Skip to main content
Erschienen in: Abdominal Radiology 10/2018

19.03.2018

Functional MRI in transplanted kidneys

verfasst von: Alexandra Ljimani, Hans-Jörg Wittsack, Rotem S. Lanzman

Erschienen in: Abdominal Radiology | Ausgabe 10/2018

Einloggen, um Zugang zu erhalten

Abstract

Renal transplantation is the therapy of choice for patients with end-stage renal diseases. Improvement of immunosuppressive therapy has significantly increased the half-life of renal allografts over the past decade. Nevertheless, complications can still arise. An early detection of allograft dysfunction is mandatory for a good outcome. New advances in magnetic resonance imaging (MRI) have enabled the noninvasive assessment of different functional renal parameters in addition to anatomic imaging. Most of these techniques were widely tested on renal allografts in past decades and a lot of clinical data are available. The following review summarizes the comprehensive, functional MRI techniques for the noninvasive assessment of renal allograft function and highlights their potential for the investigations of different etiologies of graft dysfunction.
Literatur
1.
Zurück zum Zitat Lodhi SA, Meier-Kriesche H-U (2011) Kidney allograft survival: the long and short of it. Nephrol Dial Transplant 26(1):15–17PubMedCrossRef Lodhi SA, Meier-Kriesche H-U (2011) Kidney allograft survival: the long and short of it. Nephrol Dial Transplant 26(1):15–17PubMedCrossRef
2.
Zurück zum Zitat Chandraker A (1999) Diagnostic techniques in the work-up of renal allograft dysfunction–an update. Curr Opin Nephrol Hypertens 8(6):723–728PubMedCrossRef Chandraker A (1999) Diagnostic techniques in the work-up of renal allograft dysfunction–an update. Curr Opin Nephrol Hypertens 8(6):723–728PubMedCrossRef
3.
Zurück zum Zitat Furness PN, et al. (2003) Protocol biopsy of the stable renal transplant: a multicenter study of methods and complication rates. Transplantation 76(6):969PubMedCrossRef Furness PN, et al. (2003) Protocol biopsy of the stable renal transplant: a multicenter study of methods and complication rates. Transplantation 76(6):969PubMedCrossRef
4.
Zurück zum Zitat Schwarz A, Gwinner W, Hiss M, et al. (2005) Safety and adequacy of renal transplant protocol biopsies. Am J Transplant 5(8):1992–1996PubMedCrossRef Schwarz A, Gwinner W, Hiss M, et al. (2005) Safety and adequacy of renal transplant protocol biopsies. Am J Transplant 5(8):1992–1996PubMedCrossRef
5.
Zurück zum Zitat Tøndel C, Vikse BE, Bostad L, Svarstad E (2012) Safety and complications of percutaneous kidney biopsies in 715 children and 8573 adults in Norway 1988-2010. Clin J Am Soc Nephrol CJASN 7(10):1591–1597PubMedCrossRef Tøndel C, Vikse BE, Bostad L, Svarstad E (2012) Safety and complications of percutaneous kidney biopsies in 715 children and 8573 adults in Norway 1988-2010. Clin J Am Soc Nephrol CJASN 7(10):1591–1597PubMedCrossRef
6.
Zurück zum Zitat Fang YC, Siegelman ES (2001) Complications of renal transplantation: MR findings. J Comput Assist Tomogr 25(6):836–842PubMedCrossRef Fang YC, Siegelman ES (2001) Complications of renal transplantation: MR findings. J Comput Assist Tomogr 25(6):836–842PubMedCrossRef
7.
Zurück zum Zitat Browne RFJ, Tuite DJ (2006) Imaging of the renal transplant: comparison of MRI with duplex sonography. Abdom Imaging 31(4):461–482PubMedCrossRef Browne RFJ, Tuite DJ (2006) Imaging of the renal transplant: comparison of MRI with duplex sonography. Abdom Imaging 31(4):461–482PubMedCrossRef
8.
Zurück zum Zitat Sharfuddin A (2014) Renal relevant radiology: imaging in kidney transplantation. Clin J Am Soc Nephrol CJASN 9(2):416–429PubMedCrossRef Sharfuddin A (2014) Renal relevant radiology: imaging in kidney transplantation. Clin J Am Soc Nephrol CJASN 9(2):416–429PubMedCrossRef
9.
Zurück zum Zitat Marckmann P, Skov L, Rossen K, et al. (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17(9):2359–2362PubMedCrossRef Marckmann P, Skov L, Rossen K, et al. (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17(9):2359–2362PubMedCrossRef
10.
Zurück zum Zitat Grobner T (2006) Gadolinium - a spezific trigger for the development of nephrogenic fibrosis dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108PubMedCrossRef Grobner T (2006) Gadolinium - a spezific trigger for the development of nephrogenic fibrosis dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108PubMedCrossRef
11.
Zurück zum Zitat Thomsen HS, Morcos SK, Dawson P (2006) Is there a casual relation between the administration of gadolinium based contrast media and the development of nephrogenic systemic fibrosis (NSF)? Clin Radiol 61(11):905–906PubMedCrossRef Thomsen HS, Morcos SK, Dawson P (2006) Is there a casual relation between the administration of gadolinium based contrast media and the development of nephrogenic systemic fibrosis (NSF)? Clin Radiol 61(11):905–906PubMedCrossRef
12.
Zurück zum Zitat Roditi G, Maki JH, Oliveira G, Michaely HJ (2009) Renovascular imaging in the NSF Era. J Magn Reson Imaging 30(6):1323–1334PubMedCrossRef Roditi G, Maki JH, Oliveira G, Michaely HJ (2009) Renovascular imaging in the NSF Era. J Magn Reson Imaging 30(6):1323–1334PubMedCrossRef
13.
Zurück zum Zitat McDonald RJ, et al. (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275(3):772–782PubMedCrossRef McDonald RJ, et al. (2015) Intracranial gadolinium deposition after contrast-enhanced MR imaging. Radiology 275(3):772–782PubMedCrossRef
14.
Zurück zum Zitat Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270(3):834–841PubMedCrossRef Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270(3):834–841PubMedCrossRef
15.
Zurück zum Zitat Kanda T, et al. (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275(3):803–809PubMedCrossRef Kanda T, et al. (2015) High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration. Radiology 275(3):803–809PubMedCrossRef
16.
Zurück zum Zitat Kanda T, et al. (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276(1):228–232PubMedCrossRef Kanda T, et al. (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiology 276(1):228–232PubMedCrossRef
17.
Zurück zum Zitat Errante Y, Cirimele V, Mallio CA, et al. (2014) Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest Radiol 49(10):685–690PubMedCrossRef Errante Y, Cirimele V, Mallio CA, et al. (2014) Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Invest Radiol 49(10):685–690PubMedCrossRef
18.
Zurück zum Zitat Grenier N, Basseau F, Ries M, et al. (2003) Functional MRI of the kidney. Abdom Imaging 28(2):164–175PubMedCrossRef Grenier N, Basseau F, Ries M, et al. (2003) Functional MRI of the kidney. Abdom Imaging 28(2):164–175PubMedCrossRef
19.
Zurück zum Zitat Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol 43(1):40–48PubMedCrossRef Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO (2008) MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol 43(1):40–48PubMedCrossRef
20.
Zurück zum Zitat Hackstein N, Kooijman H, Tomaselli S, Rau WS (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imaging JMRI 22(3):406–414PubMedCrossRef Hackstein N, Kooijman H, Tomaselli S, Rau WS (2005) Glomerular filtration rate measured using the Patlak plot technique and contrast-enhanced dynamic MRI with different amounts of gadolinium-DTPA. J Magn Reson Imaging JMRI 22(3):406–414PubMedCrossRef
21.
Zurück zum Zitat Bokacheva L, Rusinek H, Zhang JL, Chen Q, Lee VS (2009) Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J Magn Reson Imaging JMRI 29(2):371–382PubMedCrossRef Bokacheva L, Rusinek H, Zhang JL, Chen Q, Lee VS (2009) Estimates of glomerular filtration rate from MR renography and tracer kinetic models. J Magn Reson Imaging JMRI 29(2):371–382PubMedCrossRef
22.
Zurück zum Zitat Lee VS, et al. (2007) Renal function measurements from MR renography and a simplified multicompartmental model. Am J Physiol Renal Physiol 292(5):F1548–F1559PubMedCrossRef Lee VS, et al. (2007) Renal function measurements from MR renography and a simplified multicompartmental model. Am J Physiol Renal Physiol 292(5):F1548–F1559PubMedCrossRef
23.
Zurück zum Zitat Grenier N, et al. (2008) Measurement of glomerular filtration rate with magnetic resonance imaging: principles, limitations, and expectations. Semin Nucl Med 38(1):47–55PubMedCrossRef Grenier N, et al. (2008) Measurement of glomerular filtration rate with magnetic resonance imaging: principles, limitations, and expectations. Semin Nucl Med 38(1):47–55PubMedCrossRef
24.
Zurück zum Zitat Boss A, et al. (2007) Quantitative assessment of glomerular filtration rate with MR gadolinium slope clearance measurements: a phase I trial. Radiology 242(3):783–790PubMedCrossRef Boss A, et al. (2007) Quantitative assessment of glomerular filtration rate with MR gadolinium slope clearance measurements: a phase I trial. Radiology 242(3):783–790PubMedCrossRef
25.
Zurück zum Zitat Michaely HJ, Sourbron SP, Buettner C, et al. (2008) Temporal constraints in renal perfusion imaging with a 2-compartment model. Invest Radiol 43(2):120–128PubMedCrossRef Michaely HJ, Sourbron SP, Buettner C, et al. (2008) Temporal constraints in renal perfusion imaging with a 2-compartment model. Invest Radiol 43(2):120–128PubMedCrossRef
26.
Zurück zum Zitat Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging JMRI 18(6):714–725PubMedCrossRef Hackstein N, Heckrodt J, Rau WS (2003) Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging JMRI 18(6):714–725PubMedCrossRef
27.
Zurück zum Zitat Buckley DL, Shurrab AE, Cheung CM, et al. (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging JMRI 24(5):1117–1123PubMedCrossRef Buckley DL, Shurrab AE, Cheung CM, et al. (2006) Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging JMRI 24(5):1117–1123PubMedCrossRef
28.
Zurück zum Zitat Baumann D, Rudin M (2000) Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI. Magn Reson Imaging 18(5):587–595PubMedCrossRef Baumann D, Rudin M (2000) Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI. Magn Reson Imaging 18(5):587–595PubMedCrossRef
29.
Zurück zum Zitat Zhang JL, et al. (2008) Functional assessment of the kidney from magnetic resonance and computed tomography renography: Impulse retention approach to a multicompartment model. Magn Reson Med 59(2):278–288PubMedPubMedCentralCrossRef Zhang JL, et al. (2008) Functional assessment of the kidney from magnetic resonance and computed tomography renography: Impulse retention approach to a multicompartment model. Magn Reson Med 59(2):278–288PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Szolar DH, et al. (1997) Functional magnetic resonance imaging of human renal allografts during the post-transplant period: preliminary observations. Magn Reson Imaging 15(7):727–735PubMedCrossRef Szolar DH, et al. (1997) Functional magnetic resonance imaging of human renal allografts during the post-transplant period: preliminary observations. Magn Reson Imaging 15(7):727–735PubMedCrossRef
31.
Zurück zum Zitat Yamamoto A, et al. (2011) Quantitative evaluation of acute renal transplant dysfunction with low-dose three-dimensional MR renography. Radiology 260(3):781–789PubMedPubMedCentralCrossRef Yamamoto A, et al. (2011) Quantitative evaluation of acute renal transplant dysfunction with low-dose three-dimensional MR renography. Radiology 260(3):781–789PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Wentland AL, Sadowski EA, Djamali A, et al. (2009) Quantitative MR measures of intrarenal perfusion in the assessment of transplanted kidneys: initial experience. Acad Radiol 16(9):1077–1085PubMedPubMedCentralCrossRef Wentland AL, Sadowski EA, Djamali A, et al. (2009) Quantitative MR measures of intrarenal perfusion in the assessment of transplanted kidneys: initial experience. Acad Radiol 16(9):1077–1085PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Agildere AM, Tarhan NC, Bozdagi G, et al. (1999) Correlation of quantitative dynamic magnetic resonance imaging findings with pathology results in renal transplants: a preliminary report. Transplant Proc 31(8):3312–3316PubMedCrossRef Agildere AM, Tarhan NC, Bozdagi G, et al. (1999) Correlation of quantitative dynamic magnetic resonance imaging findings with pathology results in renal transplants: a preliminary report. Transplant Proc 31(8):3312–3316PubMedCrossRef
34.
Zurück zum Zitat Lee VS, Rusinek H, Noz ME, et al. (2003) Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology 227(1):289–294PubMedCrossRef Lee VS, Rusinek H, Noz ME, et al. (2003) Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology 227(1):289–294PubMedCrossRef
35.
Zurück zum Zitat Huber A, et al. (2001) Contrast-enhanced MR angiography in patients after kidney transplantation. Eur Radiol 11(12):2488–2495PubMedCrossRef Huber A, et al. (2001) Contrast-enhanced MR angiography in patients after kidney transplantation. Eur Radiol 11(12):2488–2495PubMedCrossRef
36.
Zurück zum Zitat Gufler H, Weimer W, Neu K, Wagner S, Rau WS (2009) Contrast enhanced MR angiography with parallel imaging in the early period after renal transplantation. J Magn Reson Imaging JMRI 29(4):909–916PubMedCrossRef Gufler H, Weimer W, Neu K, Wagner S, Rau WS (2009) Contrast enhanced MR angiography with parallel imaging in the early period after renal transplantation. J Magn Reson Imaging JMRI 29(4):909–916PubMedCrossRef
37.
Zurück zum Zitat Lanzman RS, et al. (2009) ECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment of transplant renal arteries: comparison with DSA. Radiology 252(3):914–921PubMedCrossRef Lanzman RS, et al. (2009) ECG-gated nonenhanced 3D steady-state free precession MR angiography in assessment of transplant renal arteries: comparison with DSA. Radiology 252(3):914–921PubMedCrossRef
38.
Zurück zum Zitat Liu X, et al. (2009) Renal transplant: nonenhanced renal MR angiography with magnetization-prepared steady-state free precession. Radiology 251(2):535–542PubMedCrossRef Liu X, et al. (2009) Renal transplant: nonenhanced renal MR angiography with magnetization-prepared steady-state free precession. Radiology 251(2):535–542PubMedCrossRef
39.
Zurück zum Zitat Ismaeel MM, Abdel-Hamid A (2011) Role of high resolution contrast-enhanced magnetic resonance angiography (HR CeMRA) in management of arterial complications of the renal transplant. Eur J Radiol 79(2):e122–e127PubMedCrossRef Ismaeel MM, Abdel-Hamid A (2011) Role of high resolution contrast-enhanced magnetic resonance angiography (HR CeMRA) in management of arterial complications of the renal transplant. Eur J Radiol 79(2):e122–e127PubMedCrossRef
40.
Zurück zum Zitat Bashir MR, Jaffe TA, Brennan TV, Patel UD, Ellis MJ (2013) Renal transplant imaging using magnetic resonance angiography with a nonnephrotoxic contrast agent. Transplantation 96(1):91–96PubMedCrossRef Bashir MR, Jaffe TA, Brennan TV, Patel UD, Ellis MJ (2013) Renal transplant imaging using magnetic resonance angiography with a nonnephrotoxic contrast agent. Transplantation 96(1):91–96PubMedCrossRef
41.
Zurück zum Zitat Hwang JK, et al. (2013) Contrast-enhanced magnetic resonance angiography in the early period after kidney transplantation. Transplant Proc 45(8):2925–2930PubMedCrossRef Hwang JK, et al. (2013) Contrast-enhanced magnetic resonance angiography in the early period after kidney transplantation. Transplant Proc 45(8):2925–2930PubMedCrossRef
42.
Zurück zum Zitat Tang H, et al. (2014) Depiction of transplant renal vascular anatomy and complications: unenhanced MR angiography by using spatial labeling with multiple inversion pulses. Radiology 271(3):879–887PubMedCrossRef Tang H, et al. (2014) Depiction of transplant renal vascular anatomy and complications: unenhanced MR angiography by using spatial labeling with multiple inversion pulses. Radiology 271(3):879–887PubMedCrossRef
43.
Zurück zum Zitat de Priester JA, et al. (2003) Automated quantitative evaluation of diseased and nondiseased renal transplants with MR renography. J Magn Reson Imaging JMRI 17(1):95–103PubMedCrossRef de Priester JA, et al. (2003) Automated quantitative evaluation of diseased and nondiseased renal transplants with MR renography. J Magn Reson Imaging JMRI 17(1):95–103PubMedCrossRef
44.
Zurück zum Zitat Loubeyre P, et al. (1994) Screening patients for renal artery stenosis: value of three-dimensional time-of-flight MR angiography. AJR Am J Roentgenol 162(4):847–852PubMedCrossRef Loubeyre P, et al. (1994) Screening patients for renal artery stenosis: value of three-dimensional time-of-flight MR angiography. AJR Am J Roentgenol 162(4):847–852PubMedCrossRef
45.
Zurück zum Zitat Fellner C, et al. (1995) Renal arteries: evaluation with optimized 2D and 3D time-of-flight MR angiography. Radiology 196(3):681–687PubMedCrossRef Fellner C, et al. (1995) Renal arteries: evaluation with optimized 2D and 3D time-of-flight MR angiography. Radiology 196(3):681–687PubMedCrossRef
46.
Zurück zum Zitat Fananapazir G, Bashir MR, Corwin MT, et al. (2017) Comparison of ferumoxytol-enhanced MRA with conventional angiography for assessment of severity of transplant renal artery stenosis. J Magn Reson Imaging 45(3):779–785PubMedCrossRef Fananapazir G, Bashir MR, Corwin MT, et al. (2017) Comparison of ferumoxytol-enhanced MRA with conventional angiography for assessment of severity of transplant renal artery stenosis. J Magn Reson Imaging 45(3):779–785PubMedCrossRef
47.
Zurück zum Zitat Corwin MT, Fananapazir G, Chaudhari AJ (2016) MR angiography of renal transplant vasculature with ferumoxytol: comparison of high-resolution steady-state and first-pass acquisitions. Acad Radiol 23(3):368–373PubMedCrossRef Corwin MT, Fananapazir G, Chaudhari AJ (2016) MR angiography of renal transplant vasculature with ferumoxytol: comparison of high-resolution steady-state and first-pass acquisitions. Acad Radiol 23(3):368–373PubMedCrossRef
48.
Zurück zum Zitat Notohamiprodjo M, Reiser MF, Sourbron SP (2010) Diffusion and perfusion of the kidney. Eur J Radiol 76(3):337–347PubMedCrossRef Notohamiprodjo M, Reiser MF, Sourbron SP (2010) Diffusion and perfusion of the kidney. Eur J Radiol 76(3):337–347PubMedCrossRef
49.
Zurück zum Zitat Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259(1):25–38PubMedCrossRef Thoeny HC, De Keyzer F (2011) Diffusion-weighted MR imaging of native and transplanted kidneys. Radiology 259(1):25–38PubMedCrossRef
50.
Zurück zum Zitat Le Bihan D, Breton E, Lallemand D, et al. (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(November):401–407PubMedCrossRef Le Bihan D, Breton E, Lallemand D, et al. (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(November):401–407PubMedCrossRef
51.
Zurück zum Zitat Le Bihan D, Breton E, Lallemand D, et al. (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505PubMedCrossRef Le Bihan D, Breton E, Lallemand D, et al. (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505PubMedCrossRef
52.
Zurück zum Zitat Eisenberger U, et al. (2010) Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 20(6):1374–1383PubMedCrossRef Eisenberger U, et al. (2010) Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging. Eur Radiol 20(6):1374–1383PubMedCrossRef
53.
Zurück zum Zitat Wittsack H, Lanzman RS, Mathys C, et al. (2010) Statistical evaluation of diffusion-weighted imaging of the human kidney. Magn Reson Med 64(2):616–622PubMed Wittsack H, Lanzman RS, Mathys C, et al. (2010) Statistical evaluation of diffusion-weighted imaging of the human kidney. Magn Reson Med 64(2):616–622PubMed
54.
Zurück zum Zitat Pentang G, Lanzman RS, Heusch P, Müller-Lutz A, Blondin D (2014) Diffusion kurtosis imaging of the human kidney: a feasibility study. Magn Reson Imaging 32:413–420PubMedCrossRef Pentang G, Lanzman RS, Heusch P, Müller-Lutz A, Blondin D (2014) Diffusion kurtosis imaging of the human kidney: a feasibility study. Magn Reson Imaging 32:413–420PubMedCrossRef
55.
Zurück zum Zitat Ljimani A, Lanzman RS, Müller-Lutz A, Antoch G, Wittsack H-J (2017) Non-gaussian diffusion evaluation of the human kidney by Padé exponent model. J Magn Reson Imaging Ljimani A, Lanzman RS, Müller-Lutz A, Antoch G, Wittsack H-J (2017) Non-gaussian diffusion evaluation of the human kidney by Padé exponent model. J Magn Reson Imaging
56.
Zurück zum Zitat Notohamiprodjo M, Dietrich O, Horger W, et al. (2010) Diffusion tensor imaging (DTI) of the Kidney at 3 tesla-feasibility, protocol evaluation and comparison to 1.5 Tesla. Invest Radiol 45(5):245–254PubMedCrossRef Notohamiprodjo M, Dietrich O, Horger W, et al. (2010) Diffusion tensor imaging (DTI) of the Kidney at 3 tesla-feasibility, protocol evaluation and comparison to 1.5 Tesla. Invest Radiol 45(5):245–254PubMedCrossRef
57.
Zurück zum Zitat Lanzman RS, et al. (2013) Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3T. Radiology 266(1):218–225PubMedCrossRef Lanzman RS, et al. (2013) Kidney transplant: functional assessment with diffusion-tensor MR imaging at 3T. Radiology 266(1):218–225PubMedCrossRef
58.
Zurück zum Zitat Le Bihan D, van Zijl P (2002) From the diffusion coefficient to the diffusion tensor. NMR Biomed 15:431–434PubMedCrossRef Le Bihan D, van Zijl P (2002) From the diffusion coefficient to the diffusion tensor. NMR Biomed 15:431–434PubMedCrossRef
59.
Zurück zum Zitat Ries M, Jones RA, Basseau F, Moonen CTW, Grenier N (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14(1):42–49PubMedCrossRef Ries M, Jones RA, Basseau F, Moonen CTW, Grenier N (2001) Diffusion tensor MRI of the human kidney. J Magn Reson Imaging 14(1):42–49PubMedCrossRef
60.
Zurück zum Zitat Notohamiprodjo M, et al. (2008) Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Invest Radiol 43(10):677–685PubMedCrossRef Notohamiprodjo M, et al. (2008) Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Invest Radiol 43(10):677–685PubMedCrossRef
61.
Zurück zum Zitat Blondin D, et al. (2009) Functional MRI of transplanted kidneys using diffusion-weighted imaging. ROFO Fortschr Geb Rontgenstr Nuklearmed 181(12):1162–1167PubMedCrossRef Blondin D, et al. (2009) Functional MRI of transplanted kidneys using diffusion-weighted imaging. ROFO Fortschr Geb Rontgenstr Nuklearmed 181(12):1162–1167PubMedCrossRef
62.
Zurück zum Zitat Blondin D, et al. (2011) Diffusion-attenuated MRI signal of renal allografts: comparison of two different statistical models. AJR Am J Roentgenol 196(6):W701–W705PubMedCrossRef Blondin D, et al. (2011) Diffusion-attenuated MRI signal of renal allografts: comparison of two different statistical models. AJR Am J Roentgenol 196(6):W701–W705PubMedCrossRef
63.
Zurück zum Zitat Eisenberger U, Binser T, Thoeny HC, et al. (2014) Living renal allograft transplantation: diffusion-weighted MR imaging in longitudinal follow-up of the donated and the remaining kidney. Radiology 270(3):800–808PubMedCrossRef Eisenberger U, Binser T, Thoeny HC, et al. (2014) Living renal allograft transplantation: diffusion-weighted MR imaging in longitudinal follow-up of the donated and the remaining kidney. Radiology 270(3):800–808PubMedCrossRef
64.
Zurück zum Zitat Hueper K, et al. (2016) Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging JMRI 44(1):112–121PubMedCrossRef Hueper K, et al. (2016) Diffusion-Weighted imaging and diffusion tensor imaging detect delayed graft function and correlate with allograft fibrosis in patients early after kidney transplantation. J Magn Reson Imaging JMRI 44(1):112–121PubMedCrossRef
65.
Zurück zum Zitat Park SY, Kim CK, Park BK, et al. (2014) Assessment of early renal allograft dysfunction with blood oxygenation level-dependent MRI and diffusion-weighted imaging. Eur J Radiol 83(12):2114–2121PubMedCrossRef Park SY, Kim CK, Park BK, et al. (2014) Assessment of early renal allograft dysfunction with blood oxygenation level-dependent MRI and diffusion-weighted imaging. Eur J Radiol 83(12):2114–2121PubMedCrossRef
66.
Zurück zum Zitat Kaul A, et al. (2014) Assessment of allograft function using diffusion-weighted magnetic resonance imaging in kidney transplant patients. Saudi J Kidney Dis Transplant 25(6):1143–1147CrossRef Kaul A, et al. (2014) Assessment of allograft function using diffusion-weighted magnetic resonance imaging in kidney transplant patients. Saudi J Kidney Dis Transplant 25(6):1143–1147CrossRef
67.
Zurück zum Zitat Steiger P, Barbieri S, Kruse A, Ith M, Thoeny HC (2017) Selection for biopsy of kidney transplant patients by diffusion-weighted MRI. Eur Radiol (2017) Steiger P, Barbieri S, Kruse A, Ith M, Thoeny HC (2017) Selection for biopsy of kidney transplant patients by diffusion-weighted MRI. Eur Radiol (2017)
68.
Zurück zum Zitat Fan W, et al. (2016) Assessment of renal allograft function early after transplantation with isotropic resolution diffusion tensor imaging. Eur Radiol 26(2):567–575PubMedCrossRef Fan W, et al. (2016) Assessment of renal allograft function early after transplantation with isotropic resolution diffusion tensor imaging. Eur Radiol 26(2):567–575PubMedCrossRef
69.
Zurück zum Zitat Hueper K, et al. (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction—initial results. Eur Radiol 21:2427–2433PubMedCrossRef Hueper K, et al. (2011) Diffusion tensor imaging and tractography for assessment of renal allograft dysfunction—initial results. Eur Radiol 21:2427–2433PubMedCrossRef
70.
Zurück zum Zitat Martirosian P, et al. (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 37(1):52–64CrossRef Martirosian P, et al. (2010) Magnetic resonance perfusion imaging without contrast media. Eur J Nucl Med Mol Imaging 37(1):52–64CrossRef
71.
Zurück zum Zitat Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23(1):37–45PubMedCrossRef Detre JA, Leigh JS, Williams DS, Koretsky AP (1992) Perfusion imaging. Magn Reson Med 23(1):37–45PubMedCrossRef
72.
Zurück zum Zitat Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10(4–5):237–249PubMedCrossRef Wong EC, Buxton RB, Frank LR (1997) Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 10(4–5):237–249PubMedCrossRef
73.
Zurück zum Zitat Artz NS, et al. (2011) Reproducibility of renal perfusion MR imaging in native and transplanted kidneys using non-contrast arterial spin labeling. J Magn Reson Imaging JMRI 33(6):1414–1421PubMedCrossRef Artz NS, et al. (2011) Reproducibility of renal perfusion MR imaging in native and transplanted kidneys using non-contrast arterial spin labeling. J Magn Reson Imaging JMRI 33(6):1414–1421PubMedCrossRef
74.
Zurück zum Zitat Fenchel M, et al. (2006) Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 238(3):1013–1021PubMedCrossRef Fenchel M, et al. (2006) Perfusion MR imaging with FAIR true FISP spin labeling in patients with and without renal artery stenosis: initial experience. Radiology 238(3):1013–1021PubMedCrossRef
75.
Zurück zum Zitat Lanzman RS, et al. (2009) Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol 20:1485–1491PubMedCrossRef Lanzman RS, et al. (2009) Quantification of renal allograft perfusion using arterial spin labeling MRI: initial results. Eur Radiol 20:1485–1491PubMedCrossRef
76.
Zurück zum Zitat Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51(2):353–361PubMedCrossRef Martirosian P, Klose U, Mader I, Schick F (2004) FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 51(2):353–361PubMedCrossRef
77.
Zurück zum Zitat Heusch P, et al. (2014) Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging JMRI 40(1):84–89PubMedCrossRef Heusch P, et al. (2014) Functional evaluation of transplanted kidneys using arterial spin labeling MRI. J Magn Reson Imaging JMRI 40(1):84–89PubMedCrossRef
78.
Zurück zum Zitat Artz NS, et al. (2011) Comparing kidney perfusion using noncontrast arterial spin labeling MRI and microsphere methods in an interventional swine model. Invest Radiol 46(2):124–131PubMedPubMedCentralCrossRef Artz NS, et al. (2011) Comparing kidney perfusion using noncontrast arterial spin labeling MRI and microsphere methods in an interventional swine model. Invest Radiol 46(2):124–131PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Winter JD, St Lawrence KS, Cheng H-LM (2011) Quantification of renal perfusion: comparison of arterial spin labeling and dynamic contrast-enhanced MRI. J Magn Reson Imaging JMRI 34(3):608–615PubMedCrossRef Winter JD, St Lawrence KS, Cheng H-LM (2011) Quantification of renal perfusion: comparison of arterial spin labeling and dynamic contrast-enhanced MRI. J Magn Reson Imaging JMRI 34(3):608–615PubMedCrossRef
80.
Zurück zum Zitat Artz NS, et al. (2011) Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 29(1):74–82PubMedCrossRef Artz NS, et al. (2011) Arterial spin labeling MRI for assessment of perfusion in native and transplanted kidneys. Magn Reson Imaging 29(1):74–82PubMedCrossRef
81.
Zurück zum Zitat Hueper K, et al. (2012) Magnetic resonance diffusion tensor imaging for evaluation of histopathological changes in a rat model of diabetic nephropathy. Invest Radiol 47(7):430–437PubMedCrossRef Hueper K, et al. (2012) Magnetic resonance diffusion tensor imaging for evaluation of histopathological changes in a rat model of diabetic nephropathy. Invest Radiol 47(7):430–437PubMedCrossRef
82.
Zurück zum Zitat Lanzman RS, et al. (2012) Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology 265(3):799–808PubMedPubMedCentralCrossRef Lanzman RS, et al. (2012) Arterial spin-labeling MR imaging of renal masses: correlation with histopathologic findings. Radiology 265(3):799–808PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Liu YP, Song R, Liang CH, Chen X, Liu B (2012) Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury. Am J Physiol Renal Physiol 303(4):F551–F558PubMedCrossRef Liu YP, Song R, Liang CH, Chen X, Liu B (2012) Arterial spin labeling blood flow magnetic resonance imaging for evaluation of renal injury. Am J Physiol Renal Physiol 303(4):F551–F558PubMedCrossRef
84.
Zurück zum Zitat Hueper K, et al. (2015) Functional MRI detects perfusion impairment in renal allografts with delayed graft function. Am J Physiol Renal Physiol 308(12):F1444–F1451PubMedCrossRef Hueper K, et al. (2015) Functional MRI detects perfusion impairment in renal allografts with delayed graft function. Am J Physiol Renal Physiol 308(12):F1444–F1451PubMedCrossRef
85.
Zurück zum Zitat Hueper K, et al. (2014) Acute kidney injury: arterial spin labeling to monitor renal perfusion impairment in mice-comparison with histopathologic results and renal function. Radiology 270(1):117–124PubMedCrossRef Hueper K, et al. (2014) Acute kidney injury: arterial spin labeling to monitor renal perfusion impairment in mice-comparison with histopathologic results and renal function. Radiology 270(1):117–124PubMedCrossRef
86.
Zurück zum Zitat Niles DJ, Artz NS, Djamali A, et al. (2016) Longitudinal assessment of renal perfusion and oxygenation in transplant donor-recipient pairs using ASL and BOLD MRI. Invest Radiol 51(2):113–120PubMedPubMedCentralCrossRef Niles DJ, Artz NS, Djamali A, et al. (2016) Longitudinal assessment of renal perfusion and oxygenation in transplant donor-recipient pairs using ASL and BOLD MRI. Invest Radiol 51(2):113–120PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94(12):3271–3275PubMedCrossRef Prasad PV, Edelman RR, Epstein FH (1996) Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 94(12):3271–3275PubMedCrossRef
88.
Zurück zum Zitat Pruijm M, Milani B, Burnier M (2017) Blood oxygenation level-dependent MRI to assess renal oxygenation in renal diseases: progresses and challenges. Front Physiol 7. Pruijm M, Milani B, Burnier M (2017) Blood oxygenation level-dependent MRI to assess renal oxygenation in renal diseases: progresses and challenges. Front Physiol 7.
89.
Zurück zum Zitat Thoeny HC, et al. (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241(3):812–821PubMedCrossRef Thoeny HC, et al. (2006) Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience. Radiology 241(3):812–821PubMedCrossRef
90.
Zurück zum Zitat Djamali A, et al. (2007) BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol 292(2):F513–F522PubMedCrossRef Djamali A, et al. (2007) BOLD-MRI assessment of intrarenal oxygenation and oxidative stress in patients with chronic kidney allograft dysfunction. Am J Physiol Renal Physiol 292(2):F513–F522PubMedCrossRef
91.
Zurück zum Zitat Han F, et al. (2008) The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol Dial Transplant 23(8):2666–2672PubMedCrossRef Han F, et al. (2008) The significance of BOLD MRI in differentiation between renal transplant rejection and acute tubular necrosis. Nephrol Dial Transplant 23(8):2666–2672PubMedCrossRef
92.
Zurück zum Zitat Mathys C, et al. (2010) ‘T2’ imaging of native kidneys and renal allografts - a feasibility study. RöFo - Fortschritte Auf Dem Geb Röntgenstrahlen Bildgeb Verfahr 183:112–119CrossRef Mathys C, et al. (2010) ‘T2’ imaging of native kidneys and renal allografts - a feasibility study. RöFo - Fortschritte Auf Dem Geb Röntgenstrahlen Bildgeb Verfahr 183:112–119CrossRef
93.
Zurück zum Zitat Sadowski EA, et al. (2005) Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology 236(3):911–919PubMedCrossRef Sadowski EA, et al. (2005) Assessment of acute renal transplant rejection with blood oxygen level-dependent MR imaging: initial experience. Radiology 236(3):911–919PubMedCrossRef
94.
Zurück zum Zitat Sadowski EA, et al. (2010) Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging 28(1):56–64PubMedCrossRef Sadowski EA, et al. (2010) Blood oxygen level-dependent and perfusion magnetic resonance imaging: detecting differences in oxygen bioavailability and blood flow in transplanted kidneys. Magn Reson Imaging 28(1):56–64PubMedCrossRef
95.
Zurück zum Zitat Park SY, Kim CK, Park BK, et al. (2012) Evaluation of transplanted kidneys using blood oxygenation level-dependent MRI at 3 T: a preliminary study. AJR Am J Roentgenol 198(5):1108–1114PubMedCrossRef Park SY, Kim CK, Park BK, et al. (2012) Evaluation of transplanted kidneys using blood oxygenation level-dependent MRI at 3 T: a preliminary study. AJR Am J Roentgenol 198(5):1108–1114PubMedCrossRef
96.
Zurück zum Zitat Xiao W, Xu J, Wang Q, Xu Y, Zhang M (2012) Functional evaluation of transplanted kidneys in normal function and acute rejection using BOLD MR imaging. Eur J Radiol 81(5):838–845PubMedCrossRef Xiao W, Xu J, Wang Q, Xu Y, Zhang M (2012) Functional evaluation of transplanted kidneys in normal function and acute rejection using BOLD MR imaging. Eur J Radiol 81(5):838–845PubMedCrossRef
97.
Zurück zum Zitat Liu G, Han F, Xiao W, et al. (2014) Detection of renal allograft rejection using blood oxygen level-dependent and diffusion weighted magnetic resonance imaging: a retrospective study. BMC Nephrol 15:158PubMedPubMedCentralCrossRef Liu G, Han F, Xiao W, et al. (2014) Detection of renal allograft rejection using blood oxygen level-dependent and diffusion weighted magnetic resonance imaging: a retrospective study. BMC Nephrol 15:158PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat O’Connor PM, Kett MM, Anderson WP, Evans RG (2006) Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow. Am J Physiol Renal Physiol 290(3):F688–F694PubMedCrossRef O’Connor PM, Kett MM, Anderson WP, Evans RG (2006) Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow. Am J Physiol Renal Physiol 290(3):F688–F694PubMedCrossRef
99.
Zurück zum Zitat Prasad PV (2006) Evaluation of intra-renal oxygenation by BOLD MRI. Nephron Clin Pract 103(2):c58–c65PubMedCrossRef Prasad PV (2006) Evaluation of intra-renal oxygenation by BOLD MRI. Nephron Clin Pract 103(2):c58–c65PubMedCrossRef
100.
Zurück zum Zitat Dagher AP, Aletras A, Choyke P, Balaban RS (2000) Imaging of urea using chemical exchange-dependent saturation transfer at 1.5T. J Magn Reson Imaging JMRI 12(5):745–748PubMedCrossRef Dagher AP, Aletras A, Choyke P, Balaban RS (2000) Imaging of urea using chemical exchange-dependent saturation transfer at 1.5T. J Magn Reson Imaging JMRI 12(5):745–748PubMedCrossRef
101.
Zurück zum Zitat Longo DL, Busato A, Lanzardo S, Antico F, Aime S (2013) Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn Reson Med 70(3):859–864PubMedCrossRef Longo DL, Busato A, Lanzardo S, Antico F, Aime S (2013) Imaging the pH evolution of an acute kidney injury model by means of iopamidol, a MRI-CEST pH-responsive contrast agent. Magn Reson Med 70(3):859–864PubMedCrossRef
102.
Zurück zum Zitat Müller-Lutz A, et al. (2014) Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner. Magma N Y N 27(6):477–485CrossRef Müller-Lutz A, et al. (2014) Pilot study of Iopamidol-based quantitative pH imaging on a clinical 3T MR scanner. Magma N Y N 27(6):477–485CrossRef
103.
Zurück zum Zitat Kentrup D, et al. (2017) GlucoCEST magnetic resonance imaging in vivo may be diagnostic of acute renal allograft rejection. Kidney Int 92(3):757–764PubMedCrossRef Kentrup D, et al. (2017) GlucoCEST magnetic resonance imaging in vivo may be diagnostic of acute renal allograft rejection. Kidney Int 92(3):757–764PubMedCrossRef
104.
Zurück zum Zitat Wu Y, et al. (2016) pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent. Magn Reson Med 75(6):2432–2441PubMedCrossRef Wu Y, et al. (2016) pH imaging of mouse kidneys in vivo using a frequency-dependent paraCEST agent. Magn Reson Med 75(6):2432–2441PubMedCrossRef
105.
Zurück zum Zitat Wu Y, Zhou IY, Igarashi T, Longo DL, Aime S, Sun PZ (2017) A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using iopamidol. Magn Reson Med (2017). Wu Y, Zhou IY, Igarashi T, Longo DL, Aime S, Sun PZ (2017) A generalized ratiometric chemical exchange saturation transfer (CEST) MRI approach for mapping renal pH using iopamidol. Magn Reson Med (2017).
106.
Zurück zum Zitat Wang F, et al. (2016) Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magn Reson Med 76(5):1531–1541PubMedCrossRef Wang F, et al. (2016) Mapping murine diabetic kidney disease using chemical exchange saturation transfer MRI. Magn Reson Med 76(5):1531–1541PubMedCrossRef
107.
Zurück zum Zitat Haneder S, Konstandin S, Morelli JN, et al. (2013) Assessment of the renal corticomedullary (23)Na gradient using isotropic data sets. Acad Radiol 20(4):407–413PubMedCrossRef Haneder S, Konstandin S, Morelli JN, et al. (2013) Assessment of the renal corticomedullary (23)Na gradient using isotropic data sets. Acad Radiol 20(4):407–413PubMedCrossRef
108.
Zurück zum Zitat Moon CH, Furlan A, Kim J-H, et al. (2014) Quantitative sodium MR imaging of native versus transplanted kidneys using a dual-tuned proton/sodium (1H/ 23Na) coil: initial experience. Eur Radiol 24(6):1320–1326PubMedCrossRef Moon CH, Furlan A, Kim J-H, et al. (2014) Quantitative sodium MR imaging of native versus transplanted kidneys using a dual-tuned proton/sodium (1H/ 23Na) coil: initial experience. Eur Radiol 24(6):1320–1326PubMedCrossRef
109.
Zurück zum Zitat de Rochefort L, et al. (2010) Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 63(1):194–206PubMed de Rochefort L, et al. (2010) Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 63(1):194–206PubMed
110.
Zurück zum Zitat Liu J, et al. (2012) Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. NeuroImage 59(3):2560–2568PubMedCrossRef Liu J, et al. (2012) Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map. NeuroImage 59(3):2560–2568PubMedCrossRef
111.
Zurück zum Zitat Yao S et al. (2017) Quantitative susceptibility mapping reveals an association between brain iron load and depression severity. Front Hum Neurosci 11 Yao S et al. (2017) Quantitative susceptibility mapping reveals an association between brain iron load and depression severity. Front Hum Neurosci 11
112.
Zurück zum Zitat Zhou D, Cho J, Zhang J, Spincemaille P, Wang Y (2017) Susceptibility underestimation in a high-susceptibility phantom: dependence on imaging resolution, magnitude contrast, and other parameters. Magn Reson Med 78(3):1080–1086PubMedCrossRef Zhou D, Cho J, Zhang J, Spincemaille P, Wang Y (2017) Susceptibility underestimation in a high-susceptibility phantom: dependence on imaging resolution, magnitude contrast, and other parameters. Magn Reson Med 78(3):1080–1086PubMedCrossRef
113.
114.
Zurück zum Zitat Xie L, et al. (2015) Susceptibility tensor imaging of the kidney and its microstructural underpinnings. Magn Reson Med 73(3):1270–1281PubMedCrossRef Xie L, et al. (2015) Susceptibility tensor imaging of the kidney and its microstructural underpinnings. Magn Reson Med 73(3):1270–1281PubMedCrossRef
115.
Zurück zum Zitat He X, Moon C-H, Kim J-H, Bae KT (2011) In vivo T1ρ study on human kidney. Proc Intl Soc Mag Reson Med 19. He X, Moon C-H, Kim J-H, Bae KT (2011) In vivo T1ρ study on human kidney. Proc Intl Soc Mag Reson Med 19.
116.
Zurück zum Zitat Rapacchi S, et al. (2015) Towards the identification of multi-parametric quantitative MRI biomarkers in lupus nephritis. Magn Reson Imaging 33(9):1066–1074PubMedCrossRef Rapacchi S, et al. (2015) Towards the identification of multi-parametric quantitative MRI biomarkers in lupus nephritis. Magn Reson Imaging 33(9):1066–1074PubMedCrossRef
117.
Zurück zum Zitat Rouvière O, Souchon R, Pagnoux G, Ménager J-M, Chapelon J-Y (2011) Magnetic resonance elastography of the kidneys: feasibility and reproducibility in young healthy adults. J Magn Reson Imaging JMRI 34(4):880–886PubMedCrossRef Rouvière O, Souchon R, Pagnoux G, Ménager J-M, Chapelon J-Y (2011) Magnetic resonance elastography of the kidneys: feasibility and reproducibility in young healthy adults. J Magn Reson Imaging JMRI 34(4):880–886PubMedCrossRef
118.
Zurück zum Zitat Low G, et al. (2015) Reliability of magnetic resonance elastography using multislice two-dimensional spin-echo echo-planar imaging (SE-EPI) and three-dimensional inversion reconstruction for assessing renal stiffness. J Magn Reson Imaging JMRI 42(3):844–850PubMedCrossRef Low G, et al. (2015) Reliability of magnetic resonance elastography using multislice two-dimensional spin-echo echo-planar imaging (SE-EPI) and three-dimensional inversion reconstruction for assessing renal stiffness. J Magn Reson Imaging JMRI 42(3):844–850PubMedCrossRef
119.
Zurück zum Zitat Korsmo MJ, et al. (2013) Magnetic resonance elastography noninvasively detects in-vivo renal medullary fibrosis secondary to swine renal artery stenosis. Invest Radiol 48(2):61–68PubMedPubMedCentralCrossRef Korsmo MJ, et al. (2013) Magnetic resonance elastography noninvasively detects in-vivo renal medullary fibrosis secondary to swine renal artery stenosis. Invest Radiol 48(2):61–68PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Kirpalani A, et al. (2017) Magnetic resonance elastography to assess fibrosis in kidney allografts. Clin J Am Soc Nephrol CJASN 12(10):1671–1679PubMedCrossRef Kirpalani A, et al. (2017) Magnetic resonance elastography to assess fibrosis in kidney allografts. Clin J Am Soc Nephrol CJASN 12(10):1671–1679PubMedCrossRef
121.
Zurück zum Zitat Grenier N, Gennisson J-L, Cornelis F, Le Bras Y, Couzi L (2013) Renal ultrasound elastography. Diagn Interv Imaging 94(5):545–550PubMedCrossRef Grenier N, Gennisson J-L, Cornelis F, Le Bras Y, Couzi L (2013) Renal ultrasound elastography. Diagn Interv Imaging 94(5):545–550PubMedCrossRef
Metadaten
Titel
Functional MRI in transplanted kidneys
verfasst von
Alexandra Ljimani
Hans-Jörg Wittsack
Rotem S. Lanzman
Publikationsdatum
19.03.2018
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 10/2018
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-018-1563-7

Weitere Artikel der Ausgabe 10/2018

Abdominal Radiology 10/2018 Zur Ausgabe

Classics in Abdominal Radiology

The stack of coins sign in scleroderma

Classics in Abdominal Radiology

The celiac seagull

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.