Skip to main content
Erschienen in: Journal of Medical Ultrasonics 1/2020

12.09.2019 | Original Article–Physics & Engineering

Frequency dependence of attenuation and backscatter coefficient of ex vivo human lymphedema dermis

verfasst von: Masaaki Omura, Kenji Yoshida, Shinsuke Akita, Tadashi Yamaguchi

Erschienen in: Journal of Medical Ultrasonics | Ausgabe 1/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Radio-frequency (RF) signals from the most dominant scatterer in a dermis, i.e., collagen fibers, are collected as backscattered signals. We aim to confirm the frequency dependence of the spatial distribution of features in ultrasound images, as well as the attenuation coefficient (AC) and backscatter coefficient (BSC) of skin tissue without [LE (−)] and with lymphedema [LE (+)].

Methods

Measurement samples (n = 13) were excised from human skin tissue with LE (−) and middle severity LE (+). A laboratory-made scanner and single-element concave transducers (range 9–47 MHz) were used to measure RF data. A localized AC was computed from the normalized power spectrum using the linear least squares technique. The reflector method and compensation technique of the attenuation of tissue were applied to calculate the BSC. In addition, effective scatterer diameter (ESD), effective acoustic concentration (EAC), and integrated BSC (IBS) were calculated from the BSC as the benchmark to differentiate LE (−) and LE (+) tissues.

Results

High-frequency ultrasound displayed different echogenicity and texture compared between LE (−) and LE (+) in all transducers. The AC for LE (−) (0.22 dB/mm/MHz) and LE (+) (0.29 dB/mm/MHz) was comparable. BSC in LE (−) and LE (+) increased linearly with each transducer. The difference of intercept of the BSC between LE (−) and LE (+) indicated that both EAC and IBS of LE (+) were higher than that of LE (−). In contrast, ESD correlated with the slope of the BSC demonstrated the same tendency for both LE (−) and LE (+). These tendencies appeared for each transducer independent of the frequency bandwidth.

Conclusion

Frequency independence of AC and BSC in LE (−) and LE (+) was confirmed. Several 9- to 19-MHz ultrasound beams are sufficient for BSC analysis to discriminate LE (−) and LE (+) in terms of the penetration depth of the ultrasound.
Literatur
1.
Zurück zum Zitat Akita S, Mitsukawa N, Kazama T, Kuriyama M, Kubota Y, Omori N, et al. Comparison of lymphoscintigraphy and indocyanine green lymphography for the diagnosis of extremity lymphoedema. J Plast Reconstr Aesthetic Surg. Elsevier Ltd. 2013;66:792–8.CrossRef Akita S, Mitsukawa N, Kazama T, Kuriyama M, Kubota Y, Omori N, et al. Comparison of lymphoscintigraphy and indocyanine green lymphography for the diagnosis of extremity lymphoedema. J Plast Reconstr Aesthetic Surg. Elsevier Ltd. 2013;66:792–8.CrossRef
2.
Zurück zum Zitat Akita S, Mitsukawa N, Rikihisa N, Kubota Y, Omori N, Mitsuhashi A, et al. Early diagnosis and risk factors for lymphedema following lymph node dissection for gynecologic cancer. Plast Reconstr Surg. United States. 2013;131:283–90.CrossRef Akita S, Mitsukawa N, Rikihisa N, Kubota Y, Omori N, Mitsuhashi A, et al. Early diagnosis and risk factors for lymphedema following lymph node dissection for gynecologic cancer. Plast Reconstr Surg. United States. 2013;131:283–90.CrossRef
3.
Zurück zum Zitat Kleinerman R, Whang TB, Bard RL, Marmur ES. Ultrasound in dermatology: principles and applications. J Am Acad Dermatol. 2012;67:478–87.CrossRef Kleinerman R, Whang TB, Bard RL, Marmur ES. Ultrasound in dermatology: principles and applications. J Am Acad Dermatol. 2012;67:478–87.CrossRef
4.
Zurück zum Zitat Kumagai K, Koike H, Nagaoka R, Sakai S, Kobayashi K, Saijo Y. High-resolution ultrasound imaging of human skin in vivo by using three-dimensional ultrasound microscopy. Ultrasound Med Biol. 2012;38:1833–8.CrossRef Kumagai K, Koike H, Nagaoka R, Sakai S, Kobayashi K, Saijo Y. High-resolution ultrasound imaging of human skin in vivo by using three-dimensional ultrasound microscopy. Ultrasound Med Biol. 2012;38:1833–8.CrossRef
5.
Zurück zum Zitat Suehiro K, Morikage N, Yamashita O, Harada T, Samura M, Takeuchi Y, et al. Correlation between the severity of subcutaneous echo-free space and the amount of extracellular fluid determined by bioelectrical impedance analysis of leg edema. Lymphat Res Biol. 2017;15:172–6.CrossRef Suehiro K, Morikage N, Yamashita O, Harada T, Samura M, Takeuchi Y, et al. Correlation between the severity of subcutaneous echo-free space and the amount of extracellular fluid determined by bioelectrical impedance analysis of leg edema. Lymphat Res Biol. 2017;15:172–6.CrossRef
6.
Zurück zum Zitat Guittet C, Ossant F, Vaillant L, Berson M. In vivo high-frequency ultrasonic characterization of human dermis. IEEE Trans Biomed Eng. 1999;46:740–6.CrossRef Guittet C, Ossant F, Vaillant L, Berson M. In vivo high-frequency ultrasonic characterization of human dermis. IEEE Trans Biomed Eng. 1999;46:740–6.CrossRef
7.
Zurück zum Zitat Fournier C, Bridal SL, Berger G, Laugier P. Reproducibility of skin characterization with backscattered spectra (12–25 MHz) in healthy subjects. Ultrasound Med Biol. 2001;27:603–10.CrossRef Fournier C, Bridal SL, Berger G, Laugier P. Reproducibility of skin characterization with backscattered spectra (12–25 MHz) in healthy subjects. Ultrasound Med Biol. 2001;27:603–10.CrossRef
8.
Zurück zum Zitat Bridal SL, Fournier C, Coron A, Leguerney I, Laugier P. Ultrasonic backscatter and attenuation (11–27 MHz) variation with collagen fiber distribution in ex vivo human dermis. Ultrason Imaging. 2006;28:23–40.CrossRef Bridal SL, Fournier C, Coron A, Leguerney I, Laugier P. Ultrasonic backscatter and attenuation (11–27 MHz) variation with collagen fiber distribution in ex vivo human dermis. Ultrason Imaging. 2006;28:23–40.CrossRef
9.
Zurück zum Zitat Moran CM, Bush NL, Bamber JC. Ultrasonic propagation properties of excised human skin. Ultrasound Med Biol. 1995;21:1177–90.CrossRef Moran CM, Bush NL, Bamber JC. Ultrasonic propagation properties of excised human skin. Ultrasound Med Biol. 1995;21:1177–90.CrossRef
10.
Zurück zum Zitat Raju BI, Srinivasan MA. High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat. Ultrasound Med Biol. 2001;27:1543–56.CrossRef Raju BI, Srinivasan MA. High-frequency ultrasonic attenuation and backscatter coefficients of in vivo normal human dermis and subcutaneous fat. Ultrasound Med Biol. 2001;27:1543–56.CrossRef
11.
Zurück zum Zitat Raju BI, Srinivasan MA. Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49:871–82.CrossRef Raju BI, Srinivasan MA. Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49:871–82.CrossRef
12.
Zurück zum Zitat Raju BI, Swindells KJ, Gonzalez S, Srinivasan MA. Quantitative ultrasonic methods for characterization of skin lesions in vivo. Ultrasound Med Biol. 2003;29:825–38.CrossRef Raju BI, Swindells KJ, Gonzalez S, Srinivasan MA. Quantitative ultrasonic methods for characterization of skin lesions in vivo. Ultrasound Med Biol. 2003;29:825–38.CrossRef
13.
Zurück zum Zitat Lin Y-H, Huang C-C, Wang S-H. In vivo assessment of inflammatory skin using high frequency ultrasound image and quantitative parameters. In: 2010 IEEE international ultrasonics symposium. San Diego: IEEE; 2010. p. 2311–4. Lin Y-H, Huang C-C, Wang S-H. In vivo assessment of inflammatory skin using high frequency ultrasound image and quantitative parameters. In: 2010 IEEE international ultrasonics symposium. San Diego: IEEE; 2010. p. 2311–4.
14.
Zurück zum Zitat Omura M, Yoshida K, Akita S, Yamaguchi T. Verification of echo amplitude envelope analysis method in skin tissues for quantitative follow-up of healing ulcers. Jpn J Appl Phys. 2018;57:07LF15-1–11.CrossRef Omura M, Yoshida K, Akita S, Yamaguchi T. Verification of echo amplitude envelope analysis method in skin tissues for quantitative follow-up of healing ulcers. Jpn J Appl Phys. 2018;57:07LF15-1–11.CrossRef
15.
Zurück zum Zitat Chen X, Phillips D, Schwarz KQ, Mottley JG, Parker KJ. The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44:515–25.CrossRef Chen X, Phillips D, Schwarz KQ, Mottley JG, Parker KJ. The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation. IEEE Trans Ultrason Ferroelectr Freq Control. 1997;44:515–25.CrossRef
16.
Zurück zum Zitat Lavarello RJ, Ghoshal G, Oelze ML. On the estimation of backscatter coefficients using single-element focused transducers. J Acoust Soc Am. 2011;129:2903–11.CrossRef Lavarello RJ, Ghoshal G, Oelze ML. On the estimation of backscatter coefficients using single-element focused transducers. J Acoust Soc Am. 2011;129:2903–11.CrossRef
17.
Zurück zum Zitat Oelze ML, O’Brien WD. Frequency-dependent attenuation-compensation functions for ultrasonic signals backscattered from random media. J Acoust Soc Am. 2002;111:2308.CrossRef Oelze ML, O’Brien WD. Frequency-dependent attenuation-compensation functions for ultrasonic signals backscattered from random media. J Acoust Soc Am. 2002;111:2308.CrossRef
18.
Zurück zum Zitat Franceschini E, Guillermin R. Experimental assessment of four ultrasound scattering models for characterizing concentrated tissue-mimicking phantoms. J Acoust Soc Am. 2012;132:3735–47.CrossRef Franceschini E, Guillermin R. Experimental assessment of four ultrasound scattering models for characterizing concentrated tissue-mimicking phantoms. J Acoust Soc Am. 2012;132:3735–47.CrossRef
19.
Zurück zum Zitat Oelze ML, Zachary JF, O’Brien WD. Characterization of tissue microstructure using ultrasonic backscatter: theory and technique for optimization using a Gaussian form factor. J Acoust Soc Am. 2002;112:1202–11.CrossRef Oelze ML, Zachary JF, O’Brien WD. Characterization of tissue microstructure using ultrasonic backscatter: theory and technique for optimization using a Gaussian form factor. J Acoust Soc Am. 2002;112:1202–11.CrossRef
20.
Zurück zum Zitat Suehiro K, Morikage N, Murakami M, Yamashita O, Ueda K, Samura M, et al. Subcutaneous tissue ultrasonography in legs with dependent edema and secondary lymphedema. Ann Vasc Dis. 2014;7:21–7.CrossRef Suehiro K, Morikage N, Murakami M, Yamashita O, Ueda K, Samura M, et al. Subcutaneous tissue ultrasonography in legs with dependent edema and secondary lymphedema. Ann Vasc Dis. 2014;7:21–7.CrossRef
21.
Zurück zum Zitat Tashiro K, Feng J, Wu SH, Mashiko T, Kanayama K, Narushima M, et al. Pathological changes of adipose tissue in secondary lymphoedema. Br J Dermatol. 2017;177:158–67.CrossRef Tashiro K, Feng J, Wu SH, Mashiko T, Kanayama K, Narushima M, et al. Pathological changes of adipose tissue in secondary lymphoedema. Br J Dermatol. 2017;177:158–67.CrossRef
22.
Zurück zum Zitat Meijer R, Douven LFA, Oomens CWJ. Characterisation of anisotropic and non-linear behaviour of human skin in vivo. Comput Methods Biomech Biomed Eng. 1999;2:13–27.CrossRef Meijer R, Douven LFA, Oomens CWJ. Characterisation of anisotropic and non-linear behaviour of human skin in vivo. Comput Methods Biomech Biomed Eng. 1999;2:13–27.CrossRef
23.
Zurück zum Zitat Yamaji Y, Akita S, Akita H, Miura N, Gomi M, Manabe I, et al. Development of a mouse model for the visual and quantitative assessment of lymphatic trafficking and function by in vivo imaging. Sci Rep. 2018;8:5921.CrossRef Yamaji Y, Akita S, Akita H, Miura N, Gomi M, Manabe I, et al. Development of a mouse model for the visual and quantitative assessment of lymphatic trafficking and function by in vivo imaging. Sci Rep. 2018;8:5921.CrossRef
24.
Zurück zum Zitat Coila AL, Lavarello R. Regularized spectral log difference technique for ultrasonic attenuation imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65:378–89.CrossRef Coila AL, Lavarello R. Regularized spectral log difference technique for ultrasonic attenuation imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 2018;65:378–89.CrossRef
25.
Zurück zum Zitat Vajihi Z, Rosado-Mendez IM, Hall TJ, Rivaz H. Low variance estimation of backscatter quantitative ultrasound parameters using dynamic programming. IEEE Trans Ultrason Ferroelectr Freq Control IEEE. 2018;65:2042–53.CrossRef Vajihi Z, Rosado-Mendez IM, Hall TJ, Rivaz H. Low variance estimation of backscatter quantitative ultrasound parameters using dynamic programming. IEEE Trans Ultrason Ferroelectr Freq Control IEEE. 2018;65:2042–53.CrossRef
Metadaten
Titel
Frequency dependence of attenuation and backscatter coefficient of ex vivo human lymphedema dermis
verfasst von
Masaaki Omura
Kenji Yoshida
Shinsuke Akita
Tadashi Yamaguchi
Publikationsdatum
12.09.2019
Verlag
Springer Singapore
Erschienen in
Journal of Medical Ultrasonics / Ausgabe 1/2020
Print ISSN: 1346-4523
Elektronische ISSN: 1613-2254
DOI
https://doi.org/10.1007/s10396-019-00973-z

Weitere Artikel der Ausgabe 1/2020

Journal of Medical Ultrasonics 1/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.