Skip to main content

01.12.2017 | Research article | Ausgabe 1/2017 Open Access

BMC Cancer 1/2017

Functional analysis of fatty acid binding protein 7 and its effect on fatty acid of renal cell carcinoma cell lines

BMC Cancer > Ausgabe 1/2017
Naohisa Takaoka, Tatsuya Takayama, Seiichiro Ozono
Wichtige Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12885-017-3184-x) contains supplementary material, which is available to authorized users.
Complementary DNA
Eicosapentaenoic acid
Fatty acid binding protein 7
Fetal bovine serum
Phosphate-buffered saline
Renal cell carcinoma
Sodium dodecyl sulfate
Small interfering RNA
TATA box binding protein


Kidney cancer is the 15th most common malignancy worldwide. In 2008, approximately 271,000 new cases were diagnosed, and 116,000 patients died from this disease [ 1]. These rates are approximately twice as high in men as in women [ 1]. Renal cell carcinomas (RCCs) represent 91.6% of kidney cancers [ 2]. The identification of molecular markers in body fluids, which can be used for screening, diagnosis, follow-up, and monitoring drug-based therapy of patients with RCC, is one of the most important challenges of cancer research [ 3]. In a search for candidate markers of RCC, we identified the gene ( FABP7) encoding fatty acid binding protein 7 [ 4].
Human FABP7 was first isolated from a library of fetal brain complementary DNA (cDNA), and the FABP7 transcript is expressed specifically in adult human brain and skeletal muscle [ 5]. Further, FABP7 is expressed more abundantly during the early stages of maturation of the brain [ 5]. RCCs overexpress FABP7 [ 4, 614], and FABP7 transcripts are present in the tumors or urine of patients with RCC [ 9]. The role of FABP7 in inhibiting the proliferation of a breast cancer cell line suggests that it may act as a tumor suppressor [ 15, 16]. In apparent contradiction to this, inhibition of FABP7 expression by small interfering RNAs (siRNAs) significantly reduces the proliferation of certain human cancer cell lines [ 1721], and overexpression of FABP7 stimulates the proliferation of RCC cell lines [ 14]. Further, inhibition of FABP7 expression by siRNAs significantly decreases the ability of certain human cancer cell lines to migrate [ 1719, 2123]. Moreover, FABP7 enhances the migration of glioma cells [ 24], and an antibody against FABP7 inhibits cell migration [ 25].
To better understand the role of FABP7 in RCC and to attempt to resolve the conflicting findings summarized above, the present study aimed to analyze the effects of FABP7 on the phenotypes of RCC cell lines, with particular focus on the composition of the fatty acids accumulating in cell lines that overexpress FABP7.



Reagents and their sources were as follows: RPMI 1640 medium, Oligo(dT) 12–18 Primer, SuperScript® III Reverse Transcriptase, SYBR® Green PCR Master Mix, pENTR™/D-TOPO® vector, Gateway® pT-Rex™-DEST30 vector, pT-Rex/GW-30/lacZ vector, pcDNA™6/TR vector, Lipofectamine® 2000 Transfection Reagent and blasticidin S HCl (Thermo Fisher Scientific, Waltham, MA, USA); docosatetraenoic acid, eicosapentaenoic acid (EPA) (NU-CHEK PREP, Inc.; Elysian, MN, USA); oligopeptides (Hokkaido System Science, Sapporo, Hokkaido, Japan); Tris, dithiothreitol, sodium orthovanadate, phenylmethanesulfonyl fluoride, and doxycycline hyclate (Sigma-Aldrich, St. Louis, MO, USA); sodium chloride (Nacalai Tesque, Kyoto, Japan); EDTA, sodium deoxycholate, sodium fluoride, sodium dodecyl sulfate (SDS), 4% paraformaldehyde and crystal violet (Wako, Osaka, Japan); IGEPAL CA-630 (MP Biomedicals, Santa Ana, CA, USA); protease inhibitor cocktail tablet (Complete, Mini, EDTA-free), geneticin (G418) (Roche Diagnostics GmbH, Mannheim, Germany); and SacI, XhoI (Takara Bio Inc., Otsu, Shiga, Japan).

Cell culture

The 786-O cell line (CRL-1932) was purchased from the American Type Culture Collection (Manassas, VA, USA). The TUHR14TKB cell line (RCB1383) was provided by RIKEN (Tsukuba, Ibaraki, Japan). Short tandem-repeat typing was performed to confirm the identity of high-passage TUHR14TKB cells, and the data were verified using the RIKEN short tandem-repeat database [ 26]. All cell lines were grown in RPMI 1640 medium supplemented with 10% ( v/v) or 1% fetal bovine serum (FBS) (Nichirei Biosciences Inc., Tokyo, Japan). Cells were cultured at 37 °C in a humidified atmosphere containing 5% CO 2. Docosatetraenoic acid or EPA (100 mM each) was dissolved in ethanol, and a 1:2000 dilution of each fatty acid was added to the culture medium.

Cell cloning

Clones were isolated from low-passage cultures of TUHR14TKB cells by plating the cells at limiting dilution in 96-well plates. The cells were serially diluted to 128 to 4 viable cells/mL, and 50 μL was added per each well of a 96-well plate. After incubation at 37 °C in a humidified atmosphere containing 5% CO 2, single colonies in the wells were expanded.

Real-time PCR analysis

Real-time PCR assays were performed using a modified version of the method described by Takaoka et al. [ 27]. Cells were cultured in 10-cm dishes. Total RNA was isolated from cultured cell lines using the RNeasy Mini Kit (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. Two micrograms of RNA was reverse transcribed using SuperScript® III Reverse Transcriptase primed by 500 ng of Oligo(dT) 12–18 Primer according to the manufacturer’s protocol. Real-time PCR analysis of FABP7 expression was performed using an Applied Biosystems StepOnePlus (Thermo Fisher Scientific). The final PCR reaction mix (20 μL) included 2 μL of each specific primer (5 μM), 1 μL of first-strand cDNA, and 10 μL of SYBR® Green PCR Master Mix. Plasmids that encode FABP7 and TATA box binding protein (TBP) were synthesized as described previously [ 27], and standard curves for each gene were generated using seven serial dilutions of plasmid templates (0.1 nM to 0.1 fM). TBP was used as an internal control. Takaoka et al. [ 27] and Jung et al. [ 28] reported the sequences of the primers used to amplify FABP7 and TBP, respectively.

Western blotting

Western blotting was performed using a modified version of a published method [ 27]. Cells were cultured in 6-well culture plates or in 10-cm culture dishes. The cells were detached using trypsin-EDTA, collected by centrifugation, and washed once with phosphate-buffered saline (PBS). The pellets were lysed on ice for 30 min in RIPA buffer (50 mM Tris, pH 8.0, 150 mM sodium chloride, 5 mM EDTA, 0.5% sodium deoxycholate, 1% IGEPAL CA-630, and 0.1% SDS) containing 2 mg/L sodium orthovanadate, 10 mM sodium fluoride, 1 mM phenylmethanesulfonyl fluoride, 2 mM dithiothreitol, and a protease inhibitor cocktail tablet. Lysates were centrifuged for 10 min at 4 °C at 18,000×g. The supernatants were transferred to sterile microcentrifuge tubes. Protein concentrations were determined using the Bio-Rad Protein Assay Kit II (Bio-Rad, Hercules, CA, USA). Cell extracts (20 μg) were electrophoresed through an 18% ( w/ v) polyacrylamide-SDS gel. The proteins were transferred electrophoretically onto a PVDF membrane (GE Healthcare UK Ltd., Little Chalfont, Buckinghamshire HP7 9NA, England), and the membrane was incubated with 1 g/L of an FABP7 antibody (AF3166; R&D Systems, Minneapolis, MN, USA) diluted 1:5000. Antibody-antigen complexes were visualized using peroxidase-conjugated anti-goat IgG (86,285; Jackson ImmunoResearch Laboratories, West Grove, PA) and Immobilon Western HRP Substrate (Millipore, Billerica, MA, USA). A mouse monoclonal anti-α-tubulin antibody (T6074; Sigma-Aldrich, St. Louis, MO, USA) served as an internal control.

Flow cytometry

Cells were plated in 10-cm culture dishes at a density of 2 × 10 6 cells per plate and incubated for two days at 37 °C in an atmosphere containing 5% CO 2. After incubation, the cells were harvested with trypsin/EDTA, washed once with PBS, and then resuspended to 1 × 10 6 cells/0.2 mL in PBS containing 0.25% Triton X-100 for 5 min at room temperature. Cellular DNA in each cell suspension was stained using 0.6 mL of 50 mg/L propidium iodide for 10 min at room temperature. Cell-cycle analysis was performed using an EPICS-XL flow cytometer (Beckman-Coulter, Brea, CA, USA).

Vector construction

To generate FABP7 expression constructs, the FABP7 cDNA sequence was amplified using PCR with the primers Full B-FABP F2 (5′-CACCATGGTGGAGGCTTTCTGT) and Full B-FABP R3 (5′-TTATGCCTTCTCATAGTGGCG). The PCR product was inserted into pENTR™/D-TOPO® via TOPO cloning (Invitrogen, CA, USA). The cloning vector (pENTR-FABP7) was transferred to the Gateway® pT-Rex™-DEST30 vector via gateway recombination (Invitrogen, CA, USA). The plasmid generated (DEST30-FABP7) was verified by direct DNA sequencing. The pT-Rex/GW-30/lacZ vector that expresses β-galactosidase (lacZ) served as a control.


TUHR14TKB and 786-O cells were transfected with 2 μg of XhoI-digested pcDNA6/TR using FuGene® HD transfection reagent (Promega, Madison, WI, USA). The transfectants were cultured in RPMI 1640 medium containing 10% FBS and 5 mg/L blasticidin S HCl. The pcDNA6™/TR transfectants (TUHR-TR, TUHR14TKB pcDNA6™/TR transfectant; 786-O TR, 786-O pcDNA6™/TR transfectant) were expanded and transfected in the presence of Lipofectamine® 2000 transfection reagent with 4 μg of DEST30-FABP7 or the empty vector pT-Rex/GW-30/lacZ digested with SacI. The transfectants were cultured in RPMI 1640 medium containing 10% FBS, 5 mg/L blasticidin S HCl, and 0.3 g/L G418, and blasticidin- and G418-resistant cells were expanded. The FABP7 or control-vector transfectants of TUHR-TR or 786-O TR were cultured in RPMI 1640 medium containing 10% FBS or 1% FBS with 5 mg/L blasticidin S HCl, 0.3 g/L G418, and 1 mg/L doxycycline hyclate for one to three days and then subjected to western blotting or the following assays: MTS, cell counting, or wound-healing. SRL Inc. (Tokyo, Japan) performed the analyses of the fatty acid composition of the TUHR-TR transfectants.

Cell proliferation assay

Cells were plated in 96-well cell culture plates at 400 (786-O transfectant) or 2000 cells per well (low-passage or high-passage TUHR14TKB or TUHR14TKB transfectants, respectively) in 100 μL of culture medium. The plates were incubated at 37 °C in an atmosphere containing 5% CO 2. The cells were analyzed using a CellTiter 96® AQueous One Solution Cell Proliferation Assay Kit (Promega, Madison, WI, USA) according to the manufacturer’s instructions. Absorbance (490 nm) was measured one, two, and three days after cell plating. Doubling times were determined from four replicate samples per point.

Cell counts

TUHR14TKB transfectants were plated in 24-well cell culture plates (10,000 cells per well) in 500 μL of RPMI 1640 medium containing 10% FBS with 5 mg/L blasticidin S HCl, 0.3 g/L G418, and 1 mg/L doxycycline hyclate. The plates were incubated at 37 °C in an atmosphere containing 5% CO 2. Cells on the plate were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet one, two, and three days after plating. The numbers of cells were counted in five random fields using a light microscope (×100).

Wound-healing assay

Cells (1 × 10 6) were seeded in 24-well plates. After incubation overnight (786-O TR transfectant) or for one day (TUHR-TR transfectant), an artificial wound was created (0 h) using a 200-μL tip to introduce a gap in the confluent cell monolayer, and the culture medium was changed. Images were acquired at 0 h and 6 h (786-O TR transfectant) or 16 h (TUHR-TR transfectant). The wounded areas were measured before and after healing.

Data analysis

Cell proliferation and migration data were analyzed using the Student t test. Statistical significance was defined as p < 0.05.


Analyses of FABP7 expression and proliferation of TUHR14TKB cells during passage in culture

High levels of FABP7 were detected during passages 6–8 of TUHR14TKB cells, but not during passages 16–18 (Fig. 1a). The levels of FABP7 expressed by TUHR14TKB cells decreased by approximately four-fold between two cell passages (Fig. 1b). In contrast, the doubling time of low-passage cells was approximately twice that of high-passage cells (Fig. 2a). The doubling times differed among cells that were isolated from individual colonies of low-passage TUHR14TKB cells (Fig. 2a). Further, the percentage of S-phase cells in high-passage TUHR14TKB cells increased and was accompanied by a decrease in the percentage of G0/G1-phase cells compared with low-passage TUHR14TKB cells (Fig. 2b).

Functional analysis of FABP7 in RCC cells

We transfected FABP7 low-expressing TUHR14TKB and 786-O cells with an FABP7 expression vector (Fig. 3a and b and Additional file 1: Figure S1a and S1b). In the presence of 10% FBS, the doubling time of TUHR14TKB cells that overexpressed FABP7 was significantly longer than that of cells transfected with the control vector (Fig. 4a and b). Although TUHR14TKB cells transfected with the control vector were able to proliferate, the cells that overexpressed FABP7 were unable to proliferate in the presence of 1% FBS (Additional file 2: Figure S2). Further, the percentage of TUHR14TKB FABP7 in G2/M increased compared with that of TUHR14TKB lacZ cells (Fig. 4c), indicating that FABP7 induced the arrest of TUHR14TKB in G2. In contrast, overexpression of FABP7 stimulated the proliferation of the 786-O cell line cultured in medium containing 1% FBS (Additional file 1: Figure S1c).
Wound-healing assays revealed that TUHR14TKB cells that overexpressed FABP7 migrated significantly slower than TUHR14TKB cells transfected with the control vector (Fig. 3c), although overexpression of FABP7 did not affect the migration of 786-O cells (Additional file 1: Figure S1d).

Effects of fatty acids on TUHR14TKB cells expressing FABP7

Although FABP7 binds to fatty acids, it does not catalyze de novo fatty acid synthesis, suggesting that FABP7 expression leads to the accumulation of fatty acid in cells. Docosatetraenoic acid and EPA accumulated in TUHR14TKB cells that expressed FABP7 (Fig. 5a). In contrast, other fatty acids did not accumulate in TUHR14TKB cells that expressed FABP7 (Additional file 3: Table S1). Therefore, we tested the effects of docosatetraenoic acid or EPA on the proliferation of TUHR14TKB cells. The addition of docosatetraenoic acid significantly stimulated the proliferation of TUHR14TKB cells that expressed β-galactosidase (Fig. 5b).


Human RCCs overexpress FABP7 [ 4, 614], indicating that FABP7 might affect the progression of RCC. Therefore, we studied FABP7 function using RCC cell lines. In the present study, we show that the levels of FABP7 dramatically decreased during passage of the RCC cell line TUHR14TKB. Further, FABP overexpression differentially affected the proliferation of the RCC cell lines analyzed here. Thus, overexpression of FABP7 decreased the proliferation of TUHR14TKB cells. In contrast, overexpression of FABP7 increased the proliferation of 786-O cells.
FABP7 transcripts are expressed in 18 of 30 clear cell-type RCC lesions but in only 4 of 19 RCC cell lines [ 6]. These results are consistent with our previous findings that FABP7 is expressed in one (TUHR14TKB) of six RCC cell lines [ 27]. We show here that the levels of FABP7 decreased during the passage of TUHR14TKB cells (Fig. 1). Further, TUHR14TKB cells proliferated faster during continued passage (Fig. 2a), suggesting that continued passage selected for cells that did not express FABP7 and therefore proliferated at an increased rate. Moreover, the doubling times of subclones of TUHR15TKB cells differed significantly (Fig 2a), which is consistent with the loss of FABP7 expression during attempts to establish cell lines from primary RCC tumor tissue. In addition, glioblastoma neurospheres express FABP7 at higher levels than those of adherent cells derived from the same tumor [ 21]. Therefore, conditions that favor the formation of spheres may provide a selective advantage for primary RCC cells that express FABP7.
Overexpression of FABP7 inhibited the proliferation of TUHR14TKB cells (Fig. 4a and b), which is consistent with findings that FABP7 (referred to formerly in the studies cited here as the protein encoded by mammary-derived growth inhibitor-related gene) inhibits the proliferation of breast cancer cell lines [ 15, 16]. Further, high tumor-grade (G3 + G4) RCCs express significantly lower levels of FABP7 mRNA than low-grade (G1 + G2) RCCs [ 10], and FABP7 is highly expressed in primary melanomas compared with metastatic melanomas [ 29, 30]. In contrast, knockdown of FABP7 expression inhibits the proliferation of melanoma cells [ 17, 18], an RCC cell line [ 19], a breast cancer cell line [ 20], and glioblastoma cells [ 21]. Further, we show here that FABP7 overexpression did not affect proliferation of the 786-O cell line (Additional file 1: Figure S1c and [ 14]), and down-regulation of FABP7 expression by FABP7-specific siRNAs does not affect the proliferation of certain melanoma cells [ 17]. Interestingly, FABP7 overexpression stimulated the proliferation of 786-O cells in medium containing 1% FBS (Additional file 1: Figure S1c and [ 14]).
The present and previous studies demonstrate that the effect of FABP7 on cell proliferation varies among cell lines and with cell culture conditions. These findings may be explained by the interaction of FABP7 with molecule(s) that inhibit or enhance cell proliferation. Cancer is a multistage disease, which develops through a succession of mutations [ 31, 32]. Thus, FABP7 and other molecule(s) may control cell proliferation through a similar mechanism. Another explanation for the inconsistencies among studies of FABP7 function may be that FABP7 modulates signaling networks that influence cell proliferation.
Down-regulation of FABP7 expression by siRNAs significantly reduces the migration of melanoma cell lines [ 17, 18], an RCC cell line [ 19], breast cancer cells [ 20], and malignant glioma cells [ 2123]. Further, overexpression of FABP7 enhances the migration of glioma cells [ 24]. In contrast, FABP7 overexpression inhibited the migration of TUHR14TKB cells that was revealed using a wound-healing assay (Fig. 3c). Thus, the effect of wound healing may be related to the effect of proliferation.
Docosatetraenoic acid and EPA accumulated in TUHR14TKB cells that expressed FABP7 (Fig. 5a and Additional file 3: Table S1). Ligand-binding studies conducted in vitro show that ω-3 EPA is the preferred ligand of FABP7 [ 33]. Further, the addition of docosatetraenoic acid significantly increased cell growth (Fig. 5b), suggesting that inhibition of the proliferation by FABP7 of TUHR14TKB cells does not act through the accumulation of docosatetraenoic acid by FABP7.


Our data lead us to conclude that the TUHR14TKB cell line comprises a heterogeneous population and that cells that do not express FABP7 grow faster and are therefore selected during passage in culture. Further, our finding that FABP7 inhibited the proliferation of TUHR14TKB cells but stimulated the proliferation of 786-O cells cultured in medium with 1% FBS indicates that FABP7 function depends on cell type and culture conditions.


We thank Kiyoshi Shibata (Equipment Center, Hamamatsu University School of Medicine) for supporting the flow cytometry analysis, Hiromi Fujita (Urology, Hamamatsu University School of Medicine) and Miki Miyazaki (Urology, Hamamatsu University School of Medicine) for supporting the flow cytometry analysis and for technical assistance, and DMC Corp [ 34] for editing the manuscript.


This research and editing the manuscript were supported by a Grant-in-Aid for Scientific Research (C) 26,462,407 from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Availability of data and materials

All data generated or analysed during this study are included in this published article and its Additional files.

Authors’ contributions

NT designed the study, performed the experiments, analyzed the data, and wrote the manuscript. TT participated in designing the study, analyzing the data, and editing the manuscript. SO participated in editing the manuscript. All authors read and approved the final version of the manuscript.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

BMC Cancer 1/2017 Zur Ausgabe

Neu im Fachgebiet Onkologie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Onkologie und bleiben Sie gut informiert – ganz bequem per eMail.