Skip to main content
Erschienen in:

24.05.2024 | Original Article

Fully automatic quantification for hand synovitis in rheumatoid arthritis using pixel-classification-based segmentation network in DCE-MRI

verfasst von: Wanxuan Fang, Yijun Mao, Haolin Wang, Hiroyuki Sugimori, Shinji Kiuch, Kenneth Sutherland, Tamotsu Kamishima

Erschienen in: Japanese Journal of Radiology | Ausgabe 10/2024

Einloggen, um Zugang zu erhalten

Abstract

Purpose

A classification-based segmentation method is proposed to quantify synovium in rheumatoid arthritis (RA) patients using a deep learning (DL) method based on time-intensity curve (TIC) analysis in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).

Materials and methods

This retrospective study analyzed a hand MR dataset of 28 RA patients (six males, mean age 53.7 years). A researcher, under expert guidance, used in-house software to delineate regions of interest (ROIs) for hand muscles, bones, and synovitis, generating a dataset with 27,255 pixels with corresponding TICs (muscle: 11,413, bone: 8502, synovitis: 7340). One experienced musculoskeletal radiologist performed ground truth segmentation of enhanced pannus in the joint bounding box on the 10th DCE phase, or around 5 min after contrast injection. Data preprocessing included median filtering for noise reduction, phase-only correlation algorithm for motion correction, and contrast-limited adaptive histogram equalization for improved image contrast and noise suppression. TIC intensity values were normalized using zero-mean normalization. A DL model with dilated causal convolution and SELU activation function was developed for enhanced pannus segmentation, tested using leave-one-out cross-validation.

Results

407 joint bounding boxes were manually segmented, with 129 synovitis masks. On the pixel-based level, the DL model achieved sensitivity of 85%, specificity of 98%, accuracy of 99% and precision of 84% for enhanced pannus segmentation, with a mean Dice score of 0.73. The false-positive rate for predicting cases without synovitis was 0.8%. DL-measured enhanced pannus volume strongly correlated with ground truth at both pixel-based (r = 0.87, p < 0.001) and patient-based levels (r = 0.84, p < 0.001). Bland–Altman analysis showed the mean difference for hand joints at the pixel-based and patient-based levels were −9.46 mm3 and −50.87 mm3, respectively.

Conclusion

Our DL-based DCE-MRI TIC shape analysis has the potential for automatic segmentation and quantification of enhanced synovium in the hands of RA patients.
Literatur
1.
Zurück zum Zitat Dakkak YJ, Jansen FP, DeRuiter MC, Reijnierse M, van der Helm-van Mil AHM. Rheumatoid arthritis and tenosynovitis at the metatarsophalangeal joints: an anatomic and MRI study of the forefoot tendon sheaths. Radiology. 2020;295(1):146–54.CrossRefPubMed Dakkak YJ, Jansen FP, DeRuiter MC, Reijnierse M, van der Helm-van Mil AHM. Rheumatoid arthritis and tenosynovitis at the metatarsophalangeal joints: an anatomic and MRI study of the forefoot tendon sheaths. Radiology. 2020;295(1):146–54.CrossRefPubMed
2.
Zurück zum Zitat Micu MC, Fodor D. Concepts in monitoring the treatment in rheumatoid arthritis—the role of musculoskeletal ultrasound. Part I: synovitis. Med Ultrason. 2015;17(3):367–76.CrossRefPubMed Micu MC, Fodor D. Concepts in monitoring the treatment in rheumatoid arthritis—the role of musculoskeletal ultrasound. Part I: synovitis. Med Ultrason. 2015;17(3):367–76.CrossRefPubMed
3.
4.
Zurück zum Zitat Hetland ML, Ejbjerg B, Hørslev-Petersen K, Jacobsen S, Vestergaard A, Jurik AG, et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann Rheum Dis. 2009;68(3):384–90.CrossRefPubMed Hetland ML, Ejbjerg B, Hørslev-Petersen K, Jacobsen S, Vestergaard A, Jurik AG, et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann Rheum Dis. 2009;68(3):384–90.CrossRefPubMed
5.
Zurück zum Zitat Carotti M, Galeazzi V, Catucci F, Zappia M, Arrigoni F, Barile A, et al. Clinical utility of eco-color-power Doppler ultrasonography and contrast enhanced magnetic resonance imaging for interpretation and quantification of joint synovitis: a review. Acta Biomed. 2018;89(1-S):48–77.PubMedPubMedCentral Carotti M, Galeazzi V, Catucci F, Zappia M, Arrigoni F, Barile A, et al. Clinical utility of eco-color-power Doppler ultrasonography and contrast enhanced magnetic resonance imaging for interpretation and quantification of joint synovitis: a review. Acta Biomed. 2018;89(1-S):48–77.PubMedPubMedCentral
7.
Zurück zum Zitat Ostergaard M, Boesen M. Imaging in rheumatoid arthritis: the role of magnetic resonance imaging and computed tomography. Radiol Med. 2019;124(11):1128–41.CrossRefPubMed Ostergaard M, Boesen M. Imaging in rheumatoid arthritis: the role of magnetic resonance imaging and computed tomography. Radiol Med. 2019;124(11):1128–41.CrossRefPubMed
8.
Zurück zum Zitat Kirkhus E, Bjornerud A, Thoen J, Johnston V, Dale K, Smith HJ. Contrast-enhanced dynamic magnetic resonance imaging of finger joints in osteoarthritis and rheumatoid arthritis: an analysis based on pharmacokinetic modeling. Acta Radiol. 2006;47(8):845–51.CrossRefPubMed Kirkhus E, Bjornerud A, Thoen J, Johnston V, Dale K, Smith HJ. Contrast-enhanced dynamic magnetic resonance imaging of finger joints in osteoarthritis and rheumatoid arthritis: an analysis based on pharmacokinetic modeling. Acta Radiol. 2006;47(8):845–51.CrossRefPubMed
9.
Zurück zum Zitat Wojciechowski W, Tabor Z, Urbanik A. Assessing synovitis based on dynamic gadolinium-enhanced MRI and EULAR-OMERACT scores of the wrist in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2013;31(6):850–6.PubMed Wojciechowski W, Tabor Z, Urbanik A. Assessing synovitis based on dynamic gadolinium-enhanced MRI and EULAR-OMERACT scores of the wrist in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2013;31(6):850–6.PubMed
10.
Zurück zum Zitat Kobayashi Y, Kamishima T, Sugimori H, Ichikawa S, Noguchi A, Kono M, et al. Quantification of hand synovitis in rheumatoid arthritis: arterial mask subtraction reinforced with mutual information can improve accuracy of pixel-by-pixel time–intensity curve shape analysis in dynamic MRI. J Magn Reson Imaging. 2018;48(3):687–94.CrossRef Kobayashi Y, Kamishima T, Sugimori H, Ichikawa S, Noguchi A, Kono M, et al. Quantification of hand synovitis in rheumatoid arthritis: arterial mask subtraction reinforced with mutual information can improve accuracy of pixel-by-pixel time–intensity curve shape analysis in dynamic MRI. J Magn Reson Imaging. 2018;48(3):687–94.CrossRef
11.
Zurück zum Zitat Sakashita T, Kamishima T, Kobayashi Y, Sugimori H, Tang M, Sutherland K, et al. Accurate quantitative assessment of synovitis in rheumatoid arthritis using pixel-by-pixel, time-intensity curve shape analysis. Br J Radiol. 2016;89(1061):20151000.CrossRefPubMedPubMedCentral Sakashita T, Kamishima T, Kobayashi Y, Sugimori H, Tang M, Sutherland K, et al. Accurate quantitative assessment of synovitis in rheumatoid arthritis using pixel-by-pixel, time-intensity curve shape analysis. Br J Radiol. 2016;89(1061):20151000.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat van de Sande MG, van der Leij C, Lavini C, Wijbrandts CA, Maas M, Tak PP. Characteristics of synovial inflammation in early arthritis analysed by pixel-by-pixel time-intensity curve shape analysis. Rheumatology (Oxford). 2012;51(7):1240–5.CrossRefPubMed van de Sande MG, van der Leij C, Lavini C, Wijbrandts CA, Maas M, Tak PP. Characteristics of synovial inflammation in early arthritis analysed by pixel-by-pixel time-intensity curve shape analysis. Rheumatology (Oxford). 2012;51(7):1240–5.CrossRefPubMed
13.
Zurück zum Zitat Lavini C, de Jonge MC, van de Sande MG, Tak PP, Nederveen AJ, Maas M. Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system. Magn Reson Imaging. 2007;25(5):604–12.CrossRefPubMed Lavini C, de Jonge MC, van de Sande MG, Tak PP, Nederveen AJ, Maas M. Pixel-by-pixel analysis of DCE MRI curve patterns and an illustration of its application to the imaging of the musculoskeletal system. Magn Reson Imaging. 2007;25(5):604–12.CrossRefPubMed
14.
Zurück zum Zitat Kijowski R, Liu F, Caliva F, Pedoia V. Deep learning for lesion detection, progression, and prediction of musculoskeletal disease. J Magn Reson Imaging. 2020;52(6):1607–19.CrossRefPubMed Kijowski R, Liu F, Caliva F, Pedoia V. Deep learning for lesion detection, progression, and prediction of musculoskeletal disease. J Magn Reson Imaging. 2020;52(6):1607–19.CrossRefPubMed
15.
Zurück zum Zitat Wang H, Ou Y, Fang W, Ambalathankandy P, Goto N, Ota G, et al. A deep registration method for accurate quantification of joint space narrowing progression in rheumatoid arthritis. Comput Med Imaging Graph. 2023;108: 102273.CrossRefPubMed Wang H, Ou Y, Fang W, Ambalathankandy P, Goto N, Ota G, et al. A deep registration method for accurate quantification of joint space narrowing progression in rheumatoid arthritis. Comput Med Imaging Graph. 2023;108: 102273.CrossRefPubMed
16.
Zurück zum Zitat Liang H, Lu Y, Liu Q, Fu X. Fully automatic classification of cardiotocographic signals with 1D-CNN and bi-directional GRU. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:4590–4.PubMed Liang H, Lu Y, Liu Q, Fu X. Fully automatic classification of cardiotocographic signals with 1D-CNN and bi-directional GRU. Annu Int Conf IEEE Eng Med Biol Soc. 2022;2022:4590–4.PubMed
17.
Zurück zum Zitat Hassan F, Hussain SF, Qaisar SM. Epileptic seizure detection using a hybrid 1D CNN-machine learning approach from EEG data. J Healthc Eng. 2022;2022:9579422.CrossRefPubMedPubMedCentral Hassan F, Hussain SF, Qaisar SM. Epileptic seizure detection using a hybrid 1D CNN-machine learning approach from EEG data. J Healthc Eng. 2022;2022:9579422.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Hsieh CH, Li YS, Hwang BJ, Hsiao CH. Detection of atrial fibrillation using 1D convolutional neural network. Sensors (Basel). 2020;20(7):2136.CrossRefPubMed Hsieh CH, Li YS, Hwang BJ, Hsiao CH. Detection of atrial fibrillation using 1D convolutional neural network. Sensors (Basel). 2020;20(7):2136.CrossRefPubMed
19.
Zurück zum Zitat Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO III, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–81.CrossRefPubMed Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO III, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62(9):2569–81.CrossRefPubMed
20.
Zurück zum Zitat Ostergaard M, Peterfy CG, Bird P, Gandjbakhch F, Glinatsi D, Eshed I, et al. The OMERACT rheumatoid arthritis magnetic resonance imaging (MRI) scoring system: updated recommendations by the OMERACT MRI in arthritis working group. J Rheumatol. 2017;44(11):1706–12.CrossRefPubMed Ostergaard M, Peterfy CG, Bird P, Gandjbakhch F, Glinatsi D, Eshed I, et al. The OMERACT rheumatoid arthritis magnetic resonance imaging (MRI) scoring system: updated recommendations by the OMERACT MRI in arthritis working group. J Rheumatol. 2017;44(11):1706–12.CrossRefPubMed
21.
Zurück zum Zitat Ito K, Nakajima H, Kobayashi K, Aoki T, Higuchi T. A fingerprint matching algorithm using phase-only correlation. IEICE Trans Fundam Electron Commun Comput Sci. 2004;87(3):682–91. Ito K, Nakajima H, Kobayashi K, Aoki T, Higuchi T. A fingerprint matching algorithm using phase-only correlation. IEICE Trans Fundam Electron Commun Comput Sci. 2004;87(3):682–91.
22.
Zurück zum Zitat Reza AM. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Signal Process Syst Signal Image Video Technol. 2004;38:35–44.CrossRef Reza AM. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J VLSI Signal Process Syst Signal Image Video Technol. 2004;38:35–44.CrossRef
23.
Zurück zum Zitat Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. ArXiv. 2018;abs/1803.01271. Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. ArXiv. 2018;abs/1803.01271.
24.
Zurück zum Zitat van der Leij C, van de Sande MG, Lavini C, Tak PP, Maas M. Rheumatoid synovial inflammation: pixel-by-pixel dynamic contrast-enhanced MR imaging time-intensity curve shape analysis—a feasibility study. Radiology. 2009;253(1):234–40.CrossRefPubMed van der Leij C, van de Sande MG, Lavini C, Tak PP, Maas M. Rheumatoid synovial inflammation: pixel-by-pixel dynamic contrast-enhanced MR imaging time-intensity curve shape analysis—a feasibility study. Radiology. 2009;253(1):234–40.CrossRefPubMed
25.
Zurück zum Zitat Ratner B. The correlation coefficient: its values range between +1/−1, or do they? J Target Meas Anal Mark. 2009;17(2):139–42.CrossRef Ratner B. The correlation coefficient: its values range between +1/−1, or do they? J Target Meas Anal Mark. 2009;17(2):139–42.CrossRef
26.
Zurück zum Zitat Kubassova O, Boesen M, Cimmino MA, Bliddal H. A computer-aided detection system for rheumatoid arthritis MRI data interpretation and quantification of synovial activity. Eur J Radiol. 2010;74(3):e67–72.CrossRefPubMed Kubassova O, Boesen M, Cimmino MA, Bliddal H. A computer-aided detection system for rheumatoid arthritis MRI data interpretation and quantification of synovial activity. Eur J Radiol. 2010;74(3):e67–72.CrossRefPubMed
27.
Zurück zum Zitat Czaplicka K, Wojciechowski W, Wlodarczyk J, Urbanik A, Tabor Z. Automated assessment of synovitis in 0.2T magnetic resonance images of the wrist. Comput Biol Med. 2015;67:116–25.CrossRefPubMed Czaplicka K, Wojciechowski W, Wlodarczyk J, Urbanik A, Tabor Z. Automated assessment of synovitis in 0.2T magnetic resonance images of the wrist. Comput Biol Med. 2015;67:116–25.CrossRefPubMed
Metadaten
Titel
Fully automatic quantification for hand synovitis in rheumatoid arthritis using pixel-classification-based segmentation network in DCE-MRI
verfasst von
Wanxuan Fang
Yijun Mao
Haolin Wang
Hiroyuki Sugimori
Shinji Kiuch
Kenneth Sutherland
Tamotsu Kamishima
Publikationsdatum
24.05.2024
Verlag
Springer Nature Singapore
Erschienen in
Japanese Journal of Radiology / Ausgabe 10/2024
Print ISSN: 1867-1071
Elektronische ISSN: 1867-108X
DOI
https://doi.org/10.1007/s11604-024-01592-6

Neu im Fachgebiet Radiologie

Hölzerner Fremdkörper in der Orbita? Zuerst eine CT!

Besteht der Verdacht, dass ein Fremdkörper aus Holz in den Orbitalraum eingedrungen ist, spielt die Bildgebung eine entscheidende diagnostische Rolle. Was von CT und MRT zu erwarten ist, hat ein chinesisches Radiologenteam untersucht.

Diagnostik von Rippenfrakturen: KI schlägt Radiologen

Mensch gegen Maschine: Beim Erkennen von Rippenfrakturen in Röntgen- und CT-Aufnahmen entschied sich dieses Duell zugunsten der künstlichen Intelligenz (KI). Die Algorithmen zeigten eine höhere Sensitivität als ihre menschlichen Kollegen.

Ärztinnen überholen Ärzte bei Praxisgründungen

Bei Praxisgründungen haben inzwischen die Frauen deutlich die Nase vorn: Seit zehn Jahren wagen laut apoBank mehr Ärztinnen als Ärzte den Schritt in die Selbstständigkeit. In puncto Finanzierung sind sie aber vorsichtiger als die männlichen Kollegen.

Ambulante Behandlung darf länger dauern als stationäre

Ambulante Behandlungen haben Vorrang vor stationären - auch wenn diese läner dauern. Das hat das Bundessozialgericht klargestellt. Konkret ging es um Liposuktionen der Ober- und Unterschenkel.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.