Skip to main content
Erschienen in: Brain Structure and Function 6/2022

06.06.2022 | Original Article

Functional individual variability development of the neonatal brain

verfasst von: Wenjian Gao, Ziyi Huang, Wenfei Ou, Xiaoqian Tang, Wanying Lv, Jingxin Nie

Erschienen in: Brain Structure and Function | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Individual variability in cognition and behavior results from the differences in brain structure and function that have already emerged before birth. However, little is known about individual variability in brain functional architecture at local level in neonates which is of great significance to explore owing to largely undeveloped long-range functional connectivity and segregated functions in early brain development. To address this, resting-state fMRI data of 163 neonates ranged from 32 to 45 postconceptional weeks (PCW) were used in this study, and various functional features including functional parcellation similarity, local brain activity and local functional connectivity were used to characterize individual functional variability. We observed significantly higher local functional individual variability in superior parietal, sensorimotor, and visual cortex, and lower variability in the frontal, insula and cingulate cortex relative to other regions within each hemisphere. The mean local functional individual variability significantly increased with age, and the age effect was found larger in brain regions such as the occipital, temporal, prefrontal and parietal cortex. Our findings promote the understanding of brain plasticity and regional differential maturation in the early stage.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Batalle D, Edwards AD, O’Muircheartaigh J (2018) Annual research review: not just a small adult brain: understanding later neurodevelopment through imaging the neonatal brain. J Child Psychol Psychiatry 59(4):350–371PubMedCrossRef Batalle D, Edwards AD, O’Muircheartaigh J (2018) Annual research review: not just a small adult brain: understanding later neurodevelopment through imaging the neonatal brain. J Child Psychol Psychiatry 59(4):350–371PubMedCrossRef
Zurück zum Zitat Boerwinkle VL, Cediel EG, Mirea L, Williams K, Kerrigan JF, Lam S et al (2019) Network-targeted approach and postoperative resting-state functional magnetic resonance imaging are associated with seizure outcome. Ann Neurol 86(3):344–356PubMedCrossRef Boerwinkle VL, Cediel EG, Mirea L, Williams K, Kerrigan JF, Lam S et al (2019) Network-targeted approach and postoperative resting-state functional magnetic resonance imaging are associated with seizure outcome. Ann Neurol 86(3):344–356PubMedCrossRef
Zurück zum Zitat Bouyssi-Kobar M, De Asis-Cruz J, Murnick J, Chang T, Limperopoulos C (2019) Altered functional brain network integration, segregation, and modularity in infants born very preterm at term-equivalent age. J Pediatr 213(13–21):e11 Bouyssi-Kobar M, De Asis-Cruz J, Murnick J, Chang T, Limperopoulos C (2019) Altered functional brain network integration, segregation, and modularity in infants born very preterm at term-equivalent age. J Pediatr 213(13–21):e11
Zurück zum Zitat Burkhalter A (1993) Development of forward and feedback connections between areas V1 and V2 of human visual cortex. Cereb Cortex 3(5):476–487PubMedCrossRef Burkhalter A (1993) Development of forward and feedback connections between areas V1 and V2 of human visual cortex. Cereb Cortex 3(5):476–487PubMedCrossRef
Zurück zum Zitat Cao M, He Y, Dai Z, Liao X, Jeon T, Ouyang M et al (2017a) Early development of functional network segregation revealed by connectomic analysis of the preterm human brain. Cereb Cortex 27(3):1949–1963PubMed Cao M, He Y, Dai Z, Liao X, Jeon T, Ouyang M et al (2017a) Early development of functional network segregation revealed by connectomic analysis of the preterm human brain. Cereb Cortex 27(3):1949–1963PubMed
Zurück zum Zitat Cao M, He Y, Dai Z, Liao X, Jeon T, Ouyang M et al (2017b) Early development of functional network segregation revealed by connectomic analysis of the preterm human brain. Cereb Cortex 27(3):1949–1963PubMed Cao M, He Y, Dai Z, Liao X, Jeon T, Ouyang M et al (2017b) Early development of functional network segregation revealed by connectomic analysis of the preterm human brain. Cereb Cortex 27(3):1949–1963PubMed
Zurück zum Zitat Craddock RC, James GA, Holtzheimer PE III, Hu XP, Mayberg HS (2012) A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33(8):1914–1928PubMedCrossRef Craddock RC, James GA, Holtzheimer PE III, Hu XP, Mayberg HS (2012) A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp 33(8):1914–1928PubMedCrossRef
Zurück zum Zitat Doria V, Beckmann CF, Arichi T, Merchant N, Groppo M, Turkheimer FE et al (2010) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci 107(46):20015–20020PubMedPubMedCentralCrossRef Doria V, Beckmann CF, Arichi T, Merchant N, Groppo M, Turkheimer FE et al (2010) Emergence of resting state networks in the preterm human brain. Proc Natl Acad Sci 107(46):20015–20020PubMedPubMedCentralCrossRef
Zurück zum Zitat Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y et al (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28–38PubMedCrossRef Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y et al (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28–38PubMedCrossRef
Zurück zum Zitat Fitzgibbon SP, Harrison SJ, Jenkinson M, Baxter L, Robinson EC, Bastiani M et al (2020) The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants. Neuroimage 223:117303PubMedCrossRef Fitzgibbon SP, Harrison SJ, Jenkinson M, Baxter L, Robinson EC, Bastiani M et al (2020) The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants. Neuroimage 223:117303PubMedCrossRef
Zurück zum Zitat Gao W, Elton A, Zhu H, Alcauter S, Smith JK, Gilmore JH, Lin W (2014) Intersubject variability of and genetic effects on the brain’s functional connectivity during infancy. J Neurosci 34(34):11288–11296PubMedPubMedCentralCrossRef Gao W, Elton A, Zhu H, Alcauter S, Smith JK, Gilmore JH, Lin W (2014) Intersubject variability of and genetic effects on the brain’s functional connectivity during infancy. J Neurosci 34(34):11288–11296PubMedPubMedCentralCrossRef
Zurück zum Zitat Gao W, Alcauter S, Elton A, Hernandez-Castillo CR, Smith JK, Ramirez J, Lin W (2015) Functional network development during the first year: relative sequence and socioeconomic correlations. Cereb Cortex 25(9):2919–2928PubMedCrossRef Gao W, Alcauter S, Elton A, Hernandez-Castillo CR, Smith JK, Ramirez J, Lin W (2015) Functional network development during the first year: relative sequence and socioeconomic correlations. Cereb Cortex 25(9):2919–2928PubMedCrossRef
Zurück zum Zitat Geerligs L, Tsvetanov KA, Henson RN (2017) Challenges in measuring individual differences in functional connectivity using fMRI: the case of healthy aging. Hum Brain Mapp 38(8):4125–4156PubMedPubMedCentralCrossRef Geerligs L, Tsvetanov KA, Henson RN (2017) Challenges in measuring individual differences in functional connectivity using fMRI: the case of healthy aging. Hum Brain Mapp 38(8):4125–4156PubMedPubMedCentralCrossRef
Zurück zum Zitat Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ et al (2010) White matter maturation reshapes structural connectivity in the late developing human brain. Proc Natl Acad Sci 107(44):19067–19072PubMedPubMedCentralCrossRef Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ et al (2010) White matter maturation reshapes structural connectivity in the late developing human brain. Proc Natl Acad Sci 107(44):19067–19072PubMedPubMedCentralCrossRef
Zurück zum Zitat Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29(6):671–682PubMedCrossRef Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC, Balkin TJ, Duyn JH (2008) Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum Brain Mapp 29(6):671–682PubMedCrossRef
Zurück zum Zitat Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci 106(27):11376–11381PubMedPubMedCentralCrossRef Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH (2009) Decoupling of the brain’s default mode network during deep sleep. Proc Natl Acad Sci 106(27):11376–11381PubMedPubMedCentralCrossRef
Zurück zum Zitat Huang H, Shu N, Mishra V, Jeon T, Chalak L, Wang ZJ et al (2015) Development of human brain structural networks through infancy and childhood. Cereb Cortex 25(5):1389–1404PubMedCrossRef Huang H, Shu N, Mishra V, Jeon T, Chalak L, Wang ZJ et al (2015) Development of human brain structural networks through infancy and childhood. Cereb Cortex 25(5):1389–1404PubMedCrossRef
Zurück zum Zitat Keunen K, Counsell SJ, Benders MJ (2017) The emergence of functional architecture during early brain development. Neuroimage 160:2–14PubMedCrossRef Keunen K, Counsell SJ, Benders MJ (2017) The emergence of functional architecture during early brain development. Neuroimage 160:2–14PubMedCrossRef
Zurück zum Zitat Kostović I, Jovanov-Milošević N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Paper presented at the seminars in fetal and neonatal medicine Kostović I, Jovanov-Milošević N (2006) The development of cerebral connections during the first 20–45 weeks’ gestation. Paper presented at the seminars in fetal and neonatal medicine
Zurück zum Zitat Kostović I, Judaš M (2006) Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol 48(5):388–393PubMedCrossRef Kostović I, Judaš M (2006) Prolonged coexistence of transient and permanent circuitry elements in the developing cerebral cortex of fetuses and preterm infants. Dev Med Child Neurol 48(5):388–393PubMedCrossRef
Zurück zum Zitat Liu W-C, Flax JF, Guise KG, Sukul V, Benasich AA (2008) Functional connectivity of the sensorimotor area in naturally sleeping infants. Brain Res 1223:42–49PubMedCrossRef Liu W-C, Flax JF, Guise KG, Sukul V, Benasich AA (2008) Functional connectivity of the sensorimotor area in naturally sleeping infants. Brain Res 1223:42–49PubMedCrossRef
Zurück zum Zitat Ma L, Tian L, Hu T, Jiang T, Zuo N (2021) Development of individual variability in brain functional connectivity and capability across the adult lifespan. Cereb Cortex 31:3925PubMedCrossRef Ma L, Tian L, Hu T, Jiang T, Zuo N (2021) Development of individual variability in brain functional connectivity and capability across the adult lifespan. Cereb Cortex 31:3925PubMedCrossRef
Zurück zum Zitat Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J et al (2018) The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 173:88–112PubMedCrossRef Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J et al (2018) The developing human connectome project: a minimal processing pipeline for neonatal cortical surface reconstruction. Neuroimage 173:88–112PubMedCrossRef
Zurück zum Zitat Mueller S, Wang D, Fox MD, Yeo BT, Sepulcre J, Sabuncu MR et al (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77(3):586–595PubMedPubMedCentralCrossRef Mueller S, Wang D, Fox MD, Yeo BT, Sepulcre J, Sabuncu MR et al (2013) Individual variability in functional connectivity architecture of the human brain. Neuron 77(3):586–595PubMedPubMedCentralCrossRef
Zurück zum Zitat Rajasilta O, Tuulari JJ, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J et al (2020) Resting-state networks of the neonate brain identified using independent component analysis. Dev Neurobiol 80(3–4):111–125PubMedCrossRef Rajasilta O, Tuulari JJ, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J et al (2020) Resting-state networks of the neonate brain identified using independent component analysis. Dev Neurobiol 80(3–4):111–125PubMedCrossRef
Zurück zum Zitat Sepulcre J, Liu H, Talukdar T, Martincorena I, Yeo BT, Buckner RL (2010) The organization of local and distant functional connectivity in the human brain. PLoS Comput Biol 6(6):e1000808PubMedPubMedCentralCrossRef Sepulcre J, Liu H, Talukdar T, Martincorena I, Yeo BT, Buckner RL (2010) The organization of local and distant functional connectivity in the human brain. PLoS Comput Biol 6(6):e1000808PubMedPubMedCentralCrossRef
Zurück zum Zitat Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRef Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905CrossRef
Zurück zum Zitat Shi F, Salzwedel AP, Lin W, Gilmore JH, Gao W (2018) Functional brain parcellations of the infant brain and the associated developmental trends. Cereb Cortex 28(4):1358–1368PubMedCrossRef Shi F, Salzwedel AP, Lin W, Gilmore JH, Gao W (2018) Functional brain parcellations of the infant brain and the associated developmental trends. Cereb Cortex 28(4):1358–1368PubMedCrossRef
Zurück zum Zitat Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62(1):1–35PubMedCrossRef Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62(1):1–35PubMedCrossRef
Zurück zum Zitat Smyser CD, Snyder AZ, Neil JJ (2011) Functional connectivity MRI in infants: exploration of the functional organization of the developing brain. Neuroimage 56(3):1437–1452PubMedCrossRef Smyser CD, Snyder AZ, Neil JJ (2011) Functional connectivity MRI in infants: exploration of the functional organization of the developing brain. Neuroimage 56(3):1437–1452PubMedCrossRef
Zurück zum Zitat Smyser CD, Neil JJ (2015) Use of resting-state functional MRI to study brain development and injury in neonates. Paper presented at the Seminars in Perinatology Smyser CD, Neil JJ (2015) Use of resting-state functional MRI to study brain development and injury in neonates. Paper presented at the Seminars in Perinatology
Zurück zum Zitat Stoecklein S, Hilgendorff A, Li M, Förster K, Flemmer AW, Galiè F et al (2020) Variable functional connectivity architecture of the preterm human brain: impact of developmental cortical expansion and maturation. Proc Natl Acad Sci 117(2):1201–1206PubMedCrossRef Stoecklein S, Hilgendorff A, Li M, Förster K, Flemmer AW, Galiè F et al (2020) Variable functional connectivity architecture of the preterm human brain: impact of developmental cortical expansion and maturation. Proc Natl Acad Sci 117(2):1201–1206PubMedCrossRef
Zurück zum Zitat Thomason ME, Grove LE, Lozon TA Jr, Vila AM, Ye Y, Nye MJ et al (2015) Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero. Dev Cogn Neurosci 11:96–104PubMedCrossRef Thomason ME, Grove LE, Lozon TA Jr, Vila AM, Ye Y, Nye MJ et al (2015) Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero. Dev Cogn Neurosci 11:96–104PubMedCrossRef
Zurück zum Zitat Vértes PE, Bullmore ET (2015) Annual research review: growth connectomics–the organization and reorganization of brain networks during normal and abnormal development. J Child Psychol Psychiatry 56(3):299–320PubMedCrossRef Vértes PE, Bullmore ET (2015) Annual research review: growth connectomics–the organization and reorganization of brain networks during normal and abnormal development. J Child Psychol Psychiatry 56(3):299–320PubMedCrossRef
Zurück zum Zitat Wang Q, Xu Y, Zhao T, Xu Z, He Y, Liao X (2021) Individual uniqueness in the neonatal functional connectome. Cereb Cortex 31:3701PubMedCrossRef Wang Q, Xu Y, Zhao T, Xu Z, He Y, Liao X (2021) Individual uniqueness in the neonatal functional connectome. Cereb Cortex 31:3701PubMedCrossRef
Zurück zum Zitat Xu Y, Cao M, Liao X, Xia M, Wang X, Jeon T et al (2019) Development and emergence of individual variability in the functional connectivity architecture of the preterm human brain. Cereb Cortex 29(10):4208–4222PubMedCrossRef Xu Y, Cao M, Liao X, Xia M, Wang X, Jeon T et al (2019) Development and emergence of individual variability in the functional connectivity architecture of the preterm human brain. Cereb Cortex 29(10):4208–4222PubMedCrossRef
Zurück zum Zitat Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol
Zurück zum Zitat Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22(1):394–400PubMedCrossRef Zang Y, Jiang T, Lu Y, He Y, Tian L (2004) Regional homogeneity approach to fMRI data analysis. Neuroimage 22(1):394–400PubMedCrossRef
Zurück zum Zitat Zang Y, He Y, Zhu C, Cao Q, Sui M-Q, Liang M et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29(2):83–91PubMedCrossRef Zang Y, He Y, Zhu C, Cao Q, Sui M-Q, Liang M et al (2007) Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev 29(2):83–91PubMedCrossRef
Zurück zum Zitat Zhang H, Shen D, Lin W (2019) Resting-state functional MRI studies on infant brains: a decade of gap-filling efforts. Neuroimage 185:664–684PubMedCrossRef Zhang H, Shen D, Lin W (2019) Resting-state functional MRI studies on infant brains: a decade of gap-filling efforts. Neuroimage 185:664–684PubMedCrossRef
Zurück zum Zitat Zhao J, Tang C, Nie J (2020) Functional parcellation of individual cerebral cortex based on functional mri. Neuroinformatics 18(2):295–306PubMedCrossRef Zhao J, Tang C, Nie J (2020) Functional parcellation of individual cerebral cortex based on functional mri. Neuroinformatics 18(2):295–306PubMedCrossRef
Zurück zum Zitat Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141PubMedPubMedCentralCrossRef Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J et al (2008) An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods 172(1):137–141PubMedPubMedCentralCrossRef
Zurück zum Zitat Zuo X-N, He Y, Betzel RF, Colcombe S, Sporns O, Milham MP (2017) Human connectomics across the life span. Trends Cogn Sci 21(1):32–45PubMedCrossRef Zuo X-N, He Y, Betzel RF, Colcombe S, Sporns O, Milham MP (2017) Human connectomics across the life span. Trends Cogn Sci 21(1):32–45PubMedCrossRef
Metadaten
Titel
Functional individual variability development of the neonatal brain
verfasst von
Wenjian Gao
Ziyi Huang
Wenfei Ou
Xiaoqian Tang
Wanying Lv
Jingxin Nie
Publikationsdatum
06.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 6/2022
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-022-02516-8

Weitere Artikel der Ausgabe 6/2022

Brain Structure and Function 6/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.