Skip to main content
Erschienen in: NeuroMolecular Medicine 2-3/2017

08.07.2017 | Original Paper

Functional and Molecular Characterization of a Novel Traumatic Peripheral Nerve–Muscle Injury Model

verfasst von: Renate Wanner, Manuel Gey, Alireza Abaei, Daniela Warnecke, Luisa de Roy, Lutz Dürselen, Volker Rasche, Bernd Knöll

Erschienen in: NeuroMolecular Medicine | Ausgabe 2-3/2017

Einloggen, um Zugang zu erhalten

Abstract

Traumatic injuries to human peripheral nerves are frequently associated with damage to nerve surrounding tissues including muscles and blood vessels. Currently, most rodent models of peripheral nerve injuries (e.g., facial or sciatic nerve) employ surgical nerve transection with scissors or scalpels. However, such an isolated surgical nerve injury only mildly damages neighboring tissues and weakly activates an immune response. In order to provide a rodent nerve injury model accounting for such nerve-associated tissue damage and immune cell activation, we developed a drop tower-based facial nerve trauma model in mice. We compare nerve regeneration in this novel peripheral nerve trauma model with the established surgical nerve injury along several parameters. These include gene expression, histological and functional facial motoneuron (FMN) regeneration, facial nerve degeneration, immune cell activation and muscle damage. Regeneration-associated genes (RAGs; e.g., Atf3) were strongly induced in FMNs subjected to traumatic and surgical injury. Regeneration of FMNs and functional recovery of whisker movement were faster in traumatic versus complete surgical injury, thus cutting down experimentation time. Wallerian degeneration of distal nerve stumps was readily observed in this novel trauma injury model. Importantly, drop tower-inflicted facial nerve injury resulted in muscle damage, activation of muscle satellite cell markers (PAX7) and pronounced infiltration of immune cells to the injury site only in this model but not upon surgical nerve transection. Thus, we provide a novel rodent PNS trauma model that can be easily adopted to other PNS nerves such as the sciatic nerve. Since this nerve trauma model replicates multiple tissue damage frequently encountered in clinical routine, it will be well suited to identify molecular and cellular mechanisms of PNS nerve repair in wild-type and genetically modified rodents.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Albert-Weissenberger, C., & Siren, A. L. (2010). Experimental traumatic brain injury. Experimental & Translational Stroke Medicine, 2, 16.CrossRef Albert-Weissenberger, C., & Siren, A. L. (2010). Experimental traumatic brain injury. Experimental & Translational Stroke Medicine, 2, 16.CrossRef
Zurück zum Zitat Banks, C. A., Knox, C., Hunter, D. A., Mackinnon, S. E., Hohman, M. H., & Hadlock, T. A. (2015). Long-term functional recovery after facial nerve transection and repair in the rat. Journal of Reconstructive Microsurgery, 31, 210–216.CrossRefPubMedPubMedCentral Banks, C. A., Knox, C., Hunter, D. A., Mackinnon, S. E., Hohman, M. H., & Hadlock, T. A. (2015). Long-term functional recovery after facial nerve transection and repair in the rat. Journal of Reconstructive Microsurgery, 31, 210–216.CrossRefPubMedPubMedCentral
Zurück zum Zitat Campbell, W. W. (2008). Evaluation and management of peripheral nerve injury. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 119, 1951–1965.CrossRef Campbell, W. W. (2008). Evaluation and management of peripheral nerve injury. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 119, 1951–1965.CrossRef
Zurück zum Zitat Chandran, V., Coppola, G., Nawabi, H., Omura, T., Versano, R., Huebner, E. A., et al. (2016). A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron, 89, 956–970.CrossRefPubMedPubMedCentral Chandran, V., Coppola, G., Nawabi, H., Omura, T., Versano, R., Huebner, E. A., et al. (2016). A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron, 89, 956–970.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chen, P., Piao, X., & Bonaldo, P. (2015). Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathologica, 130, 605–618.CrossRefPubMed Chen, P., Piao, X., & Bonaldo, P. (2015). Role of macrophages in Wallerian degeneration and axonal regeneration after peripheral nerve injury. Acta Neuropathologica, 130, 605–618.CrossRefPubMed
Zurück zum Zitat Dalamagkas, K., Tsintou, M., & Seifalian, A. (2016). Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. Materials Science & Engineering C, Materials for Biological Applications, 65, 425–432.CrossRef Dalamagkas, K., Tsintou, M., & Seifalian, A. (2016). Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. Materials Science & Engineering C, Materials for Biological Applications, 65, 425–432.CrossRef
Zurück zum Zitat Di Giovanni, S., Knights, C. D., Rao, M., Yakovlev, A., Beers, J., Catania, J., et al. (2006). The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. The EMBO Journal, 25, 4084–4096.CrossRefPubMedPubMedCentral Di Giovanni, S., Knights, C. D., Rao, M., Yakovlev, A., Beers, J., Catania, J., et al. (2006). The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. The EMBO Journal, 25, 4084–4096.CrossRefPubMedPubMedCentral
Zurück zum Zitat Faroni, A., Mobasseri, S. A., Kingham, P. J., & Reid, A. J. (2015). Peripheral nerve regeneration: Experimental strategies and future perspectives. Advanced Drug Delivery Reviews, 82–83, 160–167.CrossRefPubMed Faroni, A., Mobasseri, S. A., Kingham, P. J., & Reid, A. J. (2015). Peripheral nerve regeneration: Experimental strategies and future perspectives. Advanced Drug Delivery Reviews, 82–83, 160–167.CrossRefPubMed
Zurück zum Zitat Fernandez-Verdejo, R., Vanwynsberghe, A. M., Essaghir, A., Demoulin, J. B., Hai, T., Deldicque, L., & Francaux, M. (2017). Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 31(2), 840–851.CrossRef Fernandez-Verdejo, R., Vanwynsberghe, A. M., Essaghir, A., Demoulin, J. B., Hai, T., Deldicque, L., & Francaux, M. (2017). Activating transcription factor 3 attenuates chemokine and cytokine expression in mouse skeletal muscle after exercise and facilitates molecular adaptation to endurance training. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 31(2), 840–851.CrossRef
Zurück zum Zitat Flierl, M. A., Stahel, P. F., Beauchamp, K. M., Morgan, S. J., Smith, W. R., & Shohami, E. (2009). Mouse closed head injury model induced by a weight-drop device. Nature Protocols, 4, 1328–1337.CrossRefPubMed Flierl, M. A., Stahel, P. F., Beauchamp, K. M., Morgan, S. J., Smith, W. R., & Shohami, E. (2009). Mouse closed head injury model induced by a weight-drop device. Nature Protocols, 4, 1328–1337.CrossRefPubMed
Zurück zum Zitat Fox, I. K., & Mackinnon, S. E. (2011). Adult peripheral nerve disorders: Nerve entrapment, repair, transfer, and brachial plexus disorders. Plastic and Reconstructive Surgery, 127, 105e–118e.CrossRefPubMed Fox, I. K., & Mackinnon, S. E. (2011). Adult peripheral nerve disorders: Nerve entrapment, repair, transfer, and brachial plexus disorders. Plastic and Reconstructive Surgery, 127, 105e–118e.CrossRefPubMed
Zurück zum Zitat Gaudet, A. D., Popovich, P. G., & Ramer, M. S. (2011). Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. Journal of Neuroinflammation, 8, 110.CrossRefPubMedPubMedCentral Gaudet, A. D., Popovich, P. G., & Ramer, M. S. (2011). Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. Journal of Neuroinflammation, 8, 110.CrossRefPubMedPubMedCentral
Zurück zum Zitat Gey, M., Wanner, R., Schilling, C., Pedro, M. T., Sinske, D., & Knoll, B. (2016). Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury. Open Biology, 6, 160091.CrossRefPubMedPubMedCentral Gey, M., Wanner, R., Schilling, C., Pedro, M. T., Sinske, D., & Knoll, B. (2016). Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury. Open Biology, 6, 160091.CrossRefPubMedPubMedCentral
Zurück zum Zitat Gordon, T. (2016). Nerve regeneration: Understanding biology and its influence on return of function after nerve transfers. Hand Clinics, 32, 103–117.CrossRefPubMed Gordon, T. (2016). Nerve regeneration: Understanding biology and its influence on return of function after nerve transfers. Hand Clinics, 32, 103–117.CrossRefPubMed
Zurück zum Zitat Gordon, T., & Borschel, G. H. (2017). The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Experimental Neurology, 287, 331–347.CrossRefPubMed Gordon, T., & Borschel, G. H. (2017). The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Experimental Neurology, 287, 331–347.CrossRefPubMed
Zurück zum Zitat Griffin, J. W., Pan, B., Polley, M. A., Hoffman, P. N., & Farah, M. H. (2010). Measuring nerve regeneration in the mouse. Experimental Neurology, 223, 60–71.CrossRefPubMed Griffin, J. W., Pan, B., Polley, M. A., Hoffman, P. N., & Farah, M. H. (2010). Measuring nerve regeneration in the mouse. Experimental Neurology, 223, 60–71.CrossRefPubMed
Zurück zum Zitat Grinsell, D., & Keating, C. P. (2014). Peripheral nerve reconstruction after injury: A review of clinical and experimental therapies. BioMed Research International, 2014, 698256.CrossRefPubMedPubMedCentral Grinsell, D., & Keating, C. P. (2014). Peripheral nerve reconstruction after injury: A review of clinical and experimental therapies. BioMed Research International, 2014, 698256.CrossRefPubMedPubMedCentral
Zurück zum Zitat Grosheva, M., Guntinas-Lichius, O., Angelova, S. K., Kuerten, S., Alvanou, A., Streppel, M., et al. (2008). Local stabilization of microtubule assembly improves recovery of facial nerve function after repair. Experimental Neurology, 209, 131–144.CrossRefPubMed Grosheva, M., Guntinas-Lichius, O., Angelova, S. K., Kuerten, S., Alvanou, A., Streppel, M., et al. (2008). Local stabilization of microtubule assembly improves recovery of facial nerve function after repair. Experimental Neurology, 209, 131–144.CrossRefPubMed
Zurück zum Zitat Guntinas-Lichius, O., Irintchev, A., Streppel, M., Lenzen, M., Grosheva, M., Wewetzer, K., et al. (2005). Factors limiting motor recovery after facial nerve transection in the rat: Combined structural and functional analyses. The European Journal of Neuroscience, 21, 391–402.CrossRefPubMed Guntinas-Lichius, O., Irintchev, A., Streppel, M., Lenzen, M., Grosheva, M., Wewetzer, K., et al. (2005). Factors limiting motor recovery after facial nerve transection in the rat: Combined structural and functional analyses. The European Journal of Neuroscience, 21, 391–402.CrossRefPubMed
Zurück zum Zitat Irintchev, A. (2011). Potentials and limitations of peripheral nerve injury models in rodents with particular reference to the femoral nerve. Annals of Anatomy = Anatomischer Anzeiger: Official Organ of the Anatomische Gesellschaft, 193, 276–285.CrossRef Irintchev, A. (2011). Potentials and limitations of peripheral nerve injury models in rodents with particular reference to the femoral nerve. Annals of Anatomy = Anatomischer Anzeiger: Official Organ of the Anatomische Gesellschaft, 193, 276–285.CrossRef
Zurück zum Zitat Jessen, K. R., & Mirsky, R. (2008). Negative regulation of myelination: Relevance for development, injury, and demyelinating disease. Glia, 56, 1552–1565.CrossRefPubMed Jessen, K. R., & Mirsky, R. (2008). Negative regulation of myelination: Relevance for development, injury, and demyelinating disease. Glia, 56, 1552–1565.CrossRefPubMed
Zurück zum Zitat Jessen, K. R., Mirsky, R., & Lloyd, A. C. (2015). Schwann cells: Development and role in nerve repair. Cold Spring Harbor Perspectives in Biology, 7, a020487.CrossRefPubMedPubMedCentral Jessen, K. R., Mirsky, R., & Lloyd, A. C. (2015). Schwann cells: Development and role in nerve repair. Cold Spring Harbor Perspectives in Biology, 7, a020487.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kaariainen, M., & Kauhanen, S. (2012). Skeletal muscle injury and repair: The effect of disuse and denervation on muscle and clinical relevance in pedicled and free muscle flaps. Journal of Reconstructive Microsurgery, 28, 581–587.CrossRefPubMed Kaariainen, M., & Kauhanen, S. (2012). Skeletal muscle injury and repair: The effect of disuse and denervation on muscle and clinical relevance in pedicled and free muscle flaps. Journal of Reconstructive Microsurgery, 28, 581–587.CrossRefPubMed
Zurück zum Zitat Magill, C., Whitlock, E., Solowski, N., & Myckatyn, T. (2008). Transgenic models of nerve repair and nerve regeneration. Neurological Research, 30, 1023–1029.CrossRefPubMed Magill, C., Whitlock, E., Solowski, N., & Myckatyn, T. (2008). Transgenic models of nerve repair and nerve regeneration. Neurological Research, 30, 1023–1029.CrossRefPubMed
Zurück zum Zitat Marklund, N., & Hillered, L. (2011). Animal modelling of traumatic brain injury in preclinical drug development: Where do we go from here? British Journal of Pharmacology, 164, 1207–1229.CrossRefPubMedPubMedCentral Marklund, N., & Hillered, L. (2011). Animal modelling of traumatic brain injury in preclinical drug development: Where do we go from here? British Journal of Pharmacology, 164, 1207–1229.CrossRefPubMedPubMedCentral
Zurück zum Zitat Moran, L. B., & Graeber, M. B. (2004). The facial nerve axotomy model. Brain Research. Brain Research Reviews, 44, 154–178.CrossRefPubMed Moran, L. B., & Graeber, M. B. (2004). The facial nerve axotomy model. Brain Research. Brain Research Reviews, 44, 154–178.CrossRefPubMed
Zurück zum Zitat Muheremu, A., & Ao, Q. (2015). Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. BioMed Research International, 2015, 237507.CrossRefPubMedPubMedCentral Muheremu, A., & Ao, Q. (2015). Past, present, and future of nerve conduits in the treatment of peripheral nerve injury. BioMed Research International, 2015, 237507.CrossRefPubMedPubMedCentral
Zurück zum Zitat Navarro, X. (2016). Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: A critical overview. The European Journal of Neuroscience, 43, 271–286.CrossRefPubMed Navarro, X. (2016). Functional evaluation of peripheral nerve regeneration and target reinnervation in animal models: A critical overview. The European Journal of Neuroscience, 43, 271–286.CrossRefPubMed
Zurück zum Zitat Placheta, E., Wood, M. D., Lafontaine, C., Frey, M., Gordon, T., & Borschel, G. H. (2015). Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats. JAMA Facial Plastic Surgery, 17, 8–15.CrossRefPubMed Placheta, E., Wood, M. D., Lafontaine, C., Frey, M., Gordon, T., & Borschel, G. H. (2015). Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats. JAMA Facial Plastic Surgery, 17, 8–15.CrossRefPubMed
Zurück zum Zitat Post, A., Hoshizaki, T. B., Gilchrist, M. D., Brien, S., Cusimano, M., & Marshall, S. (2015). Traumatic brain injuries: The influence of the direction of impact. Neurosurgery, 76, 81–91.CrossRefPubMed Post, A., Hoshizaki, T. B., Gilchrist, M. D., Brien, S., Cusimano, M., & Marshall, S. (2015). Traumatic brain injuries: The influence of the direction of impact. Neurosurgery, 76, 81–91.CrossRefPubMed
Zurück zum Zitat Raivich, G., Bohatschek, M., Da Costa, C., Iwata, O., Galiano, M., Hristova, M., et al. (2004). The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron, 43, 57–67.CrossRefPubMed Raivich, G., Bohatschek, M., Da Costa, C., Iwata, O., Galiano, M., Hristova, M., et al. (2004). The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron, 43, 57–67.CrossRefPubMed
Zurück zum Zitat Relaix, F., & Zammit, P. S. (2012). Satellite cells are essential for skeletal muscle regeneration: The cell on the edge returns centre stage. Development, 139, 2845–2856.CrossRefPubMed Relaix, F., & Zammit, P. S. (2012). Satellite cells are essential for skeletal muscle regeneration: The cell on the edge returns centre stage. Development, 139, 2845–2856.CrossRefPubMed
Zurück zum Zitat Seijffers, R., Mills, C. D., & Woolf, C. J. (2007). ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27, 7911–7920.CrossRef Seijffers, R., Mills, C. D., & Woolf, C. J. (2007). ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27, 7911–7920.CrossRef
Zurück zum Zitat Seitz, M., Grosheva, M., Skouras, E., Angelova, S. K., Ankerne, J., Jungnickel, J., et al. (2011). Poor functional recovery and muscle polyinnervation after facial nerve injury in fibroblast growth factor-2-/- mice can be improved by manual stimulation of denervated vibrissal muscles. Neuroscience, 182, 241–247.CrossRefPubMed Seitz, M., Grosheva, M., Skouras, E., Angelova, S. K., Ankerne, J., Jungnickel, J., et al. (2011). Poor functional recovery and muscle polyinnervation after facial nerve injury in fibroblast growth factor-2-/- mice can be improved by manual stimulation of denervated vibrissal muscles. Neuroscience, 182, 241–247.CrossRefPubMed
Zurück zum Zitat Skouras, E., Ozsoy, U., Sarikcioglu, L., & Angelov, D. N. (2011). Intrinsic and therapeutic factors determining the recovery of motor function after peripheral nerve transection. Annals of anatomy = Anatomischer Anzeiger: Official Organ of the Anatomische Gesellschaft, 193(303), 286–303.CrossRef Skouras, E., Ozsoy, U., Sarikcioglu, L., & Angelov, D. N. (2011). Intrinsic and therapeutic factors determining the recovery of motor function after peripheral nerve transection. Annals of anatomy = Anatomischer Anzeiger: Official Organ of the Anatomische Gesellschaft, 193(303), 286–303.CrossRef
Zurück zum Zitat Stern, S., Haverkamp, S., Sinske, D., Tedeschi, A., Naumann, U., Di Giovanni, S., et al. (2013). The transcription factor serum response factor stimulates axon regeneration through cytoplasmic localization and cofilin interaction. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 18836–18848.CrossRef Stern, S., Haverkamp, S., Sinske, D., Tedeschi, A., Naumann, U., Di Giovanni, S., et al. (2013). The transcription factor serum response factor stimulates axon regeneration through cytoplasmic localization and cofilin interaction. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33, 18836–18848.CrossRef
Zurück zum Zitat Stern, S., Sinske, D., & Knoll, B. (2012). Serum response factor modulates neuron survival during peripheral axon injury. Journal of Neuroinflammation, 9, 78.CrossRefPubMedPubMedCentral Stern, S., Sinske, D., & Knoll, B. (2012). Serum response factor modulates neuron survival during peripheral axon injury. Journal of Neuroinflammation, 9, 78.CrossRefPubMedPubMedCentral
Zurück zum Zitat Takeoka, A., Vollenweider, I., Courtine, G., & Arber, S. (2014). Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell, 159, 1626–1639.CrossRefPubMed Takeoka, A., Vollenweider, I., Courtine, G., & Arber, S. (2014). Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury. Cell, 159, 1626–1639.CrossRefPubMed
Zurück zum Zitat Tedeschi, A. (2011). Tuning the orchestra: Transcriptional pathways controlling axon regeneration. Frontiers in Molecular Neuroscience, 4, 60.PubMed Tedeschi, A. (2011). Tuning the orchestra: Transcriptional pathways controlling axon regeneration. Frontiers in Molecular Neuroscience, 4, 60.PubMed
Zurück zum Zitat van Kesteren, R. E., Mason, M. R., Macgillavry, H. D., Smit, A. B., & Verhaagen, J. (2011). A gene network perspective on axonal regeneration. Frontiers in Molecular Neuroscience, 4, 46.PubMedPubMedCentral van Kesteren, R. E., Mason, M. R., Macgillavry, H. D., Smit, A. B., & Verhaagen, J. (2011). A gene network perspective on axonal regeneration. Frontiers in Molecular Neuroscience, 4, 46.PubMedPubMedCentral
Zurück zum Zitat Wood, M. D., & Mackinnon, S. E. (2015). Pathways regulating modality-specific axonal regeneration in peripheral nerve. Experimental Neurology, 265, 171–175.CrossRefPubMedPubMedCentral Wood, M. D., & Mackinnon, S. E. (2015). Pathways regulating modality-specific axonal regeneration in peripheral nerve. Experimental Neurology, 265, 171–175.CrossRefPubMedPubMedCentral
Metadaten
Titel
Functional and Molecular Characterization of a Novel Traumatic Peripheral Nerve–Muscle Injury Model
verfasst von
Renate Wanner
Manuel Gey
Alireza Abaei
Daniela Warnecke
Luisa de Roy
Lutz Dürselen
Volker Rasche
Bernd Knöll
Publikationsdatum
08.07.2017
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 2-3/2017
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-017-8450-1

Weitere Artikel der Ausgabe 2-3/2017

NeuroMolecular Medicine 2-3/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.