Skip to main content
Erschienen in: Digestive Diseases and Sciences 9/2019

14.03.2019 | Original Article

Functional Role of Basolateral ClC-2 Channels in the Regulation of Duodenal Anion Secretion in Mice

verfasst von: Chao Du, Jingjing Liu, Hanxing Wan, Hui Dong, Xiaoyan Zhao

Erschienen in: Digestive Diseases and Sciences | Ausgabe 9/2019

Einloggen, um Zugang zu erhalten

Abstract

Background

Although ClC-2 channels are important in colonic Cl secretion, it is unclear about their roles in small intestinal anion secretion. Therefore, we sought to examine whether ClC-2 channels play important roles in anion secretion, particularly duodenal bicarbonate secretion (DBS).

Methods

Duodenal mucosae from mice were stripped of seromuscular layers and mounted in Ussing chambers. Both duodenal short-circuit current (Isc) and HCO3 secretion in vitro were simultaneously recorded. DBS in vivo was measured by a CO2-sensitive electrode.

Results

Lubiprostone, a selective ClC-2 activator, concentration-dependently increased both duodenal Isc and DBS only when applied basolaterally, but not when applied apically. Removal of extracellular Cl abolished lubiprostone-induced duodenal Isc, but did not alter HCO3 secretion even in the presence of DIDS, a Cl/HCO3 exchanger inhibitor. However, further addition of glibenclamide, a CFTR channel blocker, abolished lubiprostone-evoked HCO3 secretion. Moreover, lubiprostone-induced HCO3 secretion was impaired in CFTR−/− mice compared to wild-type littermates. Luminal perfusion of duodenal lumen with lubiprostone did not alter basal DBS in vivo, but lubiprostone (i.p.) was able to induce DBS, which was also significantly inhibited by Cd2+, a ClC-2 channel blocker. [Ca2+]cyt level, Ca2+-activated K+ channel- and cAMP-mediated duodenal Isc, and HCO3 secretion were unchanged by lubiprostone.

Conclusions

We have provided the first evidence for the novel functional role of basolateral ClC-2 channels in the regulation of duodenal anion secretion.
Literatur
1.
Zurück zum Zitat Montrose MH, Keely S, Barrett K. Electrolyte secretion and absorption: small intestine and colon. In: Yamada T, ed. Textbook of Gastroenterology, vol. one. 4th ed. Philadephia, PA: Lippincott Williams & Wilkins; 2003:308–340. Montrose MH, Keely S, Barrett K. Electrolyte secretion and absorption: small intestine and colon. In: Yamada T, ed. Textbook of Gastroenterology, vol. one. 4th ed. Philadephia, PA: Lippincott Williams & Wilkins; 2003:308–340.
2.
Zurück zum Zitat Barrett KE. Integrated regulation of intestinal epithelial transport: intercellular and intracellular pathways. Am J Physiol. 1997;272:C1069–C1076.CrossRefPubMed Barrett KE. Integrated regulation of intestinal epithelial transport: intercellular and intracellular pathways. Am J Physiol. 1997;272:C1069–C1076.CrossRefPubMed
3.
Zurück zum Zitat Isenberg JI, Selling JA, Hogan DL, Koss MA. Impaired proximal duodenal mucosal bicarbonate secretion in patients with duodenal ulcer. N Engl J Med. 1987;316:374–379.CrossRefPubMed Isenberg JI, Selling JA, Hogan DL, Koss MA. Impaired proximal duodenal mucosal bicarbonate secretion in patients with duodenal ulcer. N Engl J Med. 1987;316:374–379.CrossRefPubMed
4.
Zurück zum Zitat Allen A, Flemstrom G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol. 2005;288:C1–C19.CrossRefPubMed Allen A, Flemstrom G. Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol. 2005;288:C1–C19.CrossRefPubMed
5.
Zurück zum Zitat Flemstrom G, Isenberg JI. Gastroduodenal mucosal alkaline secretion and mucosal protection. News Physiol Sci. 2001;16:23–28.PubMed Flemstrom G, Isenberg JI. Gastroduodenal mucosal alkaline secretion and mucosal protection. News Physiol Sci. 2001;16:23–28.PubMed
6.
Zurück zum Zitat Gyomorey K, Yeger H, Ackerley C, Garami E, Bear CE. Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol. 2000;279:C1787–C1794.CrossRefPubMed Gyomorey K, Yeger H, Ackerley C, Garami E, Bear CE. Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am J Physiol Cell Physiol. 2000;279:C1787–C1794.CrossRefPubMed
7.
Zurück zum Zitat Pena-Munzenmayer G, Catalan M, Cornejo I, et al. Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. J Cell Sci. 2005;118:4243–4252.CrossRefPubMed Pena-Munzenmayer G, Catalan M, Cornejo I, et al. Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. J Cell Sci. 2005;118:4243–4252.CrossRefPubMed
8.
Zurück zum Zitat Mohammad-Panah R, Gyomorey K, Rommens J, et al. ClC-2 contributes to native chloride secretion by a human intestinal cell line, Caco-2. J Biol Chem. 2001;276:8306–8313.CrossRefPubMed Mohammad-Panah R, Gyomorey K, Rommens J, et al. ClC-2 contributes to native chloride secretion by a human intestinal cell line, Caco-2. J Biol Chem. 2001;276:8306–8313.CrossRefPubMed
9.
Zurück zum Zitat Cuppoletti J, Malinowska DH, Tewari KP, et al. SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am J Physiol Cell Physiol. 2004;287:C1173–C1183.CrossRefPubMed Cuppoletti J, Malinowska DH, Tewari KP, et al. SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am J Physiol Cell Physiol. 2004;287:C1173–C1183.CrossRefPubMed
10.
Zurück zum Zitat Flores CA. ClC-2 and intestinal chloride secretion. Am J Physiol Gastrointest Liver Physiol. 2016;311:G775.CrossRefPubMed Flores CA. ClC-2 and intestinal chloride secretion. Am J Physiol Gastrointest Liver Physiol. 2016;311:G775.CrossRefPubMed
11.
Zurück zum Zitat Lipecka J, Bali M, Thomas A, Fanen P, Edelman A, Fritsch J. Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am J Physiol Cell Physiol. 2002;282:C805–C816.CrossRef Lipecka J, Bali M, Thomas A, Fanen P, Edelman A, Fritsch J. Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am J Physiol Cell Physiol. 2002;282:C805–C816.CrossRef
12.
Zurück zum Zitat Catalan M, Cornejo I, Figueroa CD, Niemeyer MI, Sepulveda FV, Cid LP. ClC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1004–G1013.CrossRefPubMed Catalan M, Cornejo I, Figueroa CD, Niemeyer MI, Sepulveda FV, Cid LP. ClC-2 in guinea pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1004–G1013.CrossRefPubMed
14.
Zurück zum Zitat Bijvelds MJC, Bot AGM, Escher JC, de Jonge HR. Activation of intestinal Cl− secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology. 2009;137:976–985.CrossRefPubMed Bijvelds MJC, Bot AGM, Escher JC, de Jonge HR. Activation of intestinal Cl secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology. 2009;137:976–985.CrossRefPubMed
16.
Zurück zum Zitat Hogan DL, Crombie DL, Isenberg JI, Svendsen P, Schaffalitzky DMO, Ainsworth MA. CFTR mediates cAMP- and Ca2+-activated duodenal epithelial HCO3 − secretion. Am J Physiol. 1997;272:G872–G878.PubMed Hogan DL, Crombie DL, Isenberg JI, Svendsen P, Schaffalitzky DMO, Ainsworth MA. CFTR mediates cAMP- and Ca2+-activated duodenal epithelial HCO3 secretion. Am J Physiol. 1997;272:G872–G878.PubMed
17.
Zurück zum Zitat Hogan DL, Crombie DL, Isenberg JI, Svendsen P, Schaffalitzky DMO, Ainsworth MA. Acid-stimulated duodenal bicarbonate secretion involves a CFTR-mediated transport pathway in mice. Gastroenterology. 1997;113:533–541.CrossRefPubMed Hogan DL, Crombie DL, Isenberg JI, Svendsen P, Schaffalitzky DMO, Ainsworth MA. Acid-stimulated duodenal bicarbonate secretion involves a CFTR-mediated transport pathway in mice. Gastroenterology. 1997;113:533–541.CrossRefPubMed
18.
Zurück zum Zitat Snouwaert JN, Brigman KK, Latour AM, et al. An animal model for cystic fibrosis made by gene targeting. Science. 1992;257:1083–1088.CrossRefPubMed Snouwaert JN, Brigman KK, Latour AM, et al. An animal model for cystic fibrosis made by gene targeting. Science. 1992;257:1083–1088.CrossRefPubMed
19.
Zurück zum Zitat Clarke LL, Gawenis LR, Franklin CL, Harline MC. Increased survival of CFTR knockout mice with an oral osmotic laxative. Lab Anim Sci. 1996;46:612–618.PubMed Clarke LL, Gawenis LR, Franklin CL, Harline MC. Increased survival of CFTR knockout mice with an oral osmotic laxative. Lab Anim Sci. 1996;46:612–618.PubMed
20.
Zurück zum Zitat Dong H, Sellers ZM, Smith A, Chow JY, Barrett KE. Na(+)/Ca(2+) exchange regulates Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(−) secretion in mice. Am J Physiol Gastrointest Liver Physiol. 2005;288:G457–G465.CrossRefPubMed Dong H, Sellers ZM, Smith A, Chow JY, Barrett KE. Na(+)/Ca(2+) exchange regulates Ca(2+)-dependent duodenal mucosal ion transport and HCO(3)(−) secretion in mice. Am J Physiol Gastrointest Liver Physiol. 2005;288:G457–G465.CrossRefPubMed
21.
Zurück zum Zitat Dong H, Smith A, Hovaida M, Chow JY. Role of Ca2+-activated K+ channels in duodenal mucosal ion transport and bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol. 2006;291:G1120–G1128.CrossRefPubMed Dong H, Smith A, Hovaida M, Chow JY. Role of Ca2+-activated K+ channels in duodenal mucosal ion transport and bicarbonate secretion. Am J Physiol Gastrointest Liver Physiol. 2006;291:G1120–G1128.CrossRefPubMed
22.
Zurück zum Zitat Pang G, Buret A, O'Loughlin E, Smith A, Batey R, Clancy R. Immunologic, functional, and morphological characterization of three new human small intestinal epithelial cell lines. Gastroenterology. 1996;111:8–18.CrossRefPubMed Pang G, Buret A, O'Loughlin E, Smith A, Batey R, Clancy R. Immunologic, functional, and morphological characterization of three new human small intestinal epithelial cell lines. Gastroenterology. 1996;111:8–18.CrossRefPubMed
23.
Zurück zum Zitat Buresi MC, Schleihauf E, Vergnolle N, et al. Protease-activated receptor-1 stimulates Ca(2+)-dependent Cl(−) secretion in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2001;281:G323–G332.CrossRefPubMed Buresi MC, Schleihauf E, Vergnolle N, et al.  Protease-activated receptor-1 stimulates Ca(2+)-dependent Cl(−) secretion in human intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2001;281:G323–G332.CrossRefPubMed
24.
Zurück zum Zitat Smith AJ, Chappell AE, Buret AG, Barrett KE, Dong H. 5-Hydroxytryptamine contributes significantly to a reflex pathway by which the duodenal mucosa protects itself from gastric acid injury. FASEB J. 2006;20:2486–2495.CrossRefPubMed Smith AJ, Chappell AE, Buret AG, Barrett KE, Dong H. 5-Hydroxytryptamine contributes significantly to a reflex pathway by which the duodenal mucosa protects itself from gastric acid injury. FASEB J. 2006;20:2486–2495.CrossRefPubMed
25.
Zurück zum Zitat Cuppoletti J, Chakrabarti J, Tewari KP, Malinowska DH. Differentiation between human ClC-2 and CFTR Cl− channels with pharmacological agents. Am J Physiol Cell Physiol. 2014;307:C479–C492.CrossRefPubMed Cuppoletti J, Chakrabarti J, Tewari KP, Malinowska DH. Differentiation between human ClC-2 and CFTR Cl channels with pharmacological agents. Am J Physiol Cell Physiol. 2014;307:C479–C492.CrossRefPubMed
26.
Zurück zum Zitat Bao HF, Liu L, Self J, Duke BJ, Ueno R, Eaton DC. A synthetic prostone activates apical chloride channels in A6 epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2008;295:G234–G251.CrossRefPubMedPubMedCentral Bao HF, Liu L, Self J, Duke BJ, Ueno R, Eaton DC. A synthetic prostone activates apical chloride channels in A6 epithelial cells. Am J Physiol Gastrointest Liver Physiol. 2008;295:G234–G251.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Tuo B, Riederer B, Wang Z, Colledge WH, Soleimani M, Seidler U. Involvement of the anion exchanger SLC26A6 in prostaglandin E2-but not forskolin-stimulated duodenal HCO3 − secretion. Gastroenterology. 2006;130:349–358.CrossRefPubMed Tuo B, Riederer B, Wang Z, Colledge WH, Soleimani M, Seidler U. Involvement of the anion exchanger SLC26A6 in prostaglandin E2-but not forskolin-stimulated duodenal HCO3 secretion. Gastroenterology. 2006;130:349–358.CrossRefPubMed
28.
Zurück zum Zitat Spiegel S, Phillipper M, Rossmann H, Riederer B, Gregor M, Seidler U. Independence of apical Cl−/HCO3 − exchange and anion conductance in duodenal HCO3 − secretion. Am J Physiol Gastrointest Liver Physiol. 2003;285:G887–G897.CrossRefPubMed Spiegel S, Phillipper M, Rossmann H, Riederer B, Gregor M, Seidler U. Independence of apical Cl/HCO3 exchange and anion conductance in duodenal HCO3 secretion. Am J Physiol Gastrointest Liver Physiol. 2003;285:G887–G897.CrossRefPubMed
29.
Zurück zum Zitat Reddy MM, Quinton PM. Effect of anion transport blockers on CFTR in the human sweat duct. J Membr Biol. 2002;189:15–25.CrossRefPubMed Reddy MM, Quinton PM. Effect of anion transport blockers on CFTR in the human sweat duct. J Membr Biol. 2002;189:15–25.CrossRefPubMed
30.
Zurück zum Zitat Ito Y, Son M, Sato S, et al. ATP release triggered by activation of the Ca2+-activated K+ channel in human airway Calu-3 cells. Am J Respir Cell Mol Biol. 2004;30:388–395.CrossRefPubMed Ito Y, Son M, Sato S, et al. ATP release triggered by activation of the Ca2+-activated K+ channel in human airway Calu-3 cells. Am J Respir Cell Mol Biol. 2004;30:388–395.CrossRefPubMed
31.
Zurück zum Zitat Abdullaev IF, Rudkouskaya A, Schools GP, Kimelberg HK, Mongin AA. Pharmacological comparison of swelling-activated excitatory amino acid release and Cl− currents in cultured rat astrocytes. J Physiol. 2006;572:677–689.CrossRefPubMedPubMedCentral Abdullaev IF, Rudkouskaya A, Schools GP, Kimelberg HK, Mongin AA. Pharmacological comparison of swelling-activated excitatory amino acid release and Cl currents in cultured rat astrocytes. J Physiol. 2006;572:677–689.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Devor DC, Singh AK, Gerlach AC, Frizzell RA, Bridges RJ. Inhibition of intestinal Cl− secretion by clotrimazole: direct effect on basolateral membrane K+ channels. Am J Physiol. 1997;273:C531–C540.CrossRefPubMed Devor DC, Singh AK, Gerlach AC, Frizzell RA, Bridges RJ. Inhibition of intestinal Cl secretion by clotrimazole: direct effect on basolateral membrane K+ channels. Am J Physiol. 1997;273:C531–C540.CrossRefPubMed
33.
Zurück zum Zitat Devor DC, Singh AK, Bridges RJ, Frizzell RA. Modulation of Cl− secretion by benzimidazolones. II. Coordinate regulation of apical GCl and basolateral GK. Am J Physiol. 1996;271:L785–L795.PubMed Devor DC, Singh AK, Bridges RJ, Frizzell RA. Modulation of Cl secretion by benzimidazolones. II. Coordinate regulation of apical GCl and basolateral GK. Am J Physiol. 1996;271:L785–L795.PubMed
34.
Zurück zum Zitat Devor DC, Singh AK, Frizzell RA, Bridges RJ. Modulation of Cl− secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel. Am J Physiol. 1996;271:L775–L784.PubMed Devor DC, Singh AK, Frizzell RA, Bridges RJ. Modulation of Cl secretion by benzimidazolones. I. Direct activation of a Ca(2+)-dependent K+ channel. Am J Physiol. 1996;271:L775–L784.PubMed
35.
Zurück zum Zitat Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA. 2000;97:8151–8156.CrossRefPubMed Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci USA. 2000;97:8151–8156.CrossRefPubMed
36.
Zurück zum Zitat Zdebik AA, Cuffe J, Bertog M. Additional disruption of the ClC-2 Cl(−) channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J Biol Chem. 2004;279:22276–22283.CrossRefPubMed Zdebik AA, Cuffe J, Bertog M. Additional disruption of the ClC-2 Cl(−) channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J Biol Chem. 2004;279:22276–22283.CrossRefPubMed
37.
Zurück zum Zitat Catalan M, Niemeyer MI, Cid LP, Sepulveda FV. Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride. Gastroenterology. 2004;126:1104–1114.CrossRefPubMed Catalan M, Niemeyer MI, Cid LP, Sepulveda FV. Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride. Gastroenterology. 2004;126:1104–1114.CrossRefPubMed
39.
Zurück zum Zitat Cuppoletti J, Tewari KP, Chakrabarti J, Malinowska DH. Identification of the fatty acid activation site on human ClC-2. Am J Physiol Cell Physiol. 2017;312:C707–C723.CrossRefPubMed Cuppoletti J, Tewari KP, Chakrabarti J, Malinowska DH. Identification of the fatty acid activation site on human ClC-2. Am J Physiol Cell Physiol. 2017;312:C707–C723.CrossRefPubMed
40.
Zurück zum Zitat Thiemann A, Grunder S, Pusch M, Jentsch TJ. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 1992;356:57–60.CrossRefPubMed Thiemann A, Grunder S, Pusch M, Jentsch TJ. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 1992;356:57–60.CrossRefPubMed
41.
Zurück zum Zitat Bali M, Lipecka J, Edelman A, Fritsch J. Regulation of ClC-2 chloride channels in T84 cells by TGF-alpha. Am J Physiol Cell Physiol. 2001;280:C1588–C1598.CrossRefPubMed Bali M, Lipecka J, Edelman A, Fritsch J. Regulation of ClC-2 chloride channels in T84 cells by TGF-alpha. Am J Physiol Cell Physiol. 2001;280:C1588–C1598.CrossRefPubMed
42.
Zurück zum Zitat Murray CB, Chu S, Zeitlin PL. Gestational and tissue-specific regulation of C1C-2 chloride channel expression. Am J Physiol. 1996;271:L829–L837.PubMed Murray CB, Chu S, Zeitlin PL. Gestational and tissue-specific regulation of C1C-2 chloride channel expression. Am J Physiol. 1996;271:L829–L837.PubMed
43.
Zurück zum Zitat Kajita H, Omori K, Matsuda H. The chloride channel ClC-2 contributes to the inwardly rectifying Cl− conductance in cultured porcine choroid plexus epithelial cells. J Physiol. 2000;523:313–324.CrossRefPubMedPubMedCentral Kajita H, Omori K, Matsuda H. The chloride channel ClC-2 contributes to the inwardly rectifying Cl conductance in cultured porcine choroid plexus epithelial cells. J Physiol. 2000;523:313–324.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Ueno R, Osama H, Habe T, Engelke K. Oral SPI-0211 increases intestinal fluid secretion and chloride concentration without altering serum electrolyte levels (abstract). Gastroenterology. 2004;126:A-298. Ueno R, Osama H, Habe T, Engelke K. Oral SPI-0211 increases intestinal fluid secretion and chloride concentration without altering serum electrolyte levels (abstract). Gastroenterology. 2004;126:A-298.
45.
Zurück zum Zitat Johansen JF, Gargano M, Holland P, Patchen M. Phase III, efficacy and safety of RU-0211 a novel chloride channel activator, for the treatment of constipation (Abstract). Gastroenterology. 2003;124:A48.CrossRef Johansen JF, Gargano M, Holland P, Patchen M. Phase III, efficacy and safety of RU-0211 a novel chloride channel activator, for the treatment of constipation (Abstract). Gastroenterology. 2003;124:A48.CrossRef
46.
Zurück zum Zitat Kim SW, Parekh D, Townsend CJ, Thompson JC. Effects of aging on duodenal bicarbonate secretion. Ann Surg. 1990;212:332–337, 337–338. Kim SW, Parekh D, Townsend CJ, Thompson JC. Effects of aging on duodenal bicarbonate secretion. Ann Surg. 1990;212:332–337, 337–338.
47.
Zurück zum Zitat Valle JD, Chey W, Scheiman J. Acid peptic disorders. In: Yamada T, ed. Textbook of Gastroenterology, vol. one. 4th ed. Philadephia, PA: Lippincott Williams & Wilkins; 2003. Valle JD, Chey W, Scheiman J. Acid peptic disorders. In: Yamada T, ed. Textbook of Gastroenterology, vol. one. 4th ed. Philadephia, PA: Lippincott Williams & Wilkins; 2003.
48.
Zurück zum Zitat Moeser AJ, Nighot PK, Engelke KJ, Ueno R, Blikslager AT. Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am J Physiol-Gastr L. 2007;292:G647–G656. Moeser AJ, Nighot PK, Engelke KJ, Ueno R, Blikslager AT. Recovery of mucosal barrier function in ischemic porcine ileum and colon is stimulated by a novel agonist of the ClC-2 chloride channel, lubiprostone. Am J Physiol-Gastr L. 2007;292:G647–G656.
Metadaten
Titel
Functional Role of Basolateral ClC-2 Channels in the Regulation of Duodenal Anion Secretion in Mice
verfasst von
Chao Du
Jingjing Liu
Hanxing Wan
Hui Dong
Xiaoyan Zhao
Publikationsdatum
14.03.2019
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 9/2019
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-019-05578-7

Weitere Artikel der Ausgabe 9/2019

Digestive Diseases and Sciences 9/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.