Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2018

09.01.2018 | NON-THEMATIC REVIEW

Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting

verfasst von: William Hankey, Wendy L. Frankel, Joanna Groden

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

The acquisition of biallelic mutations in the APC gene is a rate-limiting step in the development of most colorectal cancers and occurs in the earliest lesions. APC encodes a 312-kDa protein that localizes to multiple subcellular compartments and performs diverse functions. APC participates in a cytoplasmic complex that promotes the destruction of the transcriptional licensing factor β-catenin; APC mutations that abolish this function trigger constitutive activation of the canonical WNT signaling pathway, a characteristic found in almost all colorectal cancers. By negatively regulating canonical WNT signaling, APC counteracts proliferation, promotes differentiation, facilitates apoptosis, and suppresses invasion and tumor progression. APC further antagonizes canonical WNT signaling by interacting with and counteracting β-catenin in the nucleus. APC also suppresses tumor initiation and progression in the colorectal epithelium through functions that are independent of canonical WNT signaling. APC regulates the mitotic spindle to facilitate proper chromosome segregation, localizes to the cell periphery and cell protrusions to establish cell polarity and appropriate directional migration, and inhibits DNA replication by interacting directly with DNA. Mutations in APC are often frameshifts, insertions, or deletions that introduce premature stop codons and lead to the production of truncated APC proteins that lack its normal functions and possess tumorigenic properties. Therapeutic approaches in development for the treatment of APC-deficient tumors are focused on the inhibition of canonical WNT signaling, especially through targets downstream of APC in the pathway, or on the restoration of wild-type APC expression.
Literatur
1.
Zurück zum Zitat Cheng, Y. W., et al. (2008). CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clinical Cancer Research, 14(19), 6005–6013.PubMedPubMedCentralCrossRef Cheng, Y. W., et al. (2008). CpG island methylator phenotype associates with low-degree chromosomal abnormalities in colorectal cancer. Clinical Cancer Research, 14(19), 6005–6013.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Issa, J. P. (2008). Colon cancer: it's CIN or CIMP. Clinical Cancer Research, 14(19), 5939–5940.PubMedCrossRef Issa, J. P. (2008). Colon cancer: it's CIN or CIMP. Clinical Cancer Research, 14(19), 5939–5940.PubMedCrossRef
3.
Zurück zum Zitat Samowitz, W. S., et al. (2007). APC mutations and other genetic and epigenetic changes in colon cancer. Molecular Cancer Research, 5(2), 165–170.PubMedCrossRef Samowitz, W. S., et al. (2007). APC mutations and other genetic and epigenetic changes in colon cancer. Molecular Cancer Research, 5(2), 165–170.PubMedCrossRef
4.
Zurück zum Zitat Shen, L., et al. (2007). Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18654–18659.PubMedPubMedCentralCrossRef Shen, L., et al. (2007). Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18654–18659.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Mirabelli-Primdahl, L., et al. (1999). Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Research, 59(14), 3346–3351.PubMed Mirabelli-Primdahl, L., et al. (1999). Beta-catenin mutations are specific for colorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Research, 59(14), 3346–3351.PubMed
6.
Zurück zum Zitat Akiyama, Y., et al. (1997). Transforming growth factor beta type II receptor gene mutations in adenomas from hereditary nonpolyposis colorectal cancer. Gastroenterology, 112(1), 33–39.PubMedCrossRef Akiyama, Y., et al. (1997). Transforming growth factor beta type II receptor gene mutations in adenomas from hereditary nonpolyposis colorectal cancer. Gastroenterology, 112(1), 33–39.PubMedCrossRef
7.
Zurück zum Zitat Calin, G. A., et al. (2000). Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters: a study of the TGRbetaRII, BAX, hMSH3, hMSH6, IGFIIR and BLM genes. International Journal of Cancer, 89(3), 230–235.PubMedCrossRef Calin, G. A., et al. (2000). Genetic progression in microsatellite instability high (MSI-H) colon cancers correlates with clinico-pathological parameters: a study of the TGRbetaRII, BAX, hMSH3, hMSH6, IGFIIR and BLM genes. International Journal of Cancer, 89(3), 230–235.PubMedCrossRef
9.
Zurück zum Zitat Deng, G., et al. (2004). BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clinical Cancer Research, 10(1 Pt 1), 191–195.PubMedCrossRef Deng, G., et al. (2004). BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clinical Cancer Research, 10(1 Pt 1), 191–195.PubMedCrossRef
10.
Zurück zum Zitat Howlader, N., Noone, A. M., Krapcho, M., Miller, D., Bishop, K., Altekruse, S. F., Kosary, C. L., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D. R., Chen, H. S., Feuer, E. J., & Cronin, K. A. (Eds.). (2016). SEER cancer statistics review, 1975–2013. Bethesda: National Cancer Institute. Howlader, N., Noone, A. M., Krapcho, M., Miller, D., Bishop, K., Altekruse, S. F., Kosary, C. L., Yu, M., Ruhl, J., Tatalovich, Z., Mariotto, A., Lewis, D. R., Chen, H. S., Feuer, E. J., & Cronin, K. A. (Eds.). (2016). SEER cancer statistics review, 1975–2013. Bethesda: National Cancer Institute.
11.
Zurück zum Zitat Jen, J., et al. (1994). Molecular determinants of dysplasia in colorectal lesions. Cancer Research, 54(21), 5523–5526.PubMed Jen, J., et al. (1994). Molecular determinants of dysplasia in colorectal lesions. Cancer Research, 54(21), 5523–5526.PubMed
12.
Zurück zum Zitat Stein, U., et al. (2009). MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nature Medicine, 15(1), 59–67.PubMedCrossRef Stein, U., et al. (2009). MACC1, a newly identified key regulator of HGF-MET signaling, predicts colon cancer metastasis. Nature Medicine, 15(1), 59–67.PubMedCrossRef
13.
Zurück zum Zitat Linardou, H., et al. (2008). Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. The Lancet Oncology, 9(10), 962–972.PubMedCrossRef Linardou, H., et al. (2008). Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. The Lancet Oncology, 9(10), 962–972.PubMedCrossRef
14.
Zurück zum Zitat The Cancer Genome Atlas Network. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407), 330–337. The Cancer Genome Atlas Network. (2012). Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487(7407), 330–337.
15.
Zurück zum Zitat Powell, S. M., et al. (1992). APC mutations occur early during colorectal tumorigenesis. Nature, 359(6392), 235–237.PubMedCrossRef Powell, S. M., et al. (1992). APC mutations occur early during colorectal tumorigenesis. Nature, 359(6392), 235–237.PubMedCrossRef
16.
Zurück zum Zitat Miyoshi, Y., et al. (1992). Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Human Molecular Genetics, 1(4), 229–233.PubMedCrossRef Miyoshi, Y., et al. (1992). Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Human Molecular Genetics, 1(4), 229–233.PubMedCrossRef
17.
Zurück zum Zitat Groden, J., et al. (1991). Identification and characterization of the familial adenomatous polyposis coli gene. Cell, 66(3), 589–600.PubMedCrossRef Groden, J., et al. (1991). Identification and characterization of the familial adenomatous polyposis coli gene. Cell, 66(3), 589–600.PubMedCrossRef
18.
Zurück zum Zitat Nishisho, I., et al. (1991). Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science, 253(5020), 665–669.PubMedCrossRef Nishisho, I., et al. (1991). Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science, 253(5020), 665–669.PubMedCrossRef
19.
Zurück zum Zitat Joslyn, G., et al. (1991). Identification of deletion mutations and three new genes at the familial polyposis locus. Cell, 66(3), 601–613.PubMedCrossRef Joslyn, G., et al. (1991). Identification of deletion mutations and three new genes at the familial polyposis locus. Cell, 66(3), 601–613.PubMedCrossRef
20.
Zurück zum Zitat Kinzler, K. W., et al. (1991). Identification of FAP locus genes from chromosome 5q21. Science, 253(5020), 661–665.PubMedCrossRef Kinzler, K. W., et al. (1991). Identification of FAP locus genes from chromosome 5q21. Science, 253(5020), 661–665.PubMedCrossRef
21.
Zurück zum Zitat Giardiello, F. (1995). Gastrointestinal polyposis syndromes and hereditary nonpolyposis colorectal cancer. In A. K. Rustgi (Ed.), Gastrointestinal cancers: biology, diagnosis, and therapy (pp. 367–377). Philadelphia: Lippincott-Raven. Giardiello, F. (1995). Gastrointestinal polyposis syndromes and hereditary nonpolyposis colorectal cancer. In A. K. Rustgi (Ed.), Gastrointestinal cancers: biology, diagnosis, and therapy (pp. 367–377). Philadelphia: Lippincott-Raven.
22.
Zurück zum Zitat Ichii, S., et al. (1993). Detailed analysis of genetic alterations in colorectal tumors from patients with and without familial adenomatous polyposis (FAP). Oncogene, 8(9), 2399–2405.PubMed Ichii, S., et al. (1993). Detailed analysis of genetic alterations in colorectal tumors from patients with and without familial adenomatous polyposis (FAP). Oncogene, 8(9), 2399–2405.PubMed
23.
Zurück zum Zitat Levy, D. B., et al. (1994). Inactivation of both APC alleles in human and mouse tumors. Cancer Research, 54(22), 5953–5958.PubMed Levy, D. B., et al. (1994). Inactivation of both APC alleles in human and mouse tumors. Cancer Research, 54(22), 5953–5958.PubMed
24.
Zurück zum Zitat Luongo, C., et al. (1994). Loss of Apc+ in intestinal adenomas from Min mice. Cancer Research, 54(22), 5947–5952.PubMed Luongo, C., et al. (1994). Loss of Apc+ in intestinal adenomas from Min mice. Cancer Research, 54(22), 5947–5952.PubMed
25.
26.
Zurück zum Zitat van den Broek, E., et al. (2016). Genomic profiling of stage II and III colon cancers reveals APC mutations to be associated with survival in stage III colon cancer patients. Oncotarget, 7(45), 73876–73887.PubMedPubMedCentralCrossRef van den Broek, E., et al. (2016). Genomic profiling of stage II and III colon cancers reveals APC mutations to be associated with survival in stage III colon cancer patients. Oncotarget, 7(45), 73876–73887.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Samowitz, W. S., et al. (1999). β-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Research, 59(7), 1442–1444.PubMed Samowitz, W. S., et al. (1999). β-catenin mutations are more frequent in small colorectal adenomas than in larger adenomas and invasive carcinomas. Cancer Research, 59(7), 1442–1444.PubMed
28.
Zurück zum Zitat Sparks, A. B., et al. (1998). Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Research, 58(6), 1130–1134.PubMed Sparks, A. B., et al. (1998). Mutational analysis of the APC/β-catenin/Tcf pathway in colorectal cancer. Cancer Research, 58(6), 1130–1134.PubMed
29.
Zurück zum Zitat Morin, P. J., et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 275(5307), 1787–1790.PubMedCrossRef Morin, P. J., et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science, 275(5307), 1787–1790.PubMedCrossRef
30.
Zurück zum Zitat Orford, K., et al. (1997). Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. The Journal of Biological Chemistry, 272(40), 24735–24738.PubMedCrossRef Orford, K., et al. (1997). Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. The Journal of Biological Chemistry, 272(40), 24735–24738.PubMedCrossRef
31.
Zurück zum Zitat Behrens, J., et al. (1998). Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science, 280(5363), 596–599.PubMedCrossRef Behrens, J., et al. (1998). Functional interaction of an axin homolog, conductin, with beta-catenin, APC, and GSK3beta. Science, 280(5363), 596–599.PubMedCrossRef
32.
Zurück zum Zitat Sakanaka, C., Weiss, J. B., & Williams, L. T. (1998). Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3020–3023.PubMedPubMedCentralCrossRef Sakanaka, C., Weiss, J. B., & Williams, L. T. (1998). Bridging of beta-catenin and glycogen synthase kinase-3beta by axin and inhibition of beta-catenin-mediated transcription. Proceedings of the National Academy of Sciences of the United States of America, 95(6), 3020–3023.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Munemitsu, S., et al. (1995). Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proceedings of the National Academy of Sciences of the United States of America, 92(7), 3046–3050.PubMedPubMedCentralCrossRef Munemitsu, S., et al. (1995). Regulation of intracellular beta-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proceedings of the National Academy of Sciences of the United States of America, 92(7), 3046–3050.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Yost, C., et al. (1996). The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes & Development, 10(12), 1443–1454.CrossRef Yost, C., et al. (1996). The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes & Development, 10(12), 1443–1454.CrossRef
36.
Zurück zum Zitat Ikeda, S., et al. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17(5), 1371–1384.PubMedPubMedCentralCrossRef Ikeda, S., et al. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17(5), 1371–1384.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Yamamoto, H., et al. (1998). Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Molecular and Cellular Biology, 18(5), 2867–2875.PubMedPubMedCentralCrossRef Yamamoto, H., et al. (1998). Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Molecular and Cellular Biology, 18(5), 2867–2875.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Seeling, J. M., et al. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science, 283(5410), 2089–2091.PubMedCrossRef Seeling, J. M., et al. (1999). Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science, 283(5410), 2089–2091.PubMedCrossRef
39.
Zurück zum Zitat Gao, Z. H., et al. (2002). Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1182–1187.PubMedPubMedCentralCrossRef Gao, Z. H., et al. (2002). Casein kinase I phosphorylates and destabilizes the beta-catenin degradation complex. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1182–1187.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Su, L. K., Vogelstein, B., & Kinzler, K. W. (1993). Association of the APC tumor suppressor protein with catenins. Science, 262(5140), 1734–1737.PubMedCrossRef Su, L. K., Vogelstein, B., & Kinzler, K. W. (1993). Association of the APC tumor suppressor protein with catenins. Science, 262(5140), 1734–1737.PubMedCrossRef
41.
Zurück zum Zitat Rubinfeld, B., et al. (1997). Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Research, 57(20), 4624–4630.PubMed Rubinfeld, B., et al. (1997). Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Research, 57(20), 4624–4630.PubMed
42.
Zurück zum Zitat Rubinfeld, B., et al. (1996). Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science, 272(5264), 1023–1026.PubMedCrossRef Rubinfeld, B., et al. (1996). Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science, 272(5264), 1023–1026.PubMedCrossRef
43.
Zurück zum Zitat Liu, C., et al. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108(6), 837–847.PubMedCrossRef Liu, C., et al. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108(6), 837–847.PubMedCrossRef
44.
Zurück zum Zitat Behrens, J., et al. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 382(6592), 638–642.PubMedCrossRef Behrens, J., et al. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 382(6592), 638–642.PubMedCrossRef
45.
Zurück zum Zitat He, T. C., et al. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281(5382), 1509–1512.PubMedCrossRef He, T. C., et al. (1998). Identification of c-MYC as a target of the APC pathway. Science, 281(5382), 1509–1512.PubMedCrossRef
46.
Zurück zum Zitat Shtutman, M., et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 96(10), 5522–5527.PubMedPubMedCentralCrossRef Shtutman, M., et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 96(10), 5522–5527.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398(6726), 422–426.PubMedCrossRef Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature, 398(6726), 422–426.PubMedCrossRef
48.
Zurück zum Zitat Yamamoto, Y., et al. (2003). Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with beta-catenin mutations. Hepatology, 37(3), 528–533.PubMedCrossRef Yamamoto, Y., et al. (2003). Overexpression of orphan G-protein-coupled receptor, Gpr49, in human hepatocellular carcinomas with beta-catenin mutations. Hepatology, 37(3), 528–533.PubMedCrossRef
49.
Zurück zum Zitat Van der Flier, L. G., et al. (2007). The intestinal Wnt/TCF signature. Gastroenterology, 132(2), 628–632.PubMedCrossRef Van der Flier, L. G., et al. (2007). The intestinal Wnt/TCF signature. Gastroenterology, 132(2), 628–632.PubMedCrossRef
50.
Zurück zum Zitat Fevr, T., et al. (2007). Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Molecular and Cellular Biology, 27(21), 7551–7559.PubMedPubMedCentralCrossRef Fevr, T., et al. (2007). Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Molecular and Cellular Biology, 27(21), 7551–7559.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Morin, P. J., Vogelstein, B., & Kinzler, K. W. (1996). Apoptosis and APC in colorectal tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 7950–7954.PubMedPubMedCentralCrossRef Morin, P. J., Vogelstein, B., & Kinzler, K. W. (1996). Apoptosis and APC in colorectal tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 93(15), 7950–7954.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Chandra, S. H., et al. (2012). A common role for various human truncated adenomatous polyposis coli isoforms in the control of beta-catenin activity and cell proliferation. PLoS One, 7(4), e34479.PubMedCrossRef Chandra, S. H., et al. (2012). A common role for various human truncated adenomatous polyposis coli isoforms in the control of beta-catenin activity and cell proliferation. PLoS One, 7(4), e34479.PubMedCrossRef
53.
Zurück zum Zitat Sansom, O. J., et al. (2004). Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes & Development, 18(12), 1385–1390.CrossRef Sansom, O. J., et al. (2004). Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes & Development, 18(12), 1385–1390.CrossRef
54.
Zurück zum Zitat Dow, L. E., et al. (2015). Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell, 161(7), 1539–1552.PubMedPubMedCentralCrossRef Dow, L. E., et al. (2015). Apc restoration promotes cellular differentiation and reestablishes crypt homeostasis in colorectal cancer. Cell, 161(7), 1539–1552.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Strater, J., et al. (1995). In situ detection of enterocytic apoptosis in normal colonic mucosa and in familial adenomatous polyposis. Gut, 37(6), 819–825.PubMedPubMedCentralCrossRef Strater, J., et al. (1995). In situ detection of enterocytic apoptosis in normal colonic mucosa and in familial adenomatous polyposis. Gut, 37(6), 819–825.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat van de Wetering, M., et al. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 111(2), 241–250.PubMedCrossRef van de Wetering, M., et al. (2002). The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell, 111(2), 241–250.PubMedCrossRef
57.
Zurück zum Zitat Senda, T., et al. (2007). Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Medical Molecular Morphology, 40(2), 68–81.PubMedCrossRef Senda, T., et al. (2007). Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Medical Molecular Morphology, 40(2), 68–81.PubMedCrossRef
58.
Zurück zum Zitat Korinek, V., et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science, 275(5307), 1784–1787.PubMedCrossRef Korinek, V., et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science, 275(5307), 1784–1787.PubMedCrossRef
59.
Zurück zum Zitat Zhang, F., White, R. L., & Neufeld, K. L. (2000). Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12577–12582.PubMedPubMedCentralCrossRef Zhang, F., White, R. L., & Neufeld, K. L. (2000). Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12577–12582.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Galea, M. A., Eleftheriou, A., & Henderson, B. R. (2001). ARM domain-dependent nuclear import of adenomatous polyposis coli protein is stimulated by the B56 alpha subunit of protein phosphatase 2A. The Journal of Biological Chemistry, 276(49), 45833–45839.PubMedCrossRef Galea, M. A., Eleftheriou, A., & Henderson, B. R. (2001). ARM domain-dependent nuclear import of adenomatous polyposis coli protein is stimulated by the B56 alpha subunit of protein phosphatase 2A. The Journal of Biological Chemistry, 276(49), 45833–45839.PubMedCrossRef
61.
Zurück zum Zitat Henderson, B. R. (2000). Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nature Cell Biology, 2(9), 653–660.PubMedCrossRef Henderson, B. R. (2000). Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nature Cell Biology, 2(9), 653–660.PubMedCrossRef
62.
Zurück zum Zitat Neufeld, K. L., et al. (2000). APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Reports, 1(6), 519–523.PubMedPubMedCentralCrossRef Neufeld, K. L., et al. (2000). APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Reports, 1(6), 519–523.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Rosin-Arbesfeld, R., Townsley, F., & Bienz, M. (2000). The APC tumour suppressor has a nuclear export function. Nature, 406(6799), 1009–1012.PubMedCrossRef Rosin-Arbesfeld, R., Townsley, F., & Bienz, M. (2000). The APC tumour suppressor has a nuclear export function. Nature, 406(6799), 1009–1012.PubMedCrossRef
64.
Zurück zum Zitat Rosin-Arbesfeld, R., et al. (2003). Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. The EMBO Journal, 22(5), 1101–1113.PubMedPubMedCentralCrossRef Rosin-Arbesfeld, R., et al. (2003). Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. The EMBO Journal, 22(5), 1101–1113.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Zhang, F., White, R. L., & Neufeld, K. L. (2001). Cell density and phosphorylation control the subcellular localization of adenomatous polyposis coli protein. Molecular and Cellular Biology, 21(23), 8143–8156.PubMedPubMedCentralCrossRef Zhang, F., White, R. L., & Neufeld, K. L. (2001). Cell density and phosphorylation control the subcellular localization of adenomatous polyposis coli protein. Molecular and Cellular Biology, 21(23), 8143–8156.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Fagman, H., et al. (2003). Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene, 22(38), 6013–6022.PubMedCrossRef Fagman, H., et al. (2003). Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene, 22(38), 6013–6022.PubMedCrossRef
67.
Zurück zum Zitat Davies, J. R., et al. (2004). Potential link between the NIMA mitotic kinase and nuclear membrane fission during mitotic exit in Aspergillus nidulans. Eukaryotic Cell, 3(6), 1433–1444.PubMedPubMedCentralCrossRef Davies, J. R., et al. (2004). Potential link between the NIMA mitotic kinase and nuclear membrane fission during mitotic exit in Aspergillus nidulans. Eukaryotic Cell, 3(6), 1433–1444.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Sierra, J., et al. (2006). The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes & Development, 20(5), 586–600.CrossRef Sierra, J., et al. (2006). The APC tumor suppressor counteracts beta-catenin activation and H3K4 methylation at Wnt target genes. Genes & Development, 20(5), 586–600.CrossRef
69.
Zurück zum Zitat Choi, S. H., et al. (2013). α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes & Development, 27(22), 2473–2488.CrossRef Choi, S. H., et al. (2013). α-Catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes & Development, 27(22), 2473–2488.CrossRef
70.
Zurück zum Zitat Hamada, F., & Bienz, M. (2004). The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Developmental Cell, 7(5), 677–685.PubMedCrossRef Hamada, F., & Bienz, M. (2004). The APC tumor suppressor binds to C-terminal binding protein to divert nuclear beta-catenin from TCF. Developmental Cell, 7(5), 677–685.PubMedCrossRef
71.
Zurück zum Zitat Anderson, C. B., Neufeld, K. L., & White, R. L. (2002). Subcellular distribution of Wnt pathway proteins in normal and neoplastic colon. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8683–8688.PubMedPubMedCentralCrossRef Anderson, C. B., Neufeld, K. L., & White, R. L. (2002). Subcellular distribution of Wnt pathway proteins in normal and neoplastic colon. Proceedings of the National Academy of Sciences of the United States of America, 99(13), 8683–8688.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Kouzmenko, A. P., et al. (2008). Truncation mutations abolish chromatin-associated activities of adenomatous polyposis coli. Oncogene, 27(36), 4888–4899.PubMedCrossRef Kouzmenko, A. P., et al. (2008). Truncation mutations abolish chromatin-associated activities of adenomatous polyposis coli. Oncogene, 27(36), 4888–4899.PubMedCrossRef
73.
Zurück zum Zitat Zeineldin, M., et al. (2012). A knock-in mouse model reveals roles for nuclear Apc in cell proliferation, Wnt signal inhibition and tumor suppression. Oncogene, 31(19), 2423–2437.PubMedCrossRef Zeineldin, M., et al. (2012). A knock-in mouse model reveals roles for nuclear Apc in cell proliferation, Wnt signal inhibition and tumor suppression. Oncogene, 31(19), 2423–2437.PubMedCrossRef
74.
Zurück zum Zitat Goel, A., et al. (2007). The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology, 132(1), 127–138.PubMedCrossRef Goel, A., et al. (2007). The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology, 132(1), 127–138.PubMedCrossRef
75.
Zurück zum Zitat Fodde, R., et al. (2001). Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biology, 3(4), 433–438.PubMedCrossRef Fodde, R., et al. (2001). Mutations in the APC tumour suppressor gene cause chromosomal instability. Nature Cell Biology, 3(4), 433–438.PubMedCrossRef
76.
Zurück zum Zitat Kaplan, K. B., et al. (2001). A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nature Cell Biology, 3(4), 429–432.PubMedCrossRef Kaplan, K. B., et al. (2001). A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nature Cell Biology, 3(4), 429–432.PubMedCrossRef
77.
Zurück zum Zitat Dikovskaya, D., et al. (2007). Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. The Journal of Cell Biology, 176(2), 183–195.PubMedPubMedCentralCrossRef Dikovskaya, D., et al. (2007). Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. The Journal of Cell Biology, 176(2), 183–195.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Green, R. A., Wollman, R., & Kaplan, K. B. (2005). APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Molecular Biology of the Cell, 16(10), 4609–4622.PubMedPubMedCentralCrossRef Green, R. A., Wollman, R., & Kaplan, K. B. (2005). APC and EB1 function together in mitosis to regulate spindle dynamics and chromosome alignment. Molecular Biology of the Cell, 16(10), 4609–4622.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Trzepacz, C., et al. (1997). Phosphorylation of the tumor suppressor adenomatous polyposis coli (APC) by the cyclin-dependent kinase p34. The Journal of Biological Chemistry, 272(35), 21681–21684.PubMedCrossRef Trzepacz, C., et al. (1997). Phosphorylation of the tumor suppressor adenomatous polyposis coli (APC) by the cyclin-dependent kinase p34. The Journal of Biological Chemistry, 272(35), 21681–21684.PubMedCrossRef
80.
Zurück zum Zitat Green, R. A., & Kaplan, K. B. (2003). Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. The Journal of Cell Biology, 163(5), 949–961.PubMedPubMedCentralCrossRef Green, R. A., & Kaplan, K. B. (2003). Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. The Journal of Cell Biology, 163(5), 949–961.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Groden, J., et al. (1995). Response of colon cancer cell lines to the introduction of APC, a colon-specific tumor suppressor gene. Cancer Research, 55(7), 1531–1539.PubMed Groden, J., et al. (1995). Response of colon cancer cell lines to the introduction of APC, a colon-specific tumor suppressor gene. Cancer Research, 55(7), 1531–1539.PubMed
82.
Zurück zum Zitat Baeg, G. H., et al. (1995). The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. The EMBO Journal, 14(22), 5618–5625.PubMedPubMedCentral Baeg, G. H., et al. (1995). The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. The EMBO Journal, 14(22), 5618–5625.PubMedPubMedCentral
83.
Zurück zum Zitat Heinen, C. D., et al. (2002). The APC tumor suppressor controls entry into S-phase through its ability to regulate the cyclin D/RB pathway. Gastroenterology, 123(3), 751–763.PubMedCrossRef Heinen, C. D., et al. (2002). The APC tumor suppressor controls entry into S-phase through its ability to regulate the cyclin D/RB pathway. Gastroenterology, 123(3), 751–763.PubMedCrossRef
84.
Zurück zum Zitat Ishidate, T., et al. (2000). The APC-hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase. Oncogene, 19(3), 365–372.PubMedCrossRef Ishidate, T., et al. (2000). The APC-hDLG complex negatively regulates cell cycle progression from the G0/G1 to S phase. Oncogene, 19(3), 365–372.PubMedCrossRef
85.
Zurück zum Zitat Qian, J., et al. (2008). The APC tumor suppressor inhibits DNA replication by directly binding to DNA via its carboxyl terminus. Gastroenterology, 135(1), 152–162.PubMedPubMedCentralCrossRef Qian, J., et al. (2008). The APC tumor suppressor inhibits DNA replication by directly binding to DNA via its carboxyl terminus. Gastroenterology, 135(1), 152–162.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Brocardo, M. G., Borowiec, J. A., & Henderson, B. R. (2011). Adenomatous polyposis coli protein regulates the cellular response to DNA replication stress. The International Journal of Biochemistry & Cell Biology, 43(9), 1354–1364.CrossRef Brocardo, M. G., Borowiec, J. A., & Henderson, B. R. (2011). Adenomatous polyposis coli protein regulates the cellular response to DNA replication stress. The International Journal of Biochemistry & Cell Biology, 43(9), 1354–1364.CrossRef
87.
Zurück zum Zitat Zhang, Y., et al. (2009). Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nature Chemical Biology, 5(4), 217–219.PubMedCrossRef Zhang, Y., et al. (2009). Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nature Chemical Biology, 5(4), 217–219.PubMedCrossRef
88.
Zurück zum Zitat Zhang, T., et al. (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Research, 61(24), 8664–8667.PubMed Zhang, T., et al. (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Research, 61(24), 8664–8667.PubMed
89.
Zurück zum Zitat Steigerwald, K., et al. (2005). The APC tumor suppressor promotes transcription-independent apoptosis in vitro. Molecular Cancer Research, 3(2), 78–89.PubMedCrossRef Steigerwald, K., et al. (2005). The APC tumor suppressor promotes transcription-independent apoptosis in vitro. Molecular Cancer Research, 3(2), 78–89.PubMedCrossRef
90.
Zurück zum Zitat Qian, J., et al. (2007). Caspase cleavage of the APC tumor suppressor and release of an amino-terminal domain is required for the transcription-independent function of APC in apoptosis. Oncogene, 26(33), 4872–4876.PubMedCrossRef Qian, J., et al. (2007). Caspase cleavage of the APC tumor suppressor and release of an amino-terminal domain is required for the transcription-independent function of APC in apoptosis. Oncogene, 26(33), 4872–4876.PubMedCrossRef
91.
Zurück zum Zitat Qian, J., et al. (2010). The mitochondrial protein hTID-1 partners with the caspase-cleaved adenomatous polyposis cell tumor suppressor to facilitate apoptosis. Gastroenterology, 138(4), 1418–1428.PubMedCrossRef Qian, J., et al. (2010). The mitochondrial protein hTID-1 partners with the caspase-cleaved adenomatous polyposis cell tumor suppressor to facilitate apoptosis. Gastroenterology, 138(4), 1418–1428.PubMedCrossRef
92.
Zurück zum Zitat Brocardo, M., et al. (2008). Mitochondrial targeting of adenomatous polyposis coli protein is stimulated by truncating cancer mutations: regulation of Bcl-2 and implications for cell survival. The Journal of Biological Chemistry, 283(9), 5950–5959.PubMedCrossRef Brocardo, M., et al. (2008). Mitochondrial targeting of adenomatous polyposis coli protein is stimulated by truncating cancer mutations: regulation of Bcl-2 and implications for cell survival. The Journal of Biological Chemistry, 283(9), 5950–5959.PubMedCrossRef
93.
Zurück zum Zitat Andreu, P., et al. (2005). Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development, 132(6), 1443–1451.PubMedCrossRef Andreu, P., et al. (2005). Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine. Development, 132(6), 1443–1451.PubMedCrossRef
94.
Zurück zum Zitat Korinek, V., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19(4), 379–383.PubMedCrossRef Korinek, V., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19(4), 379–383.PubMedCrossRef
95.
Zurück zum Zitat Barker, N., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007.PubMedCrossRef Barker, N., et al. (2007). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature, 449(7165), 1003–1007.PubMedCrossRef
96.
Zurück zum Zitat Nadauld, L. D., et al. (2004). Adenomatous polyposis coli control of retinoic acid biosynthesis is critical for zebrafish intestinal development and differentiation. The Journal of Biological Chemistry, 279(49), 51581–51589.PubMedCrossRef Nadauld, L. D., et al. (2004). Adenomatous polyposis coli control of retinoic acid biosynthesis is critical for zebrafish intestinal development and differentiation. The Journal of Biological Chemistry, 279(49), 51581–51589.PubMedCrossRef
97.
Zurück zum Zitat Nadauld, L. D., et al. (2006). Adenomatous polyposis coli control of C-terminal binding protein-1 stability regulates expression of intestinal retinol dehydrogenases. The Journal of Biological Chemistry, 281(49), 37828–37835.PubMedCrossRef Nadauld, L. D., et al. (2006). Adenomatous polyposis coli control of C-terminal binding protein-1 stability regulates expression of intestinal retinol dehydrogenases. The Journal of Biological Chemistry, 281(49), 37828–37835.PubMedCrossRef
98.
Zurück zum Zitat Nadauld, L. D., et al. (2005). The zebrafish retinol dehydrogenase, rdh1l, is essential for intestinal development and is regulated by the tumor suppressor adenomatous polyposis coli. The Journal of Biological Chemistry, 280(34), 30490–30495.PubMedCrossRef Nadauld, L. D., et al. (2005). The zebrafish retinol dehydrogenase, rdh1l, is essential for intestinal development and is regulated by the tumor suppressor adenomatous polyposis coli. The Journal of Biological Chemistry, 280(34), 30490–30495.PubMedCrossRef
99.
Zurück zum Zitat Jette, C., et al. (2004). The tumor suppressor adenomatous polyposis coli and caudal related homeodomain protein regulate expression of retinol dehydrogenase L. The Journal of Biological Chemistry, 279(33), 34397–34405.PubMedCrossRef Jette, C., et al. (2004). The tumor suppressor adenomatous polyposis coli and caudal related homeodomain protein regulate expression of retinol dehydrogenase L. The Journal of Biological Chemistry, 279(33), 34397–34405.PubMedCrossRef
100.
Zurück zum Zitat Sandoval, I. T., et al. (2017). A metabolic switch controls intestinal differentiation downstream of adenomatous polyposis coli (APC). eLife, 6, e22706.PubMedPubMedCentralCrossRef Sandoval, I. T., et al. (2017). A metabolic switch controls intestinal differentiation downstream of adenomatous polyposis coli (APC). eLife, 6, e22706.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Cheng, H., & Leblond, C. P. (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. The American Journal of Anatomy, 141(4), 537–561.PubMedCrossRef Cheng, H., & Leblond, C. P. (1974). Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian theory of the origin of the four epithelial cell types. The American Journal of Anatomy, 141(4), 537–561.PubMedCrossRef
102.
Zurück zum Zitat Rosin-Arbesfeld, R., Ihrke, G., & Bienz, M. (2001). Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. The EMBO Journal, 20(21), 5929–5939.PubMedPubMedCentralCrossRef Rosin-Arbesfeld, R., Ihrke, G., & Bienz, M. (2001). Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. The EMBO Journal, 20(21), 5929–5939.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Kawasaki, Y., et al. (2000). Asef, a link between the tumor suppressor APC and G-protein signaling. Science, 289(5482), 1194–1197.PubMedCrossRef Kawasaki, Y., et al. (2000). Asef, a link between the tumor suppressor APC and G-protein signaling. Science, 289(5482), 1194–1197.PubMedCrossRef
104.
Zurück zum Zitat Watanabe, T., et al. (2004). Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Developmental Cell, 7(6), 871–883.PubMedCrossRef Watanabe, T., et al. (2004). Interaction with IQGAP1 links APC to Rac1, Cdc42, and actin filaments during cell polarization and migration. Developmental Cell, 7(6), 871–883.PubMedCrossRef
105.
Zurück zum Zitat Sudhaharan, T., et al. (2011). Rho GTPase Cdc42 is a direct interacting partner of adenomatous polyposis coli protein and can alter its cellular localization. PLoS One, 6(2), e16603.PubMedPubMedCentralCrossRef Sudhaharan, T., et al. (2011). Rho GTPase Cdc42 is a direct interacting partner of adenomatous polyposis coli protein and can alter its cellular localization. PLoS One, 6(2), e16603.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Moseley, J. B., et al. (2007). Regulated binding of adenomatous polyposis coli protein to actin. The Journal of Biological Chemistry, 282(17), 12661–12668.PubMedCrossRef Moseley, J. B., et al. (2007). Regulated binding of adenomatous polyposis coli protein to actin. The Journal of Biological Chemistry, 282(17), 12661–12668.PubMedCrossRef
107.
Zurück zum Zitat Okada, K., et al. (2010). Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1. The Journal of Cell Biology, 189(7), 1087–1096.PubMedPubMedCentralCrossRef Okada, K., et al. (2010). Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1. The Journal of Cell Biology, 189(7), 1087–1096.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Juanes, M. A., et al. (2017). Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. The Journal of Cell Biology, 216(9), 2859–2875.PubMed Juanes, M. A., et al. (2017). Adenomatous polyposis coli nucleates actin assembly to drive cell migration and microtubule-induced focal adhesion turnover. The Journal of Cell Biology, 216(9), 2859–2875.PubMed
109.
Zurück zum Zitat Aberle, H., Schwartz, H., & Kemler, R. (1996). Cadherin-catenin complex: Protein interactions and their implications for cadherin function. Journal of Cellular Biochemistry, 61(4), 514–523.PubMedCrossRef Aberle, H., Schwartz, H., & Kemler, R. (1996). Cadherin-catenin complex: Protein interactions and their implications for cadherin function. Journal of Cellular Biochemistry, 61(4), 514–523.PubMedCrossRef
110.
Zurück zum Zitat Faux, M. C., et al. (2004). Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. Journal of Cell Science, 117(Pt 3), 427–439.PubMed Faux, M. C., et al. (2004). Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. Journal of Cell Science, 117(Pt 3), 427–439.PubMed
111.
Zurück zum Zitat Hulsken, J., Birchmeier, W., & Behrens, J. (1994). E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. The Journal of Cell Biology, 127(6 Pt 2), 2061–2069.PubMedCrossRef Hulsken, J., Birchmeier, W., & Behrens, J. (1994). E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. The Journal of Cell Biology, 127(6 Pt 2), 2061–2069.PubMedCrossRef
112.
Zurück zum Zitat Nelson, S. A., et al. (2012). Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems. Disease Models & Mechanisms, 5(6), 940–947.CrossRef Nelson, S. A., et al. (2012). Tumorigenic fragments of APC cause dominant defects in directional cell migration in multiple model systems. Disease Models & Mechanisms, 5(6), 940–947.CrossRef
113.
Zurück zum Zitat Matsumine, A., et al. (1996). Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science, 272(5264), 1020–1023.PubMedCrossRef Matsumine, A., et al. (1996). Binding of APC to the human homolog of the Drosophila discs large tumor suppressor protein. Science, 272(5264), 1020–1023.PubMedCrossRef
114.
Zurück zum Zitat Takizawa, S., et al. (2006). Human scribble, a novel tumor suppressor identified as a target of high-risk HPV E6 for ubiquitin-mediated degradation, interacts with adenomatous polyposis coli. Genes to Cells, 11(4), 453–464.PubMedCrossRef Takizawa, S., et al. (2006). Human scribble, a novel tumor suppressor identified as a target of high-risk HPV E6 for ubiquitin-mediated degradation, interacts with adenomatous polyposis coli. Genes to Cells, 11(4), 453–464.PubMedCrossRef
115.
Zurück zum Zitat Nathke, I. S., et al. (1996). The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. The Journal of Cell Biology, 134(1), 165–179.PubMedCrossRef Nathke, I. S., et al. (1996). The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. The Journal of Cell Biology, 134(1), 165–179.PubMedCrossRef
116.
Zurück zum Zitat Munemitsu, S., et al. (1994). The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Research, 54(14), 3676–3681.PubMed Munemitsu, S., et al. (1994). The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Research, 54(14), 3676–3681.PubMed
117.
Zurück zum Zitat Zumbrunn, J., et al. (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Current Biology, 11(1), 44–49.PubMedCrossRef Zumbrunn, J., et al. (2001). Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Current Biology, 11(1), 44–49.PubMedCrossRef
118.
Zurück zum Zitat Mogensen, M. M., et al. (2002). The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells. The Journal of Cell Biology, 157(6), 1041–1048.PubMedPubMedCentralCrossRef Mogensen, M. M., et al. (2002). The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells. The Journal of Cell Biology, 157(6), 1041–1048.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Su, L. K., et al. (1995). APC binds to the novel protein EB1. Cancer Research, 55(14), 2972–2977.PubMed Su, L. K., et al. (1995). APC binds to the novel protein EB1. Cancer Research, 55(14), 2972–2977.PubMed
120.
Zurück zum Zitat Iizuka-Kogo, A., Shimomura, A., & Senda, T. (2005). Colocalization of APC and DLG at the tips of cellular protrusions in cultured epithelial cells and its dependency on cytoskeletons. Histochemistry and Cell Biology, 123(1), 67–73.PubMedCrossRef Iizuka-Kogo, A., Shimomura, A., & Senda, T. (2005). Colocalization of APC and DLG at the tips of cellular protrusions in cultured epithelial cells and its dependency on cytoskeletons. Histochemistry and Cell Biology, 123(1), 67–73.PubMedCrossRef
121.
Zurück zum Zitat Kroboth, K., et al. (2007). Lack of adenomatous polyposis coli protein correlates with a decrease in cell migration and overall changes in microtubule stability. Molecular Biology of the Cell, 18(3), 910–918.PubMedPubMedCentralCrossRef Kroboth, K., et al. (2007). Lack of adenomatous polyposis coli protein correlates with a decrease in cell migration and overall changes in microtubule stability. Molecular Biology of the Cell, 18(3), 910–918.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Mili, S., Moissoglu, K., & Macara, I. G. (2008). Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature, 453(7191), 115–119.PubMedPubMedCentralCrossRef Mili, S., Moissoglu, K., & Macara, I. G. (2008). Genome-wide screen reveals APC-associated RNAs enriched in cell protrusions. Nature, 453(7191), 115–119.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Marshall, T. W., et al. (2011). The tumor suppressor adenomatous polyposis coli controls the direction in which a cell extrudes from an epithelium. Molecular Biology of the Cell, 22(21), 3962–3970.PubMedPubMedCentralCrossRef Marshall, T. W., et al. (2011). The tumor suppressor adenomatous polyposis coli controls the direction in which a cell extrudes from an epithelium. Molecular Biology of the Cell, 22(21), 3962–3970.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Bellis, J., et al. (2012). The tumor suppressor Apc controls planar cell polarities central to gut homeostasis. The Journal of Cell Biology, 198(3), 331–341.PubMedPubMedCentralCrossRef Bellis, J., et al. (2012). The tumor suppressor Apc controls planar cell polarities central to gut homeostasis. The Journal of Cell Biology, 198(3), 331–341.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Mahmoud, N. N., et al. (1997). Apc gene mutation is associated with a dominant-negative effect upon intestinal cell migration. Cancer Research, 57(22), 5045–5050.PubMed Mahmoud, N. N., et al. (1997). Apc gene mutation is associated with a dominant-negative effect upon intestinal cell migration. Cancer Research, 57(22), 5045–5050.PubMed
126.
Zurück zum Zitat Wong, M. H., et al. (1996). Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9588–9593.PubMedPubMedCentralCrossRef Wong, M. H., et al. (1996). Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9588–9593.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Kim, K. P., et al. (2017). Paired primary and metastatic tumor analysis of somatic mutations in synchronous and metachronous colorectal cancer. Cancer Research and Treatment, 49(1), 161–167.PubMedCrossRef Kim, K. P., et al. (2017). Paired primary and metastatic tumor analysis of somatic mutations in synchronous and metachronous colorectal cancer. Cancer Research and Treatment, 49(1), 161–167.PubMedCrossRef
128.
Zurück zum Zitat Leung, M. L., et al. (2017). Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Research, 27(8), 1287–1299.PubMedPubMedCentralCrossRef Leung, M. L., et al. (2017). Single-cell DNA sequencing reveals a late-dissemination model in metastatic colorectal cancer. Genome Research, 27(8), 1287–1299.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Brabletz, T., et al. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10356–10361.PubMedPubMedCentralCrossRef Brabletz, T., et al. (2001). Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10356–10361.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Bracke, M. E., Van Roy, F. M., & Mareel, M. M. (1996). The E-cadherin/catenin complex in invasion and metastasis. Current Topics in Microbiology and Immunology, 213(Pt 1), 123–161.PubMed Bracke, M. E., Van Roy, F. M., & Mareel, M. M. (1996). The E-cadherin/catenin complex in invasion and metastasis. Current Topics in Microbiology and Immunology, 213(Pt 1), 123–161.PubMed
131.
Zurück zum Zitat Jamora, C., et al. (2003). Links between signal transduction, transcription and adhesion in epithelial bud development. Nature, 422(6929), 317–322.PubMedPubMedCentralCrossRef Jamora, C., et al. (2003). Links between signal transduction, transcription and adhesion in epithelial bud development. Nature, 422(6929), 317–322.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Conacci-Sorrell, M., et al. (2003). Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. The Journal of Cell Biology, 163(4), 847–857.PubMedPubMedCentralCrossRef Conacci-Sorrell, M., et al. (2003). Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. The Journal of Cell Biology, 163(4), 847–857.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Gradl, D., Kuhl, M., & Wedlich, D. (1999). The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Molecular and Cellular Biology, 19(8), 5576–5587.PubMedPubMedCentralCrossRef Gradl, D., Kuhl, M., & Wedlich, D. (1999). The Wnt/Wg signal transducer beta-catenin controls fibronectin expression. Molecular and Cellular Biology, 19(8), 5576–5587.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Hlubek, F., et al. (2001). Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Research, 61(22), 8089–8093.PubMed Hlubek, F., et al. (2001). Expression of the invasion factor laminin gamma2 in colorectal carcinomas is regulated by beta-catenin. Cancer Research, 61(22), 8089–8093.PubMed
135.
Zurück zum Zitat Crawford, H. C., et al. (1999). The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene, 18(18), 2883–2891.PubMedCrossRef Crawford, H. C., et al. (1999). The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene, 18(18), 2883–2891.PubMedCrossRef
136.
Zurück zum Zitat Brabletz, T., et al. (1999). Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. The American Journal of Pathology, 155(4), 1033–1038.PubMedPubMedCentralCrossRef Brabletz, T., et al. (1999). Beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. The American Journal of Pathology, 155(4), 1033–1038.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Takahashi, M., et al. (2002). Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene, 21(38), 5861–5867.PubMedCrossRef Takahashi, M., et al. (2002). Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene, 21(38), 5861–5867.PubMedCrossRef
138.
Zurück zum Zitat Gavert, N., et al. (2007). Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Research, 67(16), 7703–7712.PubMedCrossRef Gavert, N., et al. (2007). Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Research, 67(16), 7703–7712.PubMedCrossRef
139.
Zurück zum Zitat Mann, B., et al. (1999). Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1603–1608.PubMedPubMedCentralCrossRef Mann, B., et al. (1999). Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1603–1608.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Wielenga, V. J., et al. (1999). Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. The American Journal of Pathology, 154(2), 515–523.PubMedPubMedCentralCrossRef Wielenga, V. J., et al. (1999). Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. The American Journal of Pathology, 154(2), 515–523.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Conacci-Sorrell, M. E., et al. (2002). Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes & Development, 16(16), 2058–2072.CrossRef Conacci-Sorrell, M. E., et al. (2002). Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes & Development, 16(16), 2058–2072.CrossRef
142.
Zurück zum Zitat Gavert, N., et al. (2005). L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. The Journal of Cell Biology, 168(4), 633–642.PubMedPubMedCentralCrossRef Gavert, N., et al. (2005). L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. The Journal of Cell Biology, 168(4), 633–642.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Batlle, E., et al. (2002). β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell, 111(2), 251–263.PubMedCrossRef Batlle, E., et al. (2002). β-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell, 111(2), 251–263.PubMedCrossRef
144.
Zurück zum Zitat Vignjevic, D., et al. (2007). Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Research, 67(14), 6844–6853.PubMedCrossRef Vignjevic, D., et al. (2007). Fascin, a novel target of beta-catenin-TCF signaling, is expressed at the invasive front of human colon cancer. Cancer Research, 67(14), 6844–6853.PubMedCrossRef
145.
Zurück zum Zitat Hlubek, F., et al. (2007). Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. International Journal of Cancer, 121(9), 1941–1948.PubMedCrossRef Hlubek, F., et al. (2007). Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. International Journal of Cancer, 121(9), 1941–1948.PubMedCrossRef
146.
Zurück zum Zitat Todaro, M., et al. (2014). CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell, 14(3), 342–356.PubMedCrossRef Todaro, M., et al. (2014). CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell, 14(3), 342–356.PubMedCrossRef
147.
Zurück zum Zitat Zilberberg, A., Lahav, L., & Rosin-Arbesfeld, R. (2010). Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut, 59(4), 496–507.PubMedCrossRef Zilberberg, A., Lahav, L., & Rosin-Arbesfeld, R. (2010). Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut, 59(4), 496–507.PubMedCrossRef
148.
Zurück zum Zitat Virmani, A. K., et al. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clinical Cancer Research, 7(7), 1998–2004.PubMed Virmani, A. K., et al. (2001). Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clinical Cancer Research, 7(7), 1998–2004.PubMed
149.
Zurück zum Zitat Macnab, S. A., et al. (2011). Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells. International Journal of Oncology, 39(5), 1173–1181.PubMed Macnab, S. A., et al. (2011). Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells. International Journal of Oncology, 39(5), 1173–1181.PubMed
150.
Zurück zum Zitat Sansom, O. J., et al. (2007). Myc deletion rescues Apc deficiency in the small intestine. Nature, 446(7136), 676–679.PubMedCrossRef Sansom, O. J., et al. (2007). Myc deletion rescues Apc deficiency in the small intestine. Nature, 446(7136), 676–679.PubMedCrossRef
151.
Zurück zum Zitat Reed, K. R., et al. (2008). B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18919–18923.PubMedPubMedCentralCrossRef Reed, K. R., et al. (2008). B-catenin deficiency, but not Myc deletion, suppresses the immediate phenotypes of APC loss in the liver. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18919–18923.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Wilkins, J. A., & Sansom, O. J. (2008). C-Myc is a critical mediator of the phenotypes of Apc loss in the intestine. Cancer Research, 68(13), 4963–4966.PubMedCrossRef Wilkins, J. A., & Sansom, O. J. (2008). C-Myc is a critical mediator of the phenotypes of Apc loss in the intestine. Cancer Research, 68(13), 4963–4966.PubMedCrossRef
153.
Zurück zum Zitat Schepers, A. G., et al. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337(6095), 730–735.PubMedCrossRef Schepers, A. G., et al. (2012). Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 337(6095), 730–735.PubMedCrossRef
154.
Zurück zum Zitat Garber, K. (2009). Drugging the Wnt pathway: problems and progress. Journal of the National Cancer Institute, 101(8), 548–550.PubMedCrossRef Garber, K. (2009). Drugging the Wnt pathway: problems and progress. Journal of the National Cancer Institute, 101(8), 548–550.PubMedCrossRef
155.
Zurück zum Zitat Shitashige, M., et al. (2010). Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Research, 70(12), 5024–5033.PubMedCrossRef Shitashige, M., et al. (2010). Traf2- and Nck-interacting kinase is essential for Wnt signaling and colorectal cancer growth. Cancer Research, 70(12), 5024–5033.PubMedCrossRef
156.
Zurück zum Zitat Lu, B., et al. (2016). Wnt drug discovery: weaving through the screens, patents and clinical trials. Cancers (Basel), 8(9), 82.CrossRef Lu, B., et al. (2016). Wnt drug discovery: weaving through the screens, patents and clinical trials. Cancers (Basel), 8(9), 82.CrossRef
157.
Zurück zum Zitat Vincan, E., & Barker, N. (2008). The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clinical & Experimental Metastasis, 25(6), 657–663.CrossRef Vincan, E., & Barker, N. (2008). The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clinical & Experimental Metastasis, 25(6), 657–663.CrossRef
158.
Zurück zum Zitat Chen, B., et al. (2009). Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature Chemical Biology, 5(2), 100–107.PubMedPubMedCentralCrossRef Chen, B., et al. (2009). Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature Chemical Biology, 5(2), 100–107.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Voloshanenko, O., et al. (2013). Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nature Communications, 4, 2610.PubMedPubMedCentralCrossRef Voloshanenko, O., et al. (2013). Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells. Nature Communications, 4, 2610.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Liu, J., et al. (2013). Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20224–20229.PubMedPubMedCentralCrossRef Liu, J., et al. (2013). Targeting Wnt-driven cancer through the inhibition of porcupine by LGK974. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 20224–20229.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Madan, B., et al. (2016). Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene, 35(17), 2197–2207.PubMedCrossRef Madan, B., et al. (2016). Wnt addiction of genetically defined cancers reversed by PORCN inhibition. Oncogene, 35(17), 2197–2207.PubMedCrossRef
162.
Zurück zum Zitat Gurney, A., et al. (2012). Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11717–11722.PubMedPubMedCentralCrossRef Gurney, A., et al. (2012). Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11717–11722.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Fischer, M. M., et al. (2017). WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. Science Advances, 3(6), e1700090.PubMedPubMedCentralCrossRef Fischer, M. M., et al. (2017). WNT antagonists exhibit unique combinatorial antitumor activity with taxanes by potentiating mitotic cell death. Science Advances, 3(6), e1700090.PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Thorne, C. A., et al. (2010). Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nature Chemical Biology, 6(11), 829–836.PubMedPubMedCentralCrossRef Thorne, C. A., et al. (2010). Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nature Chemical Biology, 6(11), 829–836.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Huang, S. M., et al. (2009). Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 461(7264), 614–620.PubMedCrossRef Huang, S. M., et al. (2009). Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature, 461(7264), 614–620.PubMedCrossRef
166.
Zurück zum Zitat Waaler, J., et al. (2012). A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Research, 72(11), 2822–2832.PubMedCrossRef Waaler, J., et al. (2012). A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Research, 72(11), 2822–2832.PubMedCrossRef
167.
Zurück zum Zitat Lau, T., et al. (2013). A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Research, 73(10), 3132–3144.PubMedCrossRef Lau, T., et al. (2013). A novel tankyrase small-molecule inhibitor suppresses APC mutation-driven colorectal tumor growth. Cancer Research, 73(10), 3132–3144.PubMedCrossRef
168.
Zurück zum Zitat Larriba, M. J., et al. (2011). Vitamin D receptor deficiency enhances Wnt/beta-catenin signaling and tumor burden in colon cancer. PLoS One, 6(8), e23524.PubMedPubMedCentralCrossRef Larriba, M. J., et al. (2011). Vitamin D receptor deficiency enhances Wnt/beta-catenin signaling and tumor burden in colon cancer. PLoS One, 6(8), e23524.PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Palmer, H. G., et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154(2), 369–387.PubMedPubMedCentralCrossRef Palmer, H. G., et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154(2), 369–387.PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Shah, S., et al. (2006). The molecular basis of vitamin D receptor and beta-catenin crossregulation. Molecular Cell, 21(6), 799–809.PubMedCrossRef Shah, S., et al. (2006). The molecular basis of vitamin D receptor and beta-catenin crossregulation. Molecular Cell, 21(6), 799–809.PubMedCrossRef
171.
Zurück zum Zitat Lepourcelet, M., et al. (2004). Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell, 5(1), 91–102.PubMedCrossRef Lepourcelet, M., et al. (2004). Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell, 5(1), 91–102.PubMedCrossRef
172.
Zurück zum Zitat Emami, K. H., et al. (2004). A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12682–12687.PubMedPubMedCentralCrossRef Emami, K. H., et al. (2004). A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12682–12687.PubMedPubMedCentralCrossRef
173.
174.
Zurück zum Zitat Shitashige, M., et al. (2008). Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology, 134(7), 1961–1971, 1971 e1–4. Shitashige, M., et al. (2008). Regulation of Wnt signaling by the nuclear pore complex. Gastroenterology, 134(7), 1961–1971, 1971 e1–4.
176.
Zurück zum Zitat Morton, J. P., Myant, K. B., & Sansom, O. J. (2011). A FAK-PI-3K-mTOR axis is required for Wnt-Myc driven intestinal regeneration and tumorigenesis. Cell Cycle, 10(2), 173–175.PubMedCrossRef Morton, J. P., Myant, K. B., & Sansom, O. J. (2011). A FAK-PI-3K-mTOR axis is required for Wnt-Myc driven intestinal regeneration and tumorigenesis. Cell Cycle, 10(2), 173–175.PubMedCrossRef
Metadaten
Titel
Functions of the APC tumor suppressor protein dependent and independent of canonical WNT signaling: implications for therapeutic targeting
verfasst von
William Hankey
Wendy L. Frankel
Joanna Groden
Publikationsdatum
09.01.2018
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2018
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9725-6

Weitere Artikel der Ausgabe 1/2018

Cancer and Metastasis Reviews 1/2018 Zur Ausgabe

Announcement

Biographies

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.