Skip to main content
Erschienen in:

28.12.2023

From Scientific Research to Practical Implementations: Applications to Improve Data Quality in Child Welfare

verfasst von: Yutian T. Thompson, Ph.D., Yaqi Li, Ph.D., Jane Silovsky, Ph.D.

Erschienen in: The Journal of Behavioral Health Services & Research | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

Child welfare decisions have life-impacting consequences which, often times, are underpinned by limited or inadequate data and poor quality. Though research of data quality has gained popularity and made advancements in various practical areas, it has not made significant inroads for child welfare fields or data systems. Poor data quality can hinder service decision-making, impacting child behavioral health and well-being as well as increasing unnecessary expenditure of time and resources. Poor data quality can also undermine the validity of research and slow policymaking processes. The purpose of this commentary is to summarize the data quality research base in other fields, describe obstacles and uniqueness to improve data quality in child welfare, and propose necessary steps to scientific research and practical implementation that enables researchers and practitioners to improve the quality of child welfare services based on the enhanced quality of data.
Fußnoten
1
The evaluation process indicates the whole procedure includes defining data quality within a specific domain, establishing operational definitions for data quality dimensions, and assigning quantitative values to each record or individual based on these operational definitions. The details will be shown in the section “Strategies to improve data quality.”.
 
2
Users are the people who use data to achieve their intended goals. Specifically, in child welfare, they are the professionals and practitioners who require data to investigate child welfare outcomes and evaluate the effectiveness of provided services. They are the primary end-users of the data and should play a pivotal role in determining the data “fitness for use.”.
 
3
Within an organization, a single dimension of data quality means using only one aspect of predefined data quality dimensions to specify multiple data fields or variables. For instance, in evaluating demographic information such as race, gender, age, and ethnicity, the application of the single dimension of completeness to assess whether the inputted data values meet the desired quality standards would not be enough, as completeness will not provide the quality of accuracy or data consistency. For anyone who is not familiar with the term of dimensions in data quality, it sometimes can be easily paralleled to the term of measurement construct or domain in social and behavioral science.
 
Literatur
11.
Zurück zum Zitat Lederman R, Shanks G. Gibbs MR. Meeting Privacy Obligations: The Implications for Information Systems Development. Paper presented at the 11th European Conference on Information Systems (ECIS). Naples, Italy. June, 2003. Lederman R, Shanks G. Gibbs MR. Meeting Privacy Obligations: The Implications for Information Systems Development. Paper presented at the 11th European Conference on Information Systems (ECIS). Naples, Italy. June, 2003.
12.
Zurück zum Zitat Huang J, Liu M, Bowling N. Insufficient effort responding: examining an insidious confound in survey data. Journal of Applied Psychology 2014; 100(3): 828–845. Available at https://doi.org/10.1037/a0038510. Accessed 1 February, 2023. Huang J, Liu M, Bowling N. Insufficient effort responding: examining an insidious confound in survey data. Journal of Applied Psychology 2014; 100(3): 828–845. Available at https://​doi.​org/​10.​1037/​a0038510. Accessed 1 February, 2023.
13.
14.
Zurück zum Zitat Eppler M, Helfert M. A classification and analysis of data quality costs. Paper presented at the Ninth International Conference on Information Quality, Cambridge, MA, February, 2004. Eppler M, Helfert M. A classification and analysis of data quality costs. Paper presented at the Ninth International Conference on Information Quality, Cambridge, MA, February, 2004.
16.
Zurück zum Zitat Kahn MG, Callahan TJ, Barnard J, et al. A harmonized data quality assessment terminology and framework for the secondary use of electronic health record data. The Journal for Electronic Health Data and Methods 2016;4(1):1244. Available at https://doi.org/10.13063/2327-9214.1244. Accessed 2 February, 2023. Kahn MG, Callahan TJ, Barnard J, et al. A harmonized data quality assessment terminology and framework for the secondary use of electronic health record data. The Journal for Electronic Health Data and Methods 2016;4(1):1244. Available at https://​doi.​org/​10.​13063/​2327-9214.​1244. Accessed 2 February, 2023.
17.
Zurück zum Zitat Redman TC. Data Quality: The Field Guide. Boston, MA: Digital Press, 2001. Available at https://dl.acm.org/doi/book/https://doi.org/10.5555/362427. Accessed 1 March, 2022. Redman TC. Data Quality: The Field Guide. Boston, MA: Digital Press, 2001. Available at https://​dl.​acm.​org/​doi/​book/​https://​doi.​org/​10.​5555/​362427. Accessed 1 March, 2022.
18.
20.
Zurück zum Zitat Hänel T, Felden C. Applying operational business intelligence in production environments. Paper presented at the 25th International Conference on Information Systems Development. Katowice, Poland, August, 2016. Hänel T, Felden C. Applying operational business intelligence in production environments. Paper presented at the 25th International Conference on Information Systems Development. Katowice, Poland, August, 2016.
22.
Zurück zum Zitat Choi TM, Luo S. Data quality challenges for sustainable fashion supply chain operations in emerging markets: roles of blockchain, government sponsors and environment taxes. Transportation Research Part E: Logistics and Transportation Review 2019;131:139-152. https://doi.org/10.1016/j.tre.2019.09.019. Accessed 22 September, 2022.CrossRef Choi TM, Luo S. Data quality challenges for sustainable fashion supply chain operations in emerging markets: roles of blockchain, government sponsors and environment taxes. Transportation Research Part E: Logistics and Transportation Review 2019;131:139-152. https://​doi.​org/​10.​1016/​j.​tre.​2019.​09.​019. Accessed 22 September, 2022.CrossRef
25.
Zurück zum Zitat Shepperd M. Data quality: cinderella at the software metrics ball? Paper presented at the 2nd International Workshop on Emerging Trends in Software Metrics. Honolulu HI. May 2011. Shepperd M. Data quality: cinderella at the software metrics ball? Paper presented at the 2nd International Workshop on Emerging Trends in Software Metrics. Honolulu HI. May 2011.
26.
Zurück zum Zitat Chen H. Measuring quality of data collection process to ensure data quality for public health information systems. Wollongong, Australia: University of Wollongong, 2020. Available at https://ro.uow.edu.au/theses1/994. Accessed 18 December, 2022. Chen H. Measuring quality of data collection process to ensure data quality for public health information systems. Wollongong, Australia: University of Wollongong, 2020. Available at https://​ro.​uow.​edu.​au/​theses1/​994. Accessed 18 December, 2022.
28.
Zurück zum Zitat Shirai Y, Nichols W, Kasunic M. Initial evaluation of data quality in a TSP software engineering project data repository. Paper presented at the 2014 International Conference on Software and System Process. Nanjing, China. May, 2014. Shirai Y, Nichols W, Kasunic M. Initial evaluation of data quality in a TSP software engineering project data repository. Paper presented at the 2014 International Conference on Software and System Process. Nanjing, China. May, 2014.
30.
Zurück zum Zitat Schmidt CO, Struckmann S, Enzenbach C, et al. Facilitating harmonized data quality assessments. A data quality framework for observational health research data collections with software implementations in R. BMC Medical Research Methodology 2021;21(1):63. https://doi.org/10.1186/s12874-021-01252-7. Accessed 22 January, 2023. Schmidt CO, Struckmann S, Enzenbach C, et al. Facilitating harmonized data quality assessments. A data quality framework for observational health research data collections with software implementations in R. BMC Medical Research Methodology 2021;21(1):63. https://​doi.​org/​10.​1186/​s12874-021-01252-7. Accessed 22 January, 2023.
31.
32.
Zurück zum Zitat Forsgren N, Durcikova A, Clay PF, et al. The integrated user satisfaction model: assessing information quality and system quality as second-order constructs in system administration. Communications of the Association for Information Systems 2016;38:803–839. Available at http://aisel.aisnet.org/cais/vol38/iss1/39. Accessed 22 September, 2022. Forsgren N, Durcikova A, Clay PF, et al. The integrated user satisfaction model: assessing information quality and system quality as second-order constructs in system administration. Communications of the Association for Information Systems 2016;38:803–839. Available at http://​aisel.​aisnet.​org/​cais/​vol38/​iss1/​39. Accessed 22 September, 2022.
37.
Zurück zum Zitat Cappiello C, Comuzzi M. A utility-based model to define the optimal data quality level in IT service offerings. Paper presented at the 17th European Conference on Information Systems (ECIS), Verona, Italy. June, 2009. Cappiello C, Comuzzi M. A utility-based model to define the optimal data quality level in IT service offerings. Paper presented at the 17th European Conference on Information Systems (ECIS), Verona, Italy. June, 2009.
39.
Zurück zum Zitat Warth J, Kaiser G, Kügler M. The impact of data quality and analytical capabilities on planning performance: insights from the automotive industry. Paper presented at the Proceedings of the 10th International Conference on Wirtschaftsinformatik, Zurich, Switzerland, February 2011. Warth J, Kaiser G, Kügler M. The impact of data quality and analytical capabilities on planning performance: insights from the automotive industry. Paper presented at the Proceedings of the 10th International Conference on Wirtschaftsinformatik, Zurich, Switzerland, February 2011.
40.
Zurück zum Zitat Redman TC. Data Quality: Management and Technology. New York, NY: Bantam Books, 1992. Available at https://dl.acm.org/doi/https://doi.org/10.5555/133848. Accessed 22 September, 2022. Redman TC. Data Quality: Management and Technology. New York, NY: Bantam Books, 1992. Available at https://​dl.​acm.​org/​doi/​https://​doi.​org/​10.​5555/​133848. Accessed 22 September, 2022.
43.
Zurück zum Zitat Rousidis D, Sicilia MÁ, Garoufallou E, et al. Data quality issues and content analysis for research data repositories: the case of dryad. Paper presented at the 18th International Conference on Electronic Publishing, Thessaloniki, Greece. June, 2014 Rousidis D, Sicilia MÁ, Garoufallou E, et al. Data quality issues and content analysis for research data repositories: the case of dryad. Paper presented at the 18th International Conference on Electronic Publishing, Thessaloniki, Greece. June, 2014
46.
Zurück zum Zitat Liaw ST, Guo JGN, Ansari S, et al. Quality assessment of real-world data repositories across the data life cycle: a literature review. Journal of the America Medical Informatics Association 2021;28(7):1591–1599. Available at https://doi.org/10.1093/jamia/ocaa340. Accessed 30 January, 2023. Liaw ST, Guo JGN, Ansari S, et al. Quality assessment of real-world data repositories across the data life cycle: a literature review. Journal of the America Medical Informatics Association 2021;28(7):1591–1599. Available at https://​doi.​org/​10.​1093/​jamia/​ocaa340. Accessed 30 January, 2023.
48.
Zurück zum Zitat Gupta N, Mujumdar S, Patel H, et al. Data quality for machine learning tasks. Paper presented at the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Virtual Event, Singapore. August, 2021. Gupta N, Mujumdar S, Patel H, et al. Data quality for machine learning tasks. Paper presented at the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. Virtual Event, Singapore. August, 2021.
50.
Zurück zum Zitat Afriliana N, Król D, Gaol FL. Computational intelligence techniques for assessing data quality: towards knowledge-driven processing. Paper presented at the 21st International Conference on Computational Science. Krakow, Poland. June, 2021. Afriliana N, Król D, Gaol FL. Computational intelligence techniques for assessing data quality: towards knowledge-driven processing. Paper presented at the 21st International Conference on Computational Science. Krakow, Poland. June, 2021.
51.
Zurück zum Zitat Symoens SH, Aravindakshan SU, Vermeire FH, et al. QUANTIS: data quality assessment tool by clustering analysis. International Journal of Chemical Kinetics 2019;51(11):872–885. Available at https://doi.org/10.1002/kin.21316. Accessed 1 March, 2023. Symoens SH, Aravindakshan SU, Vermeire FH, et al. QUANTIS: data quality assessment tool by clustering analysis. International Journal of Chemical Kinetics 2019;51(11):872–885. Available at https://​doi.​org/​10.​1002/​kin.​21316. Accessed 1 March, 2023.
52.
53.
Zurück zum Zitat Ali TZ, Abdelaziz TM, Maatuk AM, et al. A framework for improving data quality in data warehouse: a case study. Paper presented at the 21st International Arab Conference on Information Technology (ACIT). Giza, Egypt. November, 2020. Ali TZ, Abdelaziz TM, Maatuk AM, et al. A framework for improving data quality in data warehouse: a case study. Paper presented at the 21st International Arab Conference on Information Technology (ACIT). Giza, Egypt. November, 2020.
64.
Zurück zum Zitat Webster D, Needell B, Wildfire J. Data are your friends: Child welfare agency self-evaluation in Los Angeles county with the family to family initiative. Children and Youth Services Review 2002;24(6–7):471–484. Available at https://doi.org/10.1016/S0190-7409(02)00197-4. Accessed 1 April, 2023. Webster D, Needell B, Wildfire J. Data are your friends: Child welfare agency self-evaluation in Los Angeles county with the family to family initiative. Children and Youth Services Review 2002;24(6–7):471–484. Available at https://​doi.​org/​10.​1016/​S0190-7409(02)00197-4. Accessed 1 April, 2023.
74.
Zurück zum Zitat Neumaier S, Umbrich J, Polleres A. Automated quality assessment of metadata across open data portals. Journal of Data and Information Quality 2016;8(1):1–29. Available at https://doi.org/10.1145/2964909. Accessed 1 March, 2023. Neumaier S, Umbrich J, Polleres A. Automated quality assessment of metadata across open data portals. Journal of Data and Information Quality 2016;8(1):1–29. Available at https://​doi.​org/​10.​1145/​2964909. Accessed 1 March, 2023.
76.
Zurück zum Zitat Maletic JI, Marcus A. Data Cleansing: Beyond Integrity Analysis. Paper presented at the 2000 Conference on Information Quality, Cambridge, Massachusetts, October, 2000. Maletic JI, Marcus A. Data Cleansing: Beyond Integrity Analysis. Paper presented at the 2000 Conference on Information Quality, Cambridge, Massachusetts, October, 2000.
Metadaten
Titel
From Scientific Research to Practical Implementations: Applications to Improve Data Quality in Child Welfare
verfasst von
Yutian T. Thompson, Ph.D.
Yaqi Li, Ph.D.
Jane Silovsky, Ph.D.
Publikationsdatum
28.12.2023
Verlag
Springer US
Erschienen in
The Journal of Behavioral Health Services & Research / Ausgabe 2/2024
Print ISSN: 1094-3412
Elektronische ISSN: 1556-3308
DOI
https://doi.org/10.1007/s11414-023-09875-y

Neu im Fachgebiet Psychiatrie

Digitale Therapie lindert Borderline-Persönlichkeitsstörung

Eine rein digitale Therapie ohne therapeutische Unterstützung kann die Symptomatik bei Borderline-Persönlichkeitsstörung bereits etwas lindern, auch scheint sie das Suizidrisiko zu mindern. Darauf deuten Ergebnisse einer großen kontrollierten Studie. Die Effekte sind aber eher gering.

Schadet Schichtarbeit dem Gehirn?

Eine große Registerstudie bestätigt, dass Schichtarbeit mit einem erhöhten Risiko für psychische und neurologische Erkrankungen einhergeht, sowie mit einer Volumenabnahme in Gehirnarealen, die für Depression, Angst und kognitive Funktionen relevant sind.

Starke Menopausensymptome: ein Hinweis auf kognitive Veränderungen?

Stärkere Beschwerden in der Perimenopause sind mit einer reduzierten kognitiven Funktion in den mittleren und späteren Lebensjahren assoziiert. Auch das Verhalten kann sich ändern, wie eine Studie zeigt. Beides steht womöglich für erhöhte Demenzgefährdung.

Was tun, wenn pneumologische Medikamente Psyche und Blutbild verändern?

Arzneimittel für Patienten mit Mukoviszidose oder pulmonaler arterieller Hypertonie wirken offenbar nicht nur auf die Lunge. Was es in der Praxis zu beachten gilt, wurde beim Pneumologie-Kongress erläutert.

Update Psychiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.