Skip to main content
Erschienen in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01.12.2018 | Research article

Fructus Ligustri Lucidi modulates estrogen receptor expression with no uterotrophic effect in ovariectomized rats

verfasst von: Yu-qing Tang, Cheng Li, Xue-jiao Sun, Yi Liu, Xi-ting Wang, Yu-bo Guo, Li-li Wang, Ru-feng Ma, Jian-zhao Niu, Min Fu, Dong-wei Zhang, Yu Li

Erschienen in: BMC Complementary Medicine and Therapies | Ausgabe 1/2018

Abstract

Background

Accumulating evidence suggests that Fructus Ligustri Lucidi (FLL) plays a beneficial role in preventing the development of osteoporosis. However, the effects of FLL on estrogen receptor (ER) α and ERβ expressions remain unknown. Therefore, in the current study we attempted to probe into the effects of FLL on ERα and ERβ expressions in femurs, tibias and uteri of ovariectomized (OVX) rats.

Methods

The OVX rats were orally administrated with FLL water extract (3.5 g/kg/day) for 12 weeks. The uteri, femurs, tibias and serum were harvested from rats. The serum levels of estrogen (E2), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were determined by ELISA. The expressions of ERα and ERβ in the femurs and tibias as well as uteri were analysed by western blot and immunohistochemical staining.

Results

FLL treatment did not increase uterus relative weight in OVX rats. Further, FLL treatment increased ERα expression in the femurs and tibias, and enhanced ERβ expression in the uteri of OVX rats. However, the resulted expression of ERα was stronger than that of ERβ in OVX rats in response to FLL treatment. Meanwhile, administration with FLL to OVX rats increased FSH and LH but did not increase E2 level in the serum.

Conclusion

FLL treatment shows tissue selection on ERα and ERβ expressions in the femurs and tibias as well as uteri of OVX rats without uterotrophic effect, which may offer the scientific evidence of the efficiency and safety of its clinical application.
Abkürzungen
BMD
Bone mineral density
BUCM
Beijing University of Traditional Chinese Medicine
DAB
Diaminobenzidine
E2
Estrogen
EDTA
Ethylenediaminetetraacetic acid
EGTA
Ethyleneglycoltetraacetic acid
ER
Estrogen receptor
EV
Estradiol valerate
FLL
Fructus Ligustri Lucidi
FSH
Follicle-stimulating hormone
HRT
Hormone replacement therapy
IOD
Integral optical density
LH
Luteinizing hormone
OVX
Ovariectomized
PBS
Phosphate-buffered saline
TCM
Traditional Chinese medicine

Background

As life expectancy around world shows dramatic rise in the last several decades, osteoporosis, one of common chronic metabolic diseases among the elders, has become a prevalent public health problem owing to its high morbidity and mortality [1]. According to the report from International Osteoporosis Foundation, women are at a higher risk of developing osteoporosis than men because of the estrogen deficiency after their menopause [2]. As such, classical hormone replacement therapy (HRT) is widely used to prevent both menopausal symptoms and osteoporotic fractures [3]. Estrogen promotes bone accrual through estrogen receptor (ER) α and ERβ [4]. In addition, deletion of ERα in female mice exhibits reduction of bone mass and strength [5, 6], whereas increased expression of ERα in endothelium is associated with risk of developing breast and uterine cancer, which are also main side effects induced by HRT treatment [7, 8]. Moreover, selective activation of ERβ contributes to inhibition of breast cell proliferation and is also one of optimal targets to elicit beneficial estrogen-like activities [4, 9, 10]. Therefore, discovery and development of selective ER agonist remains a need for osteoporosis treatment.
Fructus Ligustri Lucidi (FLL) is the ripe fruit derived from the evergreen tree Ligustrum lucidum Ait. It is a common herbal medicine widely used in traditional Chinese medicine (TCM) formula for the management of osteoporosis [11]. FLL extracts have been demonstrated to improve bone quality in diabetic mice [12] and growing female rats [13] through regulation of calcium metabolism via stimulating parathyroid production. We [14] and others [15] also demonstrated that aqueous extracts of FLL improved bone mineral density (BMD) and bone microstructure in ovariectomized (OVX) rats via regulation of collagen metabolism. In addition, FLL ethanol extracts also promote mesenchymal stem cells differentiation [16]. However, little is known about the effect of FLL on ER expression in OVX rats. Therefore, the present study is aimed to explore the effects of FLL on ERα and ERβ expressions in the femurs, tibias and uteri as well as its effects on uterus weight in OVX rats.

Methods

Reagents and chemicals

Pentobarbital sodium was purchased from Sigma-Aldrich (St. Louis, USA), Estradiol valerate (EV) tablets were bought from Bayer (Monheim, German). Rat monoclonal anti-ERα antibody (ab3575) and mouse monoclonal anti-ERβ (ab288) were purchased from Abcam (Cambridge, UK). All the other chemicals, except specially identified, were obtained from Beijing Sinopharm Chemical (Beijing, China).

Preparation of FLL water extracts

FLL was bought from Beijing TongRenTang (Beijing, China) and authenticated by Professor Zexin Ma (TCM museum at Beijing University of Traditional Chinese Medicine (BUCM)). For preparation of FLL water extracts, 100 g of raw FLL was grinded into powder and dissolved in 1000 ml of distilled water by continuous stirring for 48 h under low temperature. Then the aqueous extracts were collected by centrifugation (4000 rpm at 4 °C for 10 min). And the supernatants were harvested and lyophilized to obtain a powder (20 g).

Animals

Female 12-week-old Sprague Dawley rats (200 ± 20 g) were purchased from Beijing SiBeiFu Animal Technology company (license number: SCXK (Beijing) 2014-0037, Beijing, China). The animals were housed in the clean level conditions (certification number: SCXK (Beijing) 2011-0024) at BUCM with the temperature of 22 ± 1 °C, humidity of 55 ± 5%, and a 12 h-light/dark cycle. All rats had free access to tap water and standard chow. All procedures in this study were approved by the Animal Care Committee of BUCM, Beijing, China.

OVX rat model establishment

After 1 week of acclimation, the OVX rats were established by removing the bilateral ovaries from the corresponding anesthetized rats. The sham control groups were performed by removing the equal volume of fat surrounding the bilateral ovaries. One week after surgery, the OVX animals were randomly divided into three groups of 9 rats in each, named OVX control, OVX + EV and OVX + FLL, respectively. For the treatment, the rats in the OVX + FLL group were orally administrated with the water extracts of FLL (3.5 g/kg/day). The rats in the OVX + EV group were orally administrated with EV tablets (0.1 mg/kg/day). The rats in OVX control group and Sham control group were orally administrated with the same volume of distilled water.
After 12 weeks of administration, rats were anesthetized by intraperitoneal injection with 1% pentobarbital sodium (0.4 ml/100 g, i.p.). Subsequently, blood was collected from the heart by puncture. Then the rats were sacrificed by cervical dislocation. After that, the uteri, femurs and tibias were harvested for the following experiments.

Uterus coefficient

After trimming off the fat and absorbing the excess surrounding fluid, the wet weight of the uterus was recorded with analytical balance. Then, the uteri were cut into pieces just above the junction with the cervix. Half of the uteri were stored in liquid nitrogen until use. Another half of it was fixed in 10% neutral buffered formalin for histological analysis. Uterus coefficient was determined by uterus wet weight divided by the corresponding body weight of the rat (g/100 g).

Estrogen (E2), luteinizing hormone (LH) and follicle-stimulating hormone (FSH)

E2, LH and FSH were determined by ELISA (CUSABIO, China) according to the manufacturer’s instructions. All the samples were evaluated in duplicates.

Immunohistochemical staining

The femurs and uteri were fixed with 10% neutral buffered formalin. Furthermore, the tibias were decalcified in 15% ethylenediaminetetraacetic acid (EDTA) buffer (pH 7.4) for 90 days. After that, the femurs and uteri were dehydrated in graded ethanol, defatted in xylene, and embedded in paraffin. Then, 5 μm sections were deparaffinized in xylene and rehydrated with graded ethanol. Subsequently, the sections were incubated with 3% H2O2 and antigen retrieval solution (0.1 M sodium citrate buffer, pH 6.0) followed by incubation with 10% goat serum in phosphate-buffered saline (PBS) for 30 min to block nonspecific binding sites. The sections were then incubated with the primary antibodies (anti-ERα antibody (1:500) or anti-ERβ antibody (1:500)) overnight at 4 °C. The next day, after washing in PBS, the sections were incubated with biotinylated anti-rat secondary antibody for 30 min and with peroxidase for 10 min according to the SP staining system (Beijing ZhongShan JinQiao, Beijing, China). Diaminobenzidine (DAB) was used as the substrate for color development and visualization under the microscope. For controls, the primary antibodies were replaced by non-immunized goat serum. The slides were then taken for histopathological evaluations. The results of immunohistochemical staining were quantified by Image Pro-Plus software (version 6, SPSS Inc., Chicago, IL, USA) and the integral optical density (IOD) values were recorded. The measurements were performed by two investigators who were blinded regarding the animals’ treatment groups.

Western blot analysis

The uteri were placed in a 1.5 ml Eppendorf tube and washed with PBS twice, and then were cut with scissors and grounded. The tibias were prepared by lyophilizing and grinding. After that, the samples were lysed in a buffer containing 20 mM Tris–HCl, pH 7.5, 0.1% (v/v) Igepal, 6 mM sodium deoxycholate, 150 mM NaCl, 2 mM ethyleneglycoltetraacetic acid (EGTA), 2 mM EDTA, 0.1 mM Na2SO4, 20 mM NaF, and a protease inhibitor cocktail tablet (Roche, German). The lysates were centrifuged at 10,000 g for 15 min at 4 °C, and protein concentrations in the supernatants were determined by BCA protein assay kit (Applygene, China). Then 50 μg/lane of proteins were loaded into 10% polyacrylamide gel, and transferred onto nitrocellulose membrane, and then incubated with the primary antibody (anti-ERα or anti-ERβ) and the corresponding HRP labeled secondary antibody. The membranes were developed using enhanced chemiluminescence solution. The images were captured with Bio-Rad bioimaging system. The gray values of the blots were quantified using the Image J software (NIH, Bethesda, MD), and normalized with the corresponding β-actin (1:2000) as the internal control.

Statistical analysis

Data were expressed as the mean ± standard deviation (SD). One-way analysis of variance (ANOVA) was performed between multiple groups using SPSS software (Version 20.0) when homogeneity of variance and normality were met. Otherwise, Dunnett’s T3 and Nonparametric tests were conducted between multiple groups, respectively. P values less than 0.05 were considered to be statistically significant.

Results

Effects of FLL on the alterations of uterus coefficient in OVX rats

The uterus coefficient of the rats were shown in Table 1. As expected, ovariectomy resulted in a significant reduction in the relative uterus weight of the rats. The uterus coefficient in the OVX control group was only around 16% of that in the Sham control group. EV treatment for 12 weeks significantly increased the uterus coefficient in OVX rats (P < 0.05). By contrast, FLL treatment did not increase the uterus coefficient in OVX rats.
Table 1
The uterus coefficient in the different groups of rats
Groups
Number
Uterus weight/Body weight (g/100 g)
Sham
9
0.2132 ± 0.0312*
OVX
9
0.0357 ± 0.0143
OVX + EV
9
0.1493 ± 0.0240*
OVX + FLL
9
0.0322 ± 0.0137
*Compared with OVX group rats, *P < 0.05

Effects of FLL on E2, LH and FSH levels in serum

As shown in Table 2, serum E2 level was decreased, and serum LH and FSH levels were increased in the OVX control group rats as compared to those of rats in the Sham control group. The administration of EV and FLL to OVX rats for 12 weeks significantly decreased serum LH and FSH levels (P < 0.05). However, FLL treatment did not increase serum E2 in OVX rats (P > 0.05).
Table 2
Serum levels of E2, LH and FSH in the different groups of rats
Groups
Number
E2 (pg/ml)
LH (mUI/ml)
FSH (mUI/ml)
Sham
9
15.5975 ± 5.0579*
2.1711 ± 0.8571*
0.8411 ± 0.3071*
OVX
9
6.65 ± 2.3853
3.8744 ± 0.8100
1.8837 ± 0.3301
OVX + EV
9
11.9755 ± 1.0535*
2.5850 ± 0.4829*
1.2087 ± 0.1795*
OVX + FLL
9
6.8842 ± 1.9301
3.0455 ± 0.5554*
1.4512 ± 0.2801*
*Compared with OVX group rats, *P < 0.05

Effects of FLL on the expressions of ERα and ERβ in the femurs and tibias of OVX rats

The effects of FLL on ERα and ERβ expressions in the femurs were assessed by immunohistochemical staining. As shown in Figs. 1 and 2, ERα and ERβ expressions in the femurs of the OVX control group were significantly decreased (P < 0.01), when compared with those of rats in the Sham control group. Both FLL and EV treatment significantly increased ERα and ERβ expressions in the femurs of the OVX rats (P < 0.05 or 0.01) when compared to those in the OVX control group.
Furthermore, the effects of FLL on ERα and ERβ expressions in the tibias of the rats in different groups were also evaluated by western blot. As shown in Fig. 3, FLL treatment did markedly increase ERα expression in response to ovariectomy (P < 0.01). By contrast, FLL treatment showed a trend toward increasing ERβ expression in OVX rats, but the differences did not reach the statistically significant level when compared to those of rats in the OVX control group.

Effects of FLL on the expressions of ERα and ERβ in the uteri of OVX rats

As shown in Figs. 4 and 5, ERα and ERβ were mainly located in the endometrium and glandular epithelia cells, and were highly expressed in the uteri of rats in sham control group and EV treatment group compared to those of rats in the OVX control group as evaluated by immunohistochemical staining (P < 0.01). Further, FLL treatment did not increase ERα expression but did obviously increase ERβ expression in the uteri of the OVX rats (P < 0.05). These results were also further confirmed by western blot (Fig. 6).

Discussion

In the current study, we demonstrated that FLL treatment decreased serum LH and FSH levels but not increased serum E2 level in OVX rats. FLL did not increase uterus relative weight in response to ovarirectomy. In addition, FLL treatment significantly enhanced ERβ expression, but left no evident influence on ERα in uteri. Moreover, FLL treatment markedly enhanced ERα expression, but had no obvious effect on ERβ expression in the femurs and tibias. These results suggest that FLL may show different effects on ER expression in bones and uteri, which may contribute to uterus health during the treatment of osteoporosis.
Both ERα and ERβ are the main targets of estrogen and can be either coexistent or expressed alone in various tissues [17]. ERα is inclined to be found in the ovary, breast, hypophysis, paranephros, kidney and bone, while ERβ is highly concentrated in the granulosa cells of prostate and ovary, commonly expressed in ovary, lung, brain and testis, and less expressed in hypophysis and spinal cord [18, 19]. In the reproductive system, ERα expression decreases gradually from the epithelial cells of vagina to those of oviduct [20, 21]. In the uteri of OVX rats, the expression of ERβ are tremendously reduced and almost only ERα can be detected [22, 23]. Over-expression of ERα may lead to the hyperplasia of mammary glands and endometrial cells, and result in an increased risk of breast cancer and endometrial cancer [24]. In contrast, activation of ERβ never causes the relevant cell proliferation, instead, it has certain effects against cell proliferation [25]. In the current study, we found that FLL treatment did increase ERβ expression in the uteri though with no significant effect on ERα expression, which may contribute to maintain the uterus health during the management of osteoporosis. The results suggest that FLL may selectively enhance ERβ expression in uteri of OVX rats. As compared to other phytoestrogens with high affinities with ERα, the application of FLL does not increase the risk of endometrial hyperplasia.
ERα and ERβ possess vast expressions and may antagonize each other in the bones and bone marrows [26, 27]. Deletion of ERα in osteoblast or osteoclast impedes bone formation and strength accrual in female mice [28]. Inhibition of ERα (not ERβ) expression in osteoclast promotes bone resorbing activity [29]. Deletion of ERα in osteoclast attenuates protective effect of estrogen on cancellous bone through increasing osteoclastogenesis. Furthermore, double deficiency of ERα and ERβ has similar reductions in BMD versus single deficiency of ERα in mice [30]. The results form clinical trials also support the notion that ERα (not ERβ) plays a beneficial role in maintaining bone health in men [31]. In addition, the advantage of ERα over ERβ favors for bone formation and fracture healing in OVX rats [26]. These findings suggest that the protective effect of estrogen on BMD in trabecula may be practiced via ERα. In conjunction with our current finding of an increase in ERα expression in rats of FLL treatment group and the results from our previous publication [14] as well as other groups [15, 30, 32], the results indicate that FLL treatment may boost bone density through induction of ERα expression in OVX rats.
ERα and ERβ may play different roles in the bone metabolism and remodeling. These roles are different in some aspects yet interrelated in other aspects. Estrogen’s effect on bones is likely to function through the mediation of ERα. The two subtypes of ER may exist as a complementary relationship, in other words, when ERα exists, ERβ may weaken the transcriptional activation function of ERα, and while ERα is absent, ERβ can partially replace some functions of ERα. Selective agonist of ERα can entirely offset the influence of ovariectomy on uterus weight and BMD in the experimental rats [7, 19]. The findings of our current study here also show that aqueous extract of FLL could enhance ERα expression, and have no apparent influence on ERβ expression in the femurs and tibias of OVX rats.
In the current study, we found that FLL treatment significantly decreased the levels of LH and FSH but did not increase E2 levels in OVX rats. Ovariectomy in rats results in a decrease in E2 and an increase in LH and FSH [33, 34]. Deficiency of E2 significantly promotes bone loss and aggravates uterus atrophy [34, 35]. Inhibition of FSH also impairs bone loss and further prevents LH release while the alteration does not play a dominant role in the development of osteoporosis [35]. In addition, high circulating FSH contributes to endometrial atrophy in mice [36]. Increased circulating LH may be associated with postmenopausal “hot flushes” [37]. The increase of FSH may contribute to uterus atrophy. The results suggest that FLL could alleviate postmenopausal vasomotor symptoms, which required further investigation.
In addition, we have demonstrated that FLL water extract mainly includes salidroside, ligustroflavon, acteoside, specnuezhenide, and oleuropein acid [38]. Currently, salidroside was demonstrated to bind to ERα in docking simulation assay [39]. So it is reasonable to deduce that salidroside may account for the estrogen-like effect of FLL in OVX rats. However, further studies are still needed to identify the contributions of each component in the FLL aqueous extract.

Conclusion

In conclusion, FLL treatment increases ERβ expression in uteri and strengthens ERα expression in the femurs and tibias as well as poses no risk of the increasing of uterus relative weight in OVX rats. In addition, our findings also demonstrate that FLL has the ability of coordinating LH and FSH levels in circulation, which may contribute to alleviate postmenopausal vasomotor symptoms. However, how FLL regulates ER expression in OVX rats still needs further investigation.

Acknowledgements

Not applicable.

Funding

This study was supported by the Grants from the National Natural Science Foundation of China (No. 81573716, 81273995) and the 111 project of MOE (B07007) as well as Beijing Municipal Natural Science Foundation (7172126).

Availability of data and materials

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Ethics approval

All procedures in this study were performed in accordance with the “Guidelines for Experimental Animal Care and Use” from the Animal Care Committee of BUCM, Beijing, China. The protocol was approved by the Animal Care Committee of BUCM, Beijing, China.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Kruger MC, Wolber FM: Osteoporosis: modern paradigms for last Century's bones. Nutrients 2016;8(6):376. Kruger MC, Wolber FM: Osteoporosis: modern paradigms for last Century's bones. Nutrients 2016;8(6):376.
2.
Zurück zum Zitat Lin X, Xiong D, Peng YQ, Sheng ZF, Wu XY, Wu XP, Wu F, Yuan LQ, Liao EY. Epidemiology and management of osteoporosis in the People's Republic of China: current perspectives. Clin Interv Aging. 2015;10:1017–33.PubMedPubMedCentral Lin X, Xiong D, Peng YQ, Sheng ZF, Wu XY, Wu XP, Wu F, Yuan LQ, Liao EY. Epidemiology and management of osteoporosis in the People's Republic of China: current perspectives. Clin Interv Aging. 2015;10:1017–33.PubMedPubMedCentral
3.
4.
Zurück zum Zitat Niu AQ, Xie LJ, Wang H, Zhu B, Wang SQ. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach. Drug Des Devel Ther. 2016;10:2323–31.CrossRefPubMedPubMedCentral Niu AQ, Xie LJ, Wang H, Zhu B, Wang SQ. Prediction of selective estrogen receptor beta agonist using open data and machine learning approach. Drug Des Devel Ther. 2016;10:2323–31.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Melville KM, Kelly NH, Surita G, Buchalter DB, Schimenti JC, Main RP, Ross FP, van der Meulen MC. Effects of deletion of ERalpha in osteoblast-lineage cells on bone mass and adaptation to mechanical loading differ in female and male mice. J Bone Miner Res. 2015;30(8):1468–80.CrossRefPubMedPubMedCentral Melville KM, Kelly NH, Surita G, Buchalter DB, Schimenti JC, Main RP, Ross FP, van der Meulen MC. Effects of deletion of ERalpha in osteoblast-lineage cells on bone mass and adaptation to mechanical loading differ in female and male mice. J Bone Miner Res. 2015;30(8):1468–80.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Macari S, Ajay SL, Wyatt A, Knowles P, Szawka RE, Garlet GP, Grattan DR, Dias GJ, Silva TA. Osteoprotective effects of estrogen in the maxillary bone depend on ERalpha. J Dent Res. 2016;95(6):689–96.CrossRefPubMed Macari S, Ajay SL, Wyatt A, Knowles P, Szawka RE, Garlet GP, Grattan DR, Dias GJ, Silva TA. Osteoprotective effects of estrogen in the maxillary bone depend on ERalpha. J Dent Res. 2016;95(6):689–96.CrossRefPubMed
7.
Zurück zum Zitat Matsushima H, Mori T, Ito F, Yamamoto T, Akiyama M, Kokabu T, Yoriki K, Umemura S, Akashi K, Kitawaki J. Anti-tumor effect of estrogen-related receptor alpha knockdown on uterine endometrial cancer. Oncotarget. 2016;7(23):34131–48.CrossRefPubMedPubMedCentral Matsushima H, Mori T, Ito F, Yamamoto T, Akiyama M, Kokabu T, Yoriki K, Umemura S, Akashi K, Kitawaki J. Anti-tumor effect of estrogen-related receptor alpha knockdown on uterine endometrial cancer. Oncotarget. 2016;7(23):34131–48.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Lin Z, Yin P, Reierstad S, O'Halloran M, Coon VJ, Pearson EK, Mutlu GM, Bulun SE. Adenosine A1 receptor, a target and regulator of estrogen receptoralpha action, mediates the proliferative effects of estradiol in breast cancer. Oncogene. 2010;29(8):1114–22.CrossRefPubMed Lin Z, Yin P, Reierstad S, O'Halloran M, Coon VJ, Pearson EK, Mutlu GM, Bulun SE. Adenosine A1 receptor, a target and regulator of estrogen receptoralpha action, mediates the proliferative effects of estradiol in breast cancer. Oncogene. 2010;29(8):1114–22.CrossRefPubMed
9.
Zurück zum Zitat Cvoro A, Paruthiyil S, Jones JO, Tzagarakis-Foster C, Clegg NJ, Tatomer D, Medina RT, Tagliaferri M, Schaufele F, Scanlan TS, et al. Selective activation of estrogen receptor-beta transcriptional pathways by an herbal extract. Endocrinology. 2007;148(2):538–47.CrossRefPubMed Cvoro A, Paruthiyil S, Jones JO, Tzagarakis-Foster C, Clegg NJ, Tatomer D, Medina RT, Tagliaferri M, Schaufele F, Scanlan TS, et al. Selective activation of estrogen receptor-beta transcriptional pathways by an herbal extract. Endocrinology. 2007;148(2):538–47.CrossRefPubMed
10.
Zurück zum Zitat de Villiers TJ, Gass ML, Haines CJ, Hall JE, Lobo RA, Pierroz DD, Rees M. Global consensus statement on menopausal hormone therapy. Climacteric. 2013;16(2):203–4.CrossRefPubMed de Villiers TJ, Gass ML, Haines CJ, Hall JE, Lobo RA, Pierroz DD, Rees M. Global consensus statement on menopausal hormone therapy. Climacteric. 2013;16(2):203–4.CrossRefPubMed
11.
Zurück zum Zitat Cheng M, Wang Q, Fan Y, Liu X, Wang L, Xie R, Ho CC, Sun W. A traditional Chinese herbal preparation, Er-Zhi-wan, prevent ovariectomy-induced osteoporosis in rats. J Ethnopharmacol. 2011;138(2):279–85.CrossRefPubMed Cheng M, Wang Q, Fan Y, Liu X, Wang L, Xie R, Ho CC, Sun W. A traditional Chinese herbal preparation, Er-Zhi-wan, prevent ovariectomy-induced osteoporosis in rats. J Ethnopharmacol. 2011;138(2):279–85.CrossRefPubMed
12.
Zurück zum Zitat Zhang Y, Diao TY, Wang L, Che CT, Wong MS. Protective effects of water fraction of Fructus Ligustri Lucidi extract against hypercalciuria and trabecular bone deterioration in experimentally type 1 diabetic mice. J Ethnopharmacol. 2014;158 Pt A:239–45.CrossRefPubMed Zhang Y, Diao TY, Wang L, Che CT, Wong MS. Protective effects of water fraction of Fructus Ligustri Lucidi extract against hypercalciuria and trabecular bone deterioration in experimentally type 1 diabetic mice. J Ethnopharmacol. 2014;158 Pt A:239–45.CrossRefPubMed
13.
Zurück zum Zitat Lyu Y, Feng X, Zhao P, Wu Z, Xu H, Fang Y, Hou Y, Denney L, Xu Y, Feng H. Fructus Ligustri Lucidi (FLL) ethanol extract increases bone mineral density and improves bone properties in growing female rats. J Bone Miner Metab. 2014;32(6):616–26.CrossRefPubMed Lyu Y, Feng X, Zhao P, Wu Z, Xu H, Fang Y, Hou Y, Denney L, Xu Y, Feng H. Fructus Ligustri Lucidi (FLL) ethanol extract increases bone mineral density and improves bone properties in growing female rats. J Bone Miner Metab. 2014;32(6):616–26.CrossRefPubMed
14.
Zurück zum Zitat Guo Y, Wang L, Ma R, Wang L, Yang M, Tang Y, Liu C, Zhu R, Liu H, Zhao D, et al. Effects of water extract from Fructus Ligustri Lucidi on bone structure and metabolism in ovariectomized rats. Chinese Tradit Herb Drugs. 2016;47:1155–62. Guo Y, Wang L, Ma R, Wang L, Yang M, Tang Y, Liu C, Zhu R, Liu H, Zhao D, et al. Effects of water extract from Fructus Ligustri Lucidi on bone structure and metabolism in ovariectomized rats. Chinese Tradit Herb Drugs. 2016;47:1155–62.
15.
Zurück zum Zitat Guo Y, Ma R, Wang L, Liu H, Zhu R, Shi R, Zhao D, Mo F, Gao S, Zhang D. Research progress on effects and their mechanism of Ligustri Lucidi Fructus in treatment of osteoporosis. Chinese Trad Herb Drugs. 2016;47:851–6. Guo Y, Ma R, Wang L, Liu H, Zhu R, Shi R, Zhao D, Mo F, Gao S, Zhang D. Research progress on effects and their mechanism of Ligustri Lucidi Fructus in treatment of osteoporosis. Chinese Trad Herb Drugs. 2016;47:851–6.
16.
Zurück zum Zitat Li G, Zhang XA, Zhang JF, Chan CY, Yew DT, He ML, Lin MC, Leung PC, Kung HF. Ethanol extract of Fructus Ligustri Lucidi promotes osteogenesis of mesenchymal stem cells. Phytother Res. 2010;24(4):571–6.PubMed Li G, Zhang XA, Zhang JF, Chan CY, Yew DT, He ML, Lin MC, Leung PC, Kung HF. Ethanol extract of Fructus Ligustri Lucidi promotes osteogenesis of mesenchymal stem cells. Phytother Res. 2010;24(4):571–6.PubMed
17.
Zurück zum Zitat Wong KC, Lee KS, Luk HK, Wan HY, Ho CK, Zhang Y, Wong MS. Er-xian decoction exerts estrogen-like osteoprotective effects in vivo and in vitro. Am J Chin Med. 2014;42(2):409–26.CrossRefPubMed Wong KC, Lee KS, Luk HK, Wan HY, Ho CK, Zhang Y, Wong MS. Er-xian decoction exerts estrogen-like osteoprotective effects in vivo and in vitro. Am J Chin Med. 2014;42(2):409–26.CrossRefPubMed
18.
Zurück zum Zitat Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen receptors alpha (ERalpha) and beta (ERbeta): subtype-selective ligands and clinical potential. Steroids. 2014;90:13–29.CrossRefPubMed Paterni I, Granchi C, Katzenellenbogen JA, Minutolo F. Estrogen receptors alpha (ERalpha) and beta (ERbeta): subtype-selective ligands and clinical potential. Steroids. 2014;90:13–29.CrossRefPubMed
19.
Zurück zum Zitat Harris HA, Katzenellenbogen JA, Katzenellenbogen BS. Characterization of the biological roles of the estrogen receptors, ERalpha and ERbeta, in estrogen target tissues in vivo through the use of an ERalpha-selective ligand. Endocrinology. 2002;143(11):4172–7.CrossRefPubMed Harris HA, Katzenellenbogen JA, Katzenellenbogen BS. Characterization of the biological roles of the estrogen receptors, ERalpha and ERbeta, in estrogen target tissues in vivo through the use of an ERalpha-selective ligand. Endocrinology. 2002;143(11):4172–7.CrossRefPubMed
20.
Zurück zum Zitat Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology. 1997;138(11):4613–21.CrossRefPubMed Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology. 1997;138(11):4613–21.CrossRefPubMed
21.
Zurück zum Zitat Baranda-Avila N, Cardoso-Rangel ME, Cerbon M, Camacho-Arroyo I, Mendoza-Rodriguez CA, Villasenor-Gaona H, Anzaldua-Arce SR. Differential expression of estrogen receptor alpha gene in the ampullae and isthmus regions of the rabbit oviduct during early pregnancy. Anim Reprod Sci. 2010;121(3-4):286–93.CrossRefPubMed Baranda-Avila N, Cardoso-Rangel ME, Cerbon M, Camacho-Arroyo I, Mendoza-Rodriguez CA, Villasenor-Gaona H, Anzaldua-Arce SR. Differential expression of estrogen receptor alpha gene in the ampullae and isthmus regions of the rabbit oviduct during early pregnancy. Anim Reprod Sci. 2010;121(3-4):286–93.CrossRefPubMed
22.
Zurück zum Zitat Cevik O, Akpinar H, Oba R, Cilingir OT, Ozdemir ZN, Cetinel S, Yoldemir T. The effect of Momordica charantia intake on the estrogen receptors ESRalpha/ESRbeta gene levels and apoptosis on uterine tissue in ovariectomy rats. Mol Biol Rep. 2015;42(1):167–77.CrossRefPubMed Cevik O, Akpinar H, Oba R, Cilingir OT, Ozdemir ZN, Cetinel S, Yoldemir T. The effect of Momordica charantia intake on the estrogen receptors ESRalpha/ESRbeta gene levels and apoptosis on uterine tissue in ovariectomy rats. Mol Biol Rep. 2015;42(1):167–77.CrossRefPubMed
23.
Zurück zum Zitat Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M, Gaillard-Kelly M, Baron R. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone. 2002;30(1):18–25.CrossRefPubMed Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M, Gaillard-Kelly M, Baron R. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone. 2002;30(1):18–25.CrossRefPubMed
24.
Zurück zum Zitat Christenson ES, Jiang X, Kagan R, Schnatz P. Osteoporosis management in post-menopausal women. Minerva Ginecol. 2012;64(3):181–94.PubMed Christenson ES, Jiang X, Kagan R, Schnatz P. Osteoporosis management in post-menopausal women. Minerva Ginecol. 2012;64(3):181–94.PubMed
25.
Zurück zum Zitat Nilsson S, Koehler KF, Gustafsson JA. Development of subtype-selective oestrogen receptor-based therapeutics. Nat Rev Drug Discov. 2011;10(10):778–92.CrossRefPubMed Nilsson S, Koehler KF, Gustafsson JA. Development of subtype-selective oestrogen receptor-based therapeutics. Nat Rev Drug Discov. 2011;10(10):778–92.CrossRefPubMed
26.
Zurück zum Zitat Chow SK, Leung KS, Qin L, Wei F, Cheung WH. Callus formation is related to the expression ratios of estrogen receptors-alpha and -beta in ovariectomy-induced osteoporotic fracture healing. Arch Orthop Trauma Surg. 2014;134(10):1405–16.CrossRefPubMed Chow SK, Leung KS, Qin L, Wei F, Cheung WH. Callus formation is related to the expression ratios of estrogen receptors-alpha and -beta in ovariectomy-induced osteoporotic fracture healing. Arch Orthop Trauma Surg. 2014;134(10):1405–16.CrossRefPubMed
28.
Zurück zum Zitat Melville KM, Kelly NH, Khan SA, Schimenti JC, Ross FP, Main RP, van der Meulen MC. Female mice lacking estrogen receptor-alpha in osteoblasts have compromised bone mass and strength. J Bone Miner Res. 2014;29(2):370–9.CrossRefPubMed Melville KM, Kelly NH, Khan SA, Schimenti JC, Ross FP, Main RP, van der Meulen MC. Female mice lacking estrogen receptor-alpha in osteoblasts have compromised bone mass and strength. J Bone Miner Res. 2014;29(2):370–9.CrossRefPubMed
29.
Zurück zum Zitat Mano H, Hakeda Y, Kumegawa M. Estrogen directly down-regulates the bone-resorbing activity of mature osteoclasts through nuclear estrogen receptor alpha. Cytotechnology. 2001;35(1):17–23.CrossRefPubMedPubMedCentral Mano H, Hakeda Y, Kumegawa M. Estrogen directly down-regulates the bone-resorbing activity of mature osteoclasts through nuclear estrogen receptor alpha. Cytotechnology. 2001;35(1):17–23.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat McCauley LK, Tozum TF, Kozloff KM, Koh-Paige AJ, Chen C, Demashkieh M, Cronovich H, Richard V, Keller ET, Rosol TJ, et al. Transgenic models of metabolic bone disease: impact of estrogen receptor deficiency on skeletal metabolism. Connect Tissue Res. 2003;44(Suppl 1):250–63.CrossRefPubMed McCauley LK, Tozum TF, Kozloff KM, Koh-Paige AJ, Chen C, Demashkieh M, Cronovich H, Richard V, Keller ET, Rosol TJ, et al. Transgenic models of metabolic bone disease: impact of estrogen receptor deficiency on skeletal metabolism. Connect Tissue Res. 2003;44(Suppl 1):250–63.CrossRefPubMed
31.
Zurück zum Zitat Khosla S, Riggs BL, Atkinson EJ, Oberg AL, Mavilia C, Del MF, Melton LR, Brandi ML. Relationship of estrogen receptor genotypes to bone mineral density and to rates of bone loss in men. J Clin Endocrinol Metab. 2004;89(4):1808–16.CrossRefPubMed Khosla S, Riggs BL, Atkinson EJ, Oberg AL, Mavilia C, Del MF, Melton LR, Brandi ML. Relationship of estrogen receptor genotypes to bone mineral density and to rates of bone loss in men. J Clin Endocrinol Metab. 2004;89(4):1808–16.CrossRefPubMed
32.
Zurück zum Zitat Li X, Song QS, Wang JY, Leng HJ, Chen ZQ, Liu ZJ, Dang GT, Song CL. Simvastatin induces estrogen receptor-alpha expression in bone, restores bone loss, and decreases ERalpha expression and uterine wet weight in ovariectomized rats. J Bone Miner Metab. 2011;29(4):396–403.CrossRefPubMed Li X, Song QS, Wang JY, Leng HJ, Chen ZQ, Liu ZJ, Dang GT, Song CL. Simvastatin induces estrogen receptor-alpha expression in bone, restores bone loss, and decreases ERalpha expression and uterine wet weight in ovariectomized rats. J Bone Miner Metab. 2011;29(4):396–403.CrossRefPubMed
33.
Zurück zum Zitat Cen J, Zhang H, Liu Y, Deng M, Tang S, Liu W, Zhang Z. Anti-aging effect of estrogen on telomerase activity in ovariectomised rats--animal model for menopause. Gynecol Endocrinol. 2015;31(7):582–5.PubMed Cen J, Zhang H, Liu Y, Deng M, Tang S, Liu W, Zhang Z. Anti-aging effect of estrogen on telomerase activity in ovariectomised rats--animal model for menopause. Gynecol Endocrinol. 2015;31(7):582–5.PubMed
34.
Zurück zum Zitat Xu Y, Ding J, Ma XP, Ma YH, Liu ZQ, Lin N. Treatment with Panax ginseng antagonizes the estrogen decline in ovariectomized mice. Int J Mol Sci. 2014;15(5):7827–40.CrossRefPubMedPubMedCentral Xu Y, Ding J, Ma XP, Ma YH, Liu ZQ, Lin N. Treatment with Panax ginseng antagonizes the estrogen decline in ovariectomized mice. Int J Mol Sci. 2014;15(5):7827–40.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Rouach V, Katzburg S, Koch Y, Stern N, Somjen D. Bone loss in ovariectomized rats: dominant role for estrogen but apparently not for FSH. J Cell Biochem. 2011;112(1):128–37.CrossRefPubMed Rouach V, Katzburg S, Koch Y, Stern N, Somjen D. Bone loss in ovariectomized rats: dominant role for estrogen but apparently not for FSH. J Cell Biochem. 2011;112(1):128–37.CrossRefPubMed
36.
Zurück zum Zitat Zhang D, Li J, Xu G, Zhang R, Zhou C, Qian Y, Liu Y, Chen L, Zhu B, Ye X, et al. Follicle-stimulating hormone promotes age-related endometrial atrophy through cross-talk with transforming growth factor beta signal transduction pathway. Aging Cell. 2015;14(2):284–7.CrossRefPubMed Zhang D, Li J, Xu G, Zhang R, Zhou C, Qian Y, Liu Y, Chen L, Zhu B, Ye X, et al. Follicle-stimulating hormone promotes age-related endometrial atrophy through cross-talk with transforming growth factor beta signal transduction pathway. Aging Cell. 2015;14(2):284–7.CrossRefPubMed
37.
Zurück zum Zitat Seidlova-Wuttke D, Hesse O, Jarry H, Christoffel V, Spengler B, Becker T, Wuttke W. Evidence for selective estrogen receptor modulator activity in a black cohosh (Cimicifuga racemosa) extract: comparison with estradiol-17beta. Eur J Endocrinol. 2003;149(4):351–62.CrossRefPubMed Seidlova-Wuttke D, Hesse O, Jarry H, Christoffel V, Spengler B, Becker T, Wuttke W. Evidence for selective estrogen receptor modulator activity in a black cohosh (Cimicifuga racemosa) extract: comparison with estradiol-17beta. Eur J Endocrinol. 2003;149(4):351–62.CrossRefPubMed
38.
Zurück zum Zitat Wang L, Ma R, Guo Y, Sun J, Liu H, Zhu R, Liu C, Li J, Li L, Chen B, et al. Antioxidant effect of Fructus Ligustri Lucidi aqueous extract in Ovariectomized rats is mediated through Nox4-ROS-NF-kappaB pathway. Front Pharmacol. 2017;8:266.CrossRefPubMedPubMedCentral Wang L, Ma R, Guo Y, Sun J, Liu H, Zhu R, Liu C, Li J, Li L, Chen B, et al. Antioxidant effect of Fructus Ligustri Lucidi aqueous extract in Ovariectomized rats is mediated through Nox4-ROS-NF-kappaB pathway. Front Pharmacol. 2017;8:266.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Zhang J, Kasim V, Xie YD, Huang C, Sisjayawan J, Dwi AA, Yan XS, Wu XY, Liu CP, Yang L, et al. Inhibition of PHD3 by salidroside promotes neovascularization through cell-cell communications mediated by muscle-secreted angiogenic factors. Sci Rep. 2017;7:43935.CrossRefPubMedPubMedCentral Zhang J, Kasim V, Xie YD, Huang C, Sisjayawan J, Dwi AA, Yan XS, Wu XY, Liu CP, Yang L, et al. Inhibition of PHD3 by salidroside promotes neovascularization through cell-cell communications mediated by muscle-secreted angiogenic factors. Sci Rep. 2017;7:43935.CrossRefPubMedPubMedCentral
Metadaten
Titel
Fructus Ligustri Lucidi modulates estrogen receptor expression with no uterotrophic effect in ovariectomized rats
verfasst von
Yu-qing Tang
Cheng Li
Xue-jiao Sun
Yi Liu
Xi-ting Wang
Yu-bo Guo
Li-li Wang
Ru-feng Ma
Jian-zhao Niu
Min Fu
Dong-wei Zhang
Yu Li
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Complementary Medicine and Therapies / Ausgabe 1/2018
Elektronische ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2171-3

Weitere Artikel der Ausgabe 1/2018

BMC Complementary Medicine and Therapies 1/2018 Zur Ausgabe