Skip to main content
Erschienen in: Inflammation 1/2018

23.10.2017 | ORIGINAL ARTICLE

Fungal β-Glucan Activates the NLRP3 Inflammasome in Human Bronchial Epithelial Cells Through ROS Production

verfasst von: Yanhua Huang, Meng Hua, Xuefan Cui

Erschienen in: Inflammation | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Abstract

The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has developed as an important bridge between innate immune and infection recently, and has the ability to drive proteolytic procaspase-1 into bioactive caspase-1, then responsible for proteolytic processing of inflammatory cytokines IL-1β and IL-18. Fungal β-glucan, a major component of fungal cell wall, triggers inflammatory response in multiple immune cells, but rarely described in epithelial cells. Also, the relationship between fungal β-glucan and NLRP3 inflammasome is not clear yet. In this study, we first identified that curdlan, a large particulate β-glucan, could activate the NLRP3 inflammasome in LPS-primed human bronchial epithelial cells (HBECs). RT-PCR and Western Blot showed that curdlan upregulate the mRNA as well as intracellular protein expression of NLRP3 and IL-1β in HBECs, along with the activity of caspase-1, and the level of mature IL-1β in cell supernatants was higher by ELISA detection. Further studies demonstrated that the activation of NLRP3 inflammasome could be attenuated by NAC, an inhibitor of ROS. Thus, it indicated curdlan activate NLRP3 inflammasome through a pathway requiring ROS production in HBECs. These findings may provide a new therapeutic target, NLRP3 inflammasome, in invasive pulmonary fungal infections.
Literatur
1.
Zurück zum Zitat Hayes, G.E., and D.W. Denning. 2013. Frequency, diagnosis and management of fungal respiratory infections. Current Opinion in Pulmonary Medicine 19 (3): 259–265.CrossRefPubMed Hayes, G.E., and D.W. Denning. 2013. Frequency, diagnosis and management of fungal respiratory infections. Current Opinion in Pulmonary Medicine 19 (3): 259–265.CrossRefPubMed
2.
Zurück zum Zitat Martín-Peña, A., M. Aguilar-Guisado, and J.M. Cisneros. 2014. Does the current treatment of invasive fungal infection need to be reviewed? Enfermedades Infecciosas y Microbiología Clínica 32 (8): 523–528.CrossRefPubMed Martín-Peña, A., M. Aguilar-Guisado, and J.M. Cisneros. 2014. Does the current treatment of invasive fungal infection need to be reviewed? Enfermedades Infecciosas y Microbiología Clínica 32 (8): 523–528.CrossRefPubMed
3.
Zurück zum Zitat De Pascale, G., and M. Tumbarello. 2015. Fungal infections in the ICU: advances in treatment and diagnosis. Current Opinion in Critical Care 21 (5): 421–429.CrossRefPubMed De Pascale, G., and M. Tumbarello. 2015. Fungal infections in the ICU: advances in treatment and diagnosis. Current Opinion in Critical Care 21 (5): 421–429.CrossRefPubMed
4.
Zurück zum Zitat Shepardson, K.M., and R.A. Cramer. 2013. Fungal cell wall dynamics and infection site microenvironments: signal integration and infection outcome. Current Opinion in Microbiology 16 (4): 385–390.CrossRefPubMedPubMedCentral Shepardson, K.M., and R.A. Cramer. 2013. Fungal cell wall dynamics and infection site microenvironments: signal integration and infection outcome. Current Opinion in Microbiology 16 (4): 385–390.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Kankkunen, P., L. Teirilä, J. Rintahaka, et al. 2010. (1, 3)-β-Glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. The Journal of Immunology 184 (11): 6335–6342.CrossRefPubMed Kankkunen, P., L. Teirilä, J. Rintahaka, et al. 2010. (1, 3)-β-Glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages. The Journal of Immunology 184 (11): 6335–6342.CrossRefPubMed
6.
Zurück zum Zitat Tsoni, S.V., and G.D. Brown. 2008. β-Glucans and Dectin-1. Annals of the New York Academy of Sciences 1143 (1): 45–60.CrossRefPubMed Tsoni, S.V., and G.D. Brown. 2008. β-Glucans and Dectin-1. Annals of the New York Academy of Sciences 1143 (1): 45–60.CrossRefPubMed
7.
Zurück zum Zitat Mori, T., H. Ikemoto, M. Matsumura, et al. 1997. Evaluation of plasma (1 ≥ 3)—D-glucan measurement by the kinetic turbidimetric limulus test, for the clinical diagnosis of mycotic infections. European Journal of Clinical Chemistry and Clinical Biochemistry 35: 553–560.PubMed Mori, T., H. Ikemoto, M. Matsumura, et al. 1997. Evaluation of plasma (1 ≥ 3)—D-glucan measurement by the kinetic turbidimetric limulus test, for the clinical diagnosis of mycotic infections. European Journal of Clinical Chemistry and Clinical Biochemistry 35: 553–560.PubMed
8.
Zurück zum Zitat Miyazaki, T., S. Kohno, K. Mitsutake, et al. 1995. Plasma (1 ≥ 3)-beta-D-glucan and fungal antigenemia in patients with candidemia, aspergillosis, and cryptococcosis. Journal of Clinical Microbiology 33 (12): 3115–3118.PubMedPubMedCentral Miyazaki, T., S. Kohno, K. Mitsutake, et al. 1995. Plasma (1 ≥ 3)-beta-D-glucan and fungal antigenemia in patients with candidemia, aspergillosis, and cryptococcosis. Journal of Clinical Microbiology 33 (12): 3115–3118.PubMedPubMedCentral
9.
Zurück zum Zitat Kumar, H., Y. Kumagai, T. Tsuchida, et al. 2009. Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal β-glucan. The Journal of Immunology 183 (12): 8061–8067.CrossRefPubMed Kumar, H., Y. Kumagai, T. Tsuchida, et al. 2009. Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal β-glucan. The Journal of Immunology 183 (12): 8061–8067.CrossRefPubMed
10.
Zurück zum Zitat Jo, E.K., J.K. Kim, D.M. Shin, et al. 2016. Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology 13 (2): 148–159.CrossRef Jo, E.K., J.K. Kim, D.M. Shin, et al. 2016. Molecular mechanisms regulating NLRP3 inflammasome activation. Cellular & Molecular Immunology 13 (2): 148–159.CrossRef
11.
Zurück zum Zitat Elliott, E.I., and F.S. Sutterwala. 2015. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunological Reviews 265 (1): 35–52.CrossRefPubMedPubMedCentral Elliott, E.I., and F.S. Sutterwala. 2015. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunological Reviews 265 (1): 35–52.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Hosseinian, N., Y. Cho, R.F. Lockey, et al. 2015. The role of the NLRP3 inflammasome in pulmonary diseases. Therapeutic Advances in Respiratory Disease 9 (4): 188–197.CrossRefPubMed Hosseinian, N., Y. Cho, R.F. Lockey, et al. 2015. The role of the NLRP3 inflammasome in pulmonary diseases. Therapeutic Advances in Respiratory Disease 9 (4): 188–197.CrossRefPubMed
13.
Zurück zum Zitat Bauernfeind, F., A. Ablasser, E. Bartok, et al. 2011. Inflammasomes: current understanding and open questions. Cellular and Molecular Life Sciences 68 (5): 765–783.CrossRefPubMed Bauernfeind, F., A. Ablasser, E. Bartok, et al. 2011. Inflammasomes: current understanding and open questions. Cellular and Molecular Life Sciences 68 (5): 765–783.CrossRefPubMed
14.
Zurück zum Zitat Hirota, J.A., S.A. Hirota, S.M. Warner, et al. 2012. The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particulate matter. Journal of Allergy and Clinical Immunology 129 (4): 1116–1125.CrossRefPubMed Hirota, J.A., S.A. Hirota, S.M. Warner, et al. 2012. The airway epithelium nucleotide-binding domain and leucine-rich repeat protein 3 inflammasome is activated by urban particulate matter. Journal of Allergy and Clinical Immunology 129 (4): 1116–1125.CrossRefPubMed
15.
Zurück zum Zitat Hise, A.G., J. Tomalka, S. Ganesan, et al. 2009. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host & Microbe 5 (5): 487–497.CrossRef Hise, A.G., J. Tomalka, S. Ganesan, et al. 2009. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host & Microbe 5 (5): 487–497.CrossRef
16.
Zurück zum Zitat De Nardo, D., C.M. De Nardo, and E. Latz. 2014. New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. The American Journal of Pathology 184 (1): 42–54.CrossRefPubMedPubMedCentral De Nardo, D., C.M. De Nardo, and E. Latz. 2014. New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. The American Journal of Pathology 184 (1): 42–54.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Joly, S., N. Ma, J.J. Sadler, et al. 2009. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. The Journal of Immunology 183 (6): 3578–3581.CrossRefPubMedPubMedCentral Joly, S., N. Ma, J.J. Sadler, et al. 2009. Cutting edge: Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. The Journal of Immunology 183 (6): 3578–3581.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Gross, O., H. Poeck, M. Bscheider, et al. 2009. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459 (7245): 433–436.CrossRefPubMed Gross, O., H. Poeck, M. Bscheider, et al. 2009. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459 (7245): 433–436.CrossRefPubMed
19.
Zurück zum Zitat Wellington, M., K. Koselny, F.S. Sutterwala, et al. 2014. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryotic Cell 13 (2): 329–340.CrossRefPubMedPubMedCentral Wellington, M., K. Koselny, F.S. Sutterwala, et al. 2014. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryotic Cell 13 (2): 329–340.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Borghi, M., A. De Luca, M. Puccetti, et al. 2015. Pathogenic NLRP3 inflammasome activity during Candida infection is negatively regulated by IL-22 via activation of NLRC4 and IL-1Ra. Cell Host & Microbe 18 (2): 198–209.CrossRef Borghi, M., A. De Luca, M. Puccetti, et al. 2015. Pathogenic NLRP3 inflammasome activity during Candida infection is negatively regulated by IL-22 via activation of NLRC4 and IL-1Ra. Cell Host & Microbe 18 (2): 198–209.CrossRef
21.
Zurück zum Zitat Karki, R., S.M. Man, R.K.S. Malireddi, et al. 2015. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host & Microbe 17 (3): 357–368.CrossRef Karki, R., S.M. Man, R.K.S. Malireddi, et al. 2015. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host & Microbe 17 (3): 357–368.CrossRef
22.
Zurück zum Zitat Saïd-Sadier, N., E. Padilla, G. Langsley, et al. 2010. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One 5 (4): e10008.CrossRefPubMedPubMedCentral Saïd-Sadier, N., E. Padilla, G. Langsley, et al. 2010. Aspergillus fumigatus stimulates the NLRP3 inflammasome through a pathway requiring ROS production and the Syk tyrosine kinase. PLoS One 5 (4): e10008.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Lei, G., M. Chen, H. Li, et al. 2013. Biofilm from a clinical strain of Cryptococcus neoformans activates the NLRP3 inflammasome. Cell Research 23 (7): 965–968.CrossRefPubMedPubMedCentral Lei, G., M. Chen, H. Li, et al. 2013. Biofilm from a clinical strain of Cryptococcus neoformans activates the NLRP3 inflammasome. Cell Research 23 (7): 965–968.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Guo, C., M. Chen, Z. Fa, et al. 2014. Acapsular Cryptococcus neoformans activates the NLRP3 inflammasome. Microbes and Infection 16 (10): 845–854.CrossRefPubMed Guo, C., M. Chen, Z. Fa, et al. 2014. Acapsular Cryptococcus neoformans activates the NLRP3 inflammasome. Microbes and Infection 16 (10): 845–854.CrossRefPubMed
25.
Zurück zum Zitat Chen, M., Y. Xing, A. Lu, et al. 2015. Internalized Cryptococcus neoformans activates the canonical caspase-1 and the noncanonical caspase-8 inflammasomes. The Journal of Immunology 195 (10): 4962–4972.CrossRefPubMed Chen, M., Y. Xing, A. Lu, et al. 2015. Internalized Cryptococcus neoformans activates the canonical caspase-1 and the noncanonical caspase-8 inflammasomes. The Journal of Immunology 195 (10): 4962–4972.CrossRefPubMed
26.
Zurück zum Zitat Ganesan, S. 2014. Characterization of anti-fungal inflammasome responses and the role of caspase-8 in innate immune signaling: a dissertation. Ganesan, S. 2014. Characterization of anti-fungal inflammasome responses and the role of caspase-8 in innate immune signaling: a dissertation.
27.
Zurück zum Zitat Jones, H.D., T.R. Crother, R.A. Gonzalez-Villalobos, et al. 2014. The NLRP3 inflammasome is required for the development of hypoxemia in LPS/mechanical ventilation acute lung injury. American Journal of Respiratory Cell and Molecular Biology 50 (2): 270–280.PubMedPubMedCentral Jones, H.D., T.R. Crother, R.A. Gonzalez-Villalobos, et al. 2014. The NLRP3 inflammasome is required for the development of hypoxemia in LPS/mechanical ventilation acute lung injury. American Journal of Respiratory Cell and Molecular Biology 50 (2): 270–280.PubMedPubMedCentral
28.
Zurück zum Zitat Fukumoto, J., I. Fukumoto, P.T. Parthasarathy, et al. 2013. NLRP3 deletion protects from hyperoxia-induced acute lung injury. American Journal of Physiology-Cell Physiology 305 (2): C182–C189.CrossRefPubMedPubMedCentral Fukumoto, J., I. Fukumoto, P.T. Parthasarathy, et al. 2013. NLRP3 deletion protects from hyperoxia-induced acute lung injury. American Journal of Physiology-Cell Physiology 305 (2): C182–C189.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Grailer, J.J., B.A. Canning, M. Kalbitz, et al. 2014. Critical role for the NLRP3 inflammasome during acute lung injury. The Journal of Immunology 192 (12): 5974–5983.CrossRefPubMedPubMedCentral Grailer, J.J., B.A. Canning, M. Kalbitz, et al. 2014. Critical role for the NLRP3 inflammasome during acute lung injury. The Journal of Immunology 192 (12): 5974–5983.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Han, S., W. Cai, X. Yang, et al. 2015. ROS-mediated NLRP3 inflammasome activity is essential for burn-induced acute lung injury. Mediators of Inflammation: 2015. Han, S., W. Cai, X. Yang, et al. 2015. ROS-mediated NLRP3 inflammasome activity is essential for burn-induced acute lung injury. Mediators of Inflammation: 2015.
31.
Zurück zum Zitat Lasithiotaki, I., I. Giannarakis, E. Tsitoura, et al. 2016. NLRP3 inflammasome expression in idiopathic pulmonary fibrosis and rheumatoid lung. European Respiratory Journal 47 (3): 910–918.CrossRefPubMed Lasithiotaki, I., I. Giannarakis, E. Tsitoura, et al. 2016. NLRP3 inflammasome expression in idiopathic pulmonary fibrosis and rheumatoid lung. European Respiratory Journal 47 (3): 910–918.CrossRefPubMed
32.
Zurück zum Zitat Simpson, J.L., S. Phipps, K.J. Baines, et al. 2014. Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. European Respiratory Journal 43 (4): 1067–1076.CrossRefPubMed Simpson, J.L., S. Phipps, K.J. Baines, et al. 2014. Elevated expression of the NLRP3 inflammasome in neutrophilic asthma. European Respiratory Journal 43 (4): 1067–1076.CrossRefPubMed
33.
Zurück zum Zitat Kim, H.Y., H.J. Lee, Y.J. Chang, et al. 2014. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nature Medicine 20 (1): 54–61.CrossRefPubMed Kim, H.Y., H.J. Lee, Y.J. Chang, et al. 2014. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nature Medicine 20 (1): 54–61.CrossRefPubMed
34.
Zurück zum Zitat Besnard, A.G., D. Togbe, I. Couillin, et al. 2012. Inflammasome–IL-1–Th17 response in allergic lung inflammation. Journal of Molecular Cell Biology 4 (1): 3–10.CrossRefPubMed Besnard, A.G., D. Togbe, I. Couillin, et al. 2012. Inflammasome–IL-1–Th17 response in allergic lung inflammation. Journal of Molecular Cell Biology 4 (1): 3–10.CrossRefPubMed
35.
Zurück zum Zitat Li, C., H. Zhihong, L. Wenlong, et al. 2016. The NLRP3 inflammasome regulates bronchial epithelial cell injury and pro-apoptosis after exposure to biomass fuel smoke. American Journal of Respiratory Cell and Molecular Biology 55 (6): 815–824.CrossRefPubMed Li, C., H. Zhihong, L. Wenlong, et al. 2016. The NLRP3 inflammasome regulates bronchial epithelial cell injury and pro-apoptosis after exposure to biomass fuel smoke. American Journal of Respiratory Cell and Molecular Biology 55 (6): 815–824.CrossRefPubMed
36.
Zurück zum Zitat Pauwels, N.S., K.R. Bracke, L.L. Dupont, et al. 2011. Role of IL-1α and the Nlrp3/caspase-1/IL-1β axis in cigarette smoke-induced pulmonary inflammation and COPD. European Respiratory Journal 38 (5): 1019–1028.CrossRefPubMed Pauwels, N.S., K.R. Bracke, L.L. Dupont, et al. 2011. Role of IL-1α and the Nlrp3/caspase-1/IL-1β axis in cigarette smoke-induced pulmonary inflammation and COPD. European Respiratory Journal 38 (5): 1019–1028.CrossRefPubMed
37.
Zurück zum Zitat Yang, W., H. Ni, H. Wang, et al. 2015. NLRP3 inflammasome is essential for the development of chronic obstructive pulmonary disease. International Journal of Clinical and Experimental Pathology 8 (10): 13209.PubMedPubMedCentral Yang, W., H. Ni, H. Wang, et al. 2015. NLRP3 inflammasome is essential for the development of chronic obstructive pulmonary disease. International Journal of Clinical and Experimental Pathology 8 (10): 13209.PubMedPubMedCentral
38.
Zurück zum Zitat Kinoshita, T., R. Imamura, H. Kushiyama, et al. 2015. NLRP3 mediates NF-κB activation and cytokine induction in microbially induced and sterile inflammation. PLoS One 10 (3): e0119179.CrossRefPubMedPubMedCentral Kinoshita, T., R. Imamura, H. Kushiyama, et al. 2015. NLRP3 mediates NF-κB activation and cytokine induction in microbially induced and sterile inflammation. PLoS One 10 (3): e0119179.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Di Stefano, A., G. Caramori, A. Barczyk, et al. 2014. Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax 69 (6): 516–524.CrossRefPubMedPubMedCentral Di Stefano, A., G. Caramori, A. Barczyk, et al. 2014. Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax 69 (6): 516–524.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Opipari, A., and L. Franchi. 2015. Role of inflammasomes in intestinal inflammation and Crohn’s disease. Inflammatory Bowel Diseases 21 (1): 173–181.CrossRefPubMed Opipari, A., and L. Franchi. 2015. Role of inflammasomes in intestinal inflammation and Crohn’s disease. Inflammatory Bowel Diseases 21 (1): 173–181.CrossRefPubMed
41.
Zurück zum Zitat Szabo, G., and T. Csak. 2012. Inflammasomes in liver diseases. Journal of Hepatology 57 (3): 642–654.CrossRefPubMed Szabo, G., and T. Csak. 2012. Inflammasomes in liver diseases. Journal of Hepatology 57 (3): 642–654.CrossRefPubMed
42.
Zurück zum Zitat Hutton, H.L., J.D. Ooi, S.R. Holdsworth, et al. 2016. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology 21 (9): 736–744.CrossRefPubMed Hutton, H.L., J.D. Ooi, S.R. Holdsworth, et al. 2016. The NLRP3 inflammasome in kidney disease and autoimmunity. Nephrology 21 (9): 736–744.CrossRefPubMed
43.
Zurück zum Zitat Butts, B., R.A. Gary, S.B. Dunbar, et al. 2015. The importance of NLRP3 inflammasome in heart failure. Journal of Cardiac Failure 21 (7): 586–593.CrossRefPubMedPubMedCentral Butts, B., R.A. Gary, S.B. Dunbar, et al. 2015. The importance of NLRP3 inflammasome in heart failure. Journal of Cardiac Failure 21 (7): 586–593.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Haneklaus, M., and L.A.J. O'Neill. 2015. NLRP3 at the interface of metabolism and inflammation. Immunological Reviews 265 (1): 53–62.CrossRefPubMed Haneklaus, M., and L.A.J. O'Neill. 2015. NLRP3 at the interface of metabolism and inflammation. Immunological Reviews 265 (1): 53–62.CrossRefPubMed
Metadaten
Titel
Fungal β-Glucan Activates the NLRP3 Inflammasome in Human Bronchial Epithelial Cells Through ROS Production
verfasst von
Yanhua Huang
Meng Hua
Xuefan Cui
Publikationsdatum
23.10.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2018
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0674-6

Weitere Artikel der Ausgabe 1/2018

Inflammation 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.