic inputs to several superior olivary nuclei of the rat revealed by optical imaging. Neuroscience 128:617–634CrossRefPubMed Srinivasan G, Friauf E, Lohrke S (2004) Functional glutamatergic and glycinergic inputs to several superior olivary nuclei of the rat revealed by optical imaging. Neuroscience 128:617–634CrossRefPubMed
Zurück zum Zitat Starr A (1965) Suppression of single unit activity in cochlear nucleus of the cat following sound stimulation. J Neurophysiol 28:850–862PubMed Starr A (1965) Suppression of single unit activity in cochlear nucleus of the cat following sound stimulation. J Neurophysiol 28:850–862PubMed
Zurück zum Zitat Steinert JR, Kopp-Scheinpflug C, Baker C, Challiss RA, Mistry R, Haustein MD, Griffin SJ, Tong H, Graham BP, Forsythe ID (2008) Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron 60:642–656CrossRefPubMed Steinert JR, Kopp-Scheinpflug C, Baker C, Challiss RA, Mistry R, Haustein MD, Griffin SJ, Tong H, Graham BP, Forsythe ID (2008) Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron 60:642–656CrossRefPubMed
Zurück zum Zitat Steinert JR, Postlethwaite M, Jordan MD, Chernova T, Robinson SW, Forsythe ID (2010) NMDAR-mediated EPSCs are maintained and accelerate in time course during maturation of mouse and rat auditory brainstem in vitro. J Physiol 588:447–463CrossRefPubMedPubMedCentral Steinert JR, Postlethwaite M, Jordan MD, Chernova T, Robinson SW, Forsythe ID (2010) NMDAR-mediated EPSCs are maintained and accelerate in time course during maturation of mouse and rat auditory brainstem in vitro. J Physiol 588:447–463CrossRefPubMedPubMedCentral
Zurück zum Zitat Tolbert LP, Morest DK, Yurgelun-Todd DA (1982) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: horseradish peroxidase labelling of identified cell types. Neuroscience 7:3031–3052CrossRefPubMed Tolbert LP, Morest DK, Yurgelun-Todd DA (1982) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: horseradish peroxidase labelling of identified cell types. Neuroscience 7:3031–3052CrossRefPubMed
Zurück zum Zitat Tollin DJ (2003) The lateral superior olive: a functional role in sound source localization. Neuroscientist 9:127–143CrossRefPubMed Tollin DJ (2003) The lateral superior olive: a functional role in sound source localization. Neuroscientist 9:127–143CrossRefPubMed
Zurück zum Zitat Tolnai S, Hernandez O, Englitz B, Rübsamen R, Malmierca MS (2008) The medial nucleus of the trapezoid body in rat: spectral and temporal properties vary with anatomical location of the units. Eur J Neurosci 27:2587–2598CrossRefPubMed Tolnai S, Hernandez O, Englitz B, Rübsamen R, Malmierca MS (2008) The medial nucleus of the trapezoid body in rat: spectral and temporal properties vary with anatomical location of the units. Eur J Neurosci 27:2587–2598CrossRefPubMed
Zurück zum Zitat van Looij MA, Liem SS, van der Burg H, van der Wees J, De Zeeuw CI, van Zanten BG (2004) Impact of conventional anesthesia on auditory brainstem responses in mice. Hear Res 193:75–82CrossRefPubMed van Looij MA, Liem SS, van der Burg H, van der Wees J, De Zeeuw CI, van Zanten BG (2004) Impact of conventional anesthesia on auditory brainstem responses in mice. Hear Res 193:75–82CrossRefPubMed
Zurück zum Zitat von Gersdorff H, Borst JG (2002) Short-term plasticity at the calyx of held. Nat Rev Neurosci 3:53–64CrossRef von Gersdorff H, Borst JG (2002) Short-term plasticity at the calyx of held. Nat Rev Neurosci 3:53–64CrossRef
Zurück zum Zitat Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445CrossRefPubMed Wehr M, Zador AM (2005) Synaptic mechanisms of forward suppression in rat auditory cortex. Neuron 47:437–445CrossRefPubMed
Zurück zum Zitat Wickesberg RE (1996) Rapid inhibition in the cochlear nuclear complex of the chinchilla. J Acoust Soc Am 100:1691–1702CrossRefPubMed Wickesberg RE (1996) Rapid inhibition in the cochlear nuclear complex of the chinchilla. J Acoust Soc Am 100:1691–1702CrossRefPubMed
Zurück zum Zitat Wickesberg RE, Stevens HE (1998) Responses of auditory nerve fibers to trains of clicks. J Acoust Soc Am 103:1990–1999CrossRefPubMed Wickesberg RE, Stevens HE (1998) Responses of auditory nerve fibers to trains of clicks. J Acoust Soc Am 103:1990–1999CrossRefPubMed
Zurück zum Zitat Yavuzoglu A, Schofield BR, Wenstrup JJ (2010) Substrates of auditory frequency integration in a nucleus of the lateral lemniscus. Neuroscience 169:906–919CrossRefPubMedPubMedCentral Yavuzoglu A, Schofield BR, Wenstrup JJ (2010) Substrates of auditory frequency integration in a nucleus of the lateral lemniscus. Neuroscience 169:906–919CrossRefPubMedPubMedCentral
Zurück zum Zitat Yin TC (1994) Physiological correlates of the precedence effect and summing localization in the inferior colliculus of the cat. J Neurosci 14:5170–5186PubMed Yin TC (1994) Physiological correlates of the precedence effect and summing localization in the inferior colliculus of the cat. J Neurosci 14:5170–5186PubMed
Zurück zum Zitat Zhang J, Nakamoto KT, Kitzes LM (2005) Modulation of level response areas and stimulus selectivity of neurons in cat primary auditory cortex. J Neurophysiol 94:2263–2274CrossRefPubMed Zhang J, Nakamoto KT, Kitzes LM (2005) Modulation of level response areas and stimulus selectivity of neurons in cat primary auditory cortex. J Neurophysiol 94:2263–2274CrossRefPubMed
Zurück zum Zitat Zhang J, Nakamoto KT, Kitzes LM (2009) Responses of neurons in the cat primary auditory cortex to sequential sounds. Neuroscience 161:578–588CrossRefPubMed Zhang J, Nakamoto KT, Kitzes LM (2009) Responses of neurons in the cat primary auditory cortex to sequential sounds. Neuroscience 161:578–588CrossRefPubMed
Metadaten
Titel
Forward masking in the medial nucleus of the trapezoid body of the rat
verfasst von
Fei Gao
Albert S. Berrebi
Publikationsdatum
29.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 4/2016
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1044-5

Weitere Artikel der Ausgabe 4/2016

Brain Structure and Function 4/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.