Skip to main content
Erschienen in: Molecular Imaging and Biology 2/2020

17.05.2019 | Research Article

GABAA Receptors in the Mongolian Gerbil: a PET Study Using [18F]Flumazenil to Determine Receptor Binding in Young and Old Animals

verfasst von: M. Kessler, M. Mamach, R. Beutelmann, M. Lukacevic, S. Eilert, P. Bascuñana, A. Fasel, F. M. Bengel, J. P. Bankstahl, T. L. Ross, G. M. Klump, G. Berding

Erschienen in: Molecular Imaging and Biology | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Plastic changes in the central auditory system involving the GABAergic system accompany age-related hearing loss. Such processes can be investigated with positron emission tomography (PET) imaging using [18F]flumazenil ([18F]FMZ). Here, [18F]FMZ PET-based modeling approaches allow a simple and reliable quantification of GABAA receptor binding capacity revealing regional differences and age-related changes.

Procedures

Sixty-minute list-mode PET acquisitions were performed in 9 young (range 5–6 months) and 11 old (range 39–42 months) gerbils, starting simultaneously with the injection of [18F]FMZ via femoral vein. Non-displaceable binding potentials (BPnd) with pons as reference region were calculated for auditory cortex (AC), inferior colliculus (IC), medial geniculate body (MGB), somatosensory cortex (SC), and cerebellum (CB) using (i) a two-tissue compartment model (2TCM), (ii) the Logan plot with image-derived blood-input (Logan (BI)), (iii) a simplified reference tissue model (SRTM), and (iv) the Logan reference model (Logan (RT)). Statistical parametric mapping analysis (SPM) comparing young and old gerbils was performed using 3D parametric images for BPnd based on SRTM. Results were verified with in vitro autoradiography from five additional young gerbils. Model assessment included the Akaike information criterion (AIC). Hearing was evaluated using auditory brainstem responses.

Results

BPnd differed significantly between models (p < 0.0005), showing the smallest mean difference between 2TCM as reference and SRTM as simplified procedure. SRTM revealed the lowest AIC values. Both volume of distribution (r2 = 0.8793, p = 0.018) and BPnd (r2 = 0.8216, p = 0.034) correlated with in vitro autoradiography data. A significant age-related decrease of receptor binding was observed in auditory (AC, IC, MGB) and other brain regions (SC and CB) (p < 0.0001, unpaired t test) being confirmed by SPM using pons as reference (p < 0.0001, uncorrected).

Conclusion

Imaging of GABAA receptor binding capacity in gerbils using [18F]FMZ PET revealed SRTM as a simple and robust quantification method of GABAA receptors. Comparison of BPnd in young and old gerbils demonstrated an age-related decrease of GABAA receptor binding.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. ILAR J 42:219–232PubMedCrossRef Cherry SR, Gambhir SS (2001) Use of positron emission tomography in animal research. ILAR J 42:219–232PubMedCrossRef
3.
Zurück zum Zitat Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108:1501–1516PubMedCrossRef Ametamey SM, Honer M, Schubiger PA (2008) Molecular imaging with PET. Chem Rev 108:1501–1516PubMedCrossRef
4.
Zurück zum Zitat Marriott CJ, Cadorette JE, Lecomte R, Scasnar V, Rousseau J, van Lier J (1994) High-resolution PET imaging and quantitation of pharmaceutical biodistributions in a small animal using avalanche photodiode detectors. J Nucl Med 35:1390–1396PubMed Marriott CJ, Cadorette JE, Lecomte R, Scasnar V, Rousseau J, van Lier J (1994) High-resolution PET imaging and quantitation of pharmaceutical biodistributions in a small animal using avalanche photodiode detectors. J Nucl Med 35:1390–1396PubMed
5.
Zurück zum Zitat Farde L (1996) The advantage of using positron emission tomography in drug research. Trends Neurosci 19:211–214PubMedCrossRef Farde L (1996) The advantage of using positron emission tomography in drug research. Trends Neurosci 19:211–214PubMedCrossRef
6.
Zurück zum Zitat Fujita M (2001) In vivo receptor imaging with PET and SPET-pitfalls in quantification. Int Rev Psychiatry 13:34–39CrossRef Fujita M (2001) In vivo receptor imaging with PET and SPET-pitfalls in quantification. Int Rev Psychiatry 13:34–39CrossRef
7.
Zurück zum Zitat Dupont P, Warwick J (2009) Kinetic modelling in small animal imaging with PET. Methods 48:98–103PubMedCrossRef Dupont P, Warwick J (2009) Kinetic modelling in small animal imaging with PET. Methods 48:98–103PubMedCrossRef
8.
Zurück zum Zitat Ingvar M, Eriksson L, Rogers GA, Stone-Elander S, Widén L (1991) Rapid feasibility studies of tracers for positron emission tomography: high-resolution PET in small animals with kinetic analysis. J Cereb Blood Flow Metab 11:926–931PubMedCrossRef Ingvar M, Eriksson L, Rogers GA, Stone-Elander S, Widén L (1991) Rapid feasibility studies of tracers for positron emission tomography: high-resolution PET in small animals with kinetic analysis. J Cereb Blood Flow Metab 11:926–931PubMedCrossRef
9.
Zurück zum Zitat Maggi A, Schmidt MJ, Ghetti B, Enna SJ (1979) Effect of aging on neurotransmitter receptor binding in rat and human brain. Life Sci 24:367–373PubMedCrossRef Maggi A, Schmidt MJ, Ghetti B, Enna SJ (1979) Effect of aging on neurotransmitter receptor binding in rat and human brain. Life Sci 24:367–373PubMedCrossRef
10.
Zurück zum Zitat McQuail JA, Frazier CJ, Bizon JL (2015) Molecular aspects of age-related cognitive decline: the role of GABA signaling. Trends Mol Med 21:450–460PubMedPubMedCentralCrossRef McQuail JA, Frazier CJ, Bizon JL (2015) Molecular aspects of age-related cognitive decline: the role of GABA signaling. Trends Mol Med 21:450–460PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Owens DF, Kriegstein AR (2002) Is there more to gaba than synaptic inhibition? Nat Rev Neurosci 3:715–727PubMedCrossRef Owens DF, Kriegstein AR (2002) Is there more to gaba than synaptic inhibition? Nat Rev Neurosci 3:715–727PubMedCrossRef
13.
Zurück zum Zitat Nutt D (2006) GABAA receptors: subtypes, regional distribution, and function. J Clin Sleep Med 2:S7–S11 Nutt D (2006) GABAA receptors: subtypes, regional distribution, and function. J Clin Sleep Med 2:S7–S11
14.
Zurück zum Zitat Young AB, Chu D (1990) Distribution of GABAA and GABAB receptors in mammalian brain: potential targets for drug development. Drug Dev Res 21:161–167CrossRef Young AB, Chu D (1990) Distribution of GABAA and GABAB receptors in mammalian brain: potential targets for drug development. Drug Dev Res 21:161–167CrossRef
15.
Zurück zum Zitat Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20:365–383PubMedCrossRef Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20:365–383PubMedCrossRef
16.
Zurück zum Zitat Nutt DJ, Malizia AL (2001) New insights into the role of the GABAA;—benzodiazepine receptor in psychiatric disorder. Br J Psychiatry 179:390–396PubMedCrossRef Nutt DJ, Malizia AL (2001) New insights into the role of the GABAA;—benzodiazepine receptor in psychiatric disorder. Br J Psychiatry 179:390–396PubMedCrossRef
17.
Zurück zum Zitat Schultz LM (1997) REVIEW: GABAergic inhibitory processes and hippocampal long-term potentiation. Neuroscientist 3:226–236CrossRef Schultz LM (1997) REVIEW: GABAergic inhibitory processes and hippocampal long-term potentiation. Neuroscientist 3:226–236CrossRef
18.
Zurück zum Zitat Rodnick ME, Hockley BG, Sherman P, Quesada C, Battle MR, Jackson A, Linder KE, Macholl S, Trigg WJ, Kilbourn MR, Scott PJH (2013) Novel fluorine-18 PET radiotracers based on flumazenil for GABAA imaging in the brain. Nucl Med Biol 40:901–905PubMedPubMedCentralCrossRef Rodnick ME, Hockley BG, Sherman P, Quesada C, Battle MR, Jackson A, Linder KE, Macholl S, Trigg WJ, Kilbourn MR, Scott PJH (2013) Novel fluorine-18 PET radiotracers based on flumazenil for GABAA imaging in the brain. Nucl Med Biol 40:901–905PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Caspary DM, Holder TM, Hughes LF, Milbrandt JC, McKernan RM, Naritoku DK (1999) Age-related changes in GABAA receptor subunit composition and function in rat auditory system. Neuroscience 93:307–312PubMedCrossRef Caspary DM, Holder TM, Hughes LF, Milbrandt JC, McKernan RM, Naritoku DK (1999) Age-related changes in GABAA receptor subunit composition and function in rat auditory system. Neuroscience 93:307–312PubMedCrossRef
21.
Zurück zum Zitat Mandema JW, Gubbens-Stibbe JM, Danhof M (1991) Stability and pharmacokinetics of flumazenil in the rat. Psychopharmacology 103:384–387PubMedCrossRef Mandema JW, Gubbens-Stibbe JM, Danhof M (1991) Stability and pharmacokinetics of flumazenil in the rat. Psychopharmacology 103:384–387PubMedCrossRef
22.
Zurück zum Zitat Odano I, Halldin C, Karlsson P, Varrone A, Airaksinen AJ, Krasikova RN, Farde L (2009) [18F]flumazenil binding to central benzodiazepine receptor studies by PET--quantitative analysis and comparisons with [11C]flumazenil. NeuroImage 45:891–902PubMedCrossRef Odano I, Halldin C, Karlsson P, Varrone A, Airaksinen AJ, Krasikova RN, Farde L (2009) [18F]flumazenil binding to central benzodiazepine receptor studies by PET--quantitative analysis and comparisons with [11C]flumazenil. NeuroImage 45:891–902PubMedCrossRef
23.
Zurück zum Zitat Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791PubMedCrossRef Caspary DM, Ling L, Turner JG, Hughes LF (2008) Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. J Exp Biol 211:1781–1791PubMedCrossRef
24.
Zurück zum Zitat Caspary DM, Milbrandt JC, Helfert RH (1995) Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol 30:349–360PubMedCrossRef Caspary DM, Milbrandt JC, Helfert RH (1995) Central auditory aging: GABA changes in the inferior colliculus. Exp Gerontol 30:349–360PubMedCrossRef
25.
Zurück zum Zitat Milbrandt JC, Albin RL, Caspary DM (1994) Age-related decrease in GABAB receptor binding in the Fischer 344 rat i inferior colliculus. Neurobiol Aging 15:699–703PubMedCrossRef Milbrandt JC, Albin RL, Caspary DM (1994) Age-related decrease in GABAB receptor binding in the Fischer 344 rat i inferior colliculus. Neurobiol Aging 15:699–703PubMedCrossRef
26.
Zurück zum Zitat Milbrandt JC, Albin RL, Turgeon SM, Caspary DM (1996) GABAA receptor binding in the aging rat inferior colliculus. Neuroscience 73:449–458PubMedCrossRef Milbrandt JC, Albin RL, Turgeon SM, Caspary DM (1996) GABAA receptor binding in the aging rat inferior colliculus. Neuroscience 73:449–458PubMedCrossRef
27.
Zurück zum Zitat Ryan A (1976) Hearing sensitivity of the mongolian gerbil, Meriones unguiculatis. J Acoust Soc Am 59:1222–1226PubMedCrossRef Ryan A (1976) Hearing sensitivity of the mongolian gerbil, Meriones unguiculatis. J Acoust Soc Am 59:1222–1226PubMedCrossRef
28.
Zurück zum Zitat Mills JH, Schmiedt RA, Kulish LF (1990) Age-related changes in auditory potentials of mongolian gerbil. Hear Res 46:201–210PubMedCrossRef Mills JH, Schmiedt RA, Kulish LF (1990) Age-related changes in auditory potentials of mongolian gerbil. Hear Res 46:201–210PubMedCrossRef
29.
Zurück zum Zitat Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRef Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRef
31.
Zurück zum Zitat Preshlock S, Calderwood S, Verhoog S, Tredwell M, Huiban M, Hienzsch A, Gruber S, Wilson TC, Taylor NJ, Cailly T, Schedler M, Collier TL, Passchier J, Smits R, Mollitor J, Hoepping A, Mueller M, Genicot C, Mercier J, Gouverneur V (2016) Enhanced copper-mediated 18F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. Chem Commun (Camb) 52:8361–8364CrossRef Preshlock S, Calderwood S, Verhoog S, Tredwell M, Huiban M, Hienzsch A, Gruber S, Wilson TC, Taylor NJ, Cailly T, Schedler M, Collier TL, Passchier J, Smits R, Mollitor J, Hoepping A, Mueller M, Genicot C, Mercier J, Gouverneur V (2016) Enhanced copper-mediated 18F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. Chem Commun (Camb) 52:8361–8364CrossRef
32.
33.
Zurück zum Zitat Beutelmann R, Laumen G, Tollin D, Klump GM (2015) Amplitude and phase equalization of stimuli for click evoked auditory brainstem responses. J Acoust Soc Am 137:EL71–EL77PubMedCrossRef Beutelmann R, Laumen G, Tollin D, Klump GM (2015) Amplitude and phase equalization of stimuli for click evoked auditory brainstem responses. J Acoust Soc Am 137:EL71–EL77PubMedCrossRef
34.
Zurück zum Zitat Laumen G, Tollin DJ, Beutelmann R, Klump GM (2016) Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: effects of interaural time and level differences. Hear Res 337:46–58PubMedPubMedCentralCrossRef Laumen G, Tollin DJ, Beutelmann R, Klump GM (2016) Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: effects of interaural time and level differences. Hear Res 337:46–58PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Kessler M, Mamach M, Beutelmann R, Bankstahl JP, Bengel FM, Klump GM, Berding G (2018) Activation in the auditory pathway of the gerbil studied with 18F-FDG PET: effects of anesthesia. Brain Struct Funct 223:4293–4305PubMedCrossRef Kessler M, Mamach M, Beutelmann R, Bankstahl JP, Bengel FM, Klump GM, Berding G (2018) Activation in the auditory pathway of the gerbil studied with 18F-FDG PET: effects of anesthesia. Brain Struct Funct 223:4293–4305PubMedCrossRef
36.
Zurück zum Zitat Radtke-Schuller S, Schuller G, Angenstein F, Grosser OS, Goldschmidt J, Budinger E (2016) Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates. Brain Struct Funct 221(Suppl 1):1–272PubMedPubMedCentralCrossRef Radtke-Schuller S, Schuller G, Angenstein F, Grosser OS, Goldschmidt J, Budinger E (2016) Brain atlas of the Mongolian gerbil (Meriones unguiculatus) in CT/MRI-aided stereotaxic coordinates. Brain Struct Funct 221(Suppl 1):1–272PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Thackeray JT, Bankstahl JP, Bengel FM (2015) Impact of image-derived input function and fit time intervals on Patlak quantification of myocardial glucose uptake in mice. J Nucl Med 56:1615–1621PubMedCrossRef Thackeray JT, Bankstahl JP, Bengel FM (2015) Impact of image-derived input function and fit time intervals on Patlak quantification of myocardial glucose uptake in mice. J Nucl Med 56:1615–1621PubMedCrossRef
38.
Zurück zum Zitat Kuntner C (2014) Kinetic modeling in pre-clinical positron emission tomography. Z Med Phys 24:274–285PubMedCrossRef Kuntner C (2014) Kinetic modeling in pre-clinical positron emission tomography. Z Med Phys 24:274–285PubMedCrossRef
39.
Zurück zum Zitat Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE (1991) Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11:735–744PubMedCrossRef Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE (1991) Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab 11:735–744PubMedCrossRef
40.
Zurück zum Zitat Dedeurwaerdere S, Gregoire M-C, Vivash L, Roselt P, Binns D, Fookes C, Greguric I, Pham T, Loc’h C, Katsifis A, Hicks RJ, O’Brien TJ, Myers DE (2009) In-vivo imaging characteristics of two fluorinated flumazenil radiotracers in the rat. Eur J Nucl Med Mol Imaging 36:958–965PubMedCrossRef Dedeurwaerdere S, Gregoire M-C, Vivash L, Roselt P, Binns D, Fookes C, Greguric I, Pham T, Loc’h C, Katsifis A, Hicks RJ, O’Brien TJ, Myers DE (2009) In-vivo imaging characteristics of two fluorinated flumazenil radiotracers in the rat. Eur J Nucl Med Mol Imaging 36:958–965PubMedCrossRef
41.
Zurück zum Zitat Vivash L, Gregoire MC, Lau EW, Ware RE, Binns D, Roselt P, Bouilleret V, Myers DE, Cook MJ, Hicks RJ, O'Brien TJ (2013) 18F-flumazenil: a gamma-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med 54:1270–1277PubMedCrossRef Vivash L, Gregoire MC, Lau EW, Ware RE, Binns D, Roselt P, Bouilleret V, Myers DE, Cook MJ, Hicks RJ, O'Brien TJ (2013) 18F-flumazenil: a gamma-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. J Nucl Med 54:1270–1277PubMedCrossRef
42.
Zurück zum Zitat Morris JS, Friston KJ, Dolan RJ (1998) Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proc R Soc B Biol Sci 265:649–657CrossRef Morris JS, Friston KJ, Dolan RJ (1998) Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proc R Soc B Biol Sci 265:649–657CrossRef
43.
Zurück zum Zitat Gunn RN, Gunn SR, Turkheimer FE, Aston JAD, Cunningham VJ (2002) Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab 22:1425–1439PubMedCrossRef Gunn RN, Gunn SR, Turkheimer FE, Aston JAD, Cunningham VJ (2002) Positron emission tomography compartmental models: a basis pursuit strategy for kinetic modeling. J Cereb Blood Flow Metab 22:1425–1439PubMedCrossRef
44.
Zurück zum Zitat Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4:153–158PubMedCrossRef Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. NeuroImage 4:153–158PubMedCrossRef
45.
Zurück zum Zitat Klumpers U, H M, Veltman DJ, Boellaard R et al (2007) Comparison of plasma input and reference tissue models for analysing [11C]flumazenil studies. J Cereb Blood Flow Metab 28:579–587PubMedCrossRef Klumpers U, H M, Veltman DJ, Boellaard R et al (2007) Comparison of plasma input and reference tissue models for analysing [11C]flumazenil studies. J Cereb Blood Flow Metab 28:579–587PubMedCrossRef
46.
Zurück zum Zitat Geeraerts T, P Coles J, I Aigbirhio F et al (2011) Validation of reference tissue modelling for [11C]flumazenil positron emission tomography following head injury. Ann Nucl Med 25:396–405PubMedCrossRef Geeraerts T, P Coles J, I Aigbirhio F et al (2011) Validation of reference tissue modelling for [11C]flumazenil positron emission tomography following head injury. Ann Nucl Med 25:396–405PubMedCrossRef
47.
Zurück zum Zitat Miederer I, Ziegler SI, Liedtke C, Spilker ME, Miederer M, Sprenger T, Wagner KJ, Drzezga A, Boecker H (2009) Kinetic modelling of [11C]flumazenil using data-driven methods. Eur J Nucl Med Mol Imaging 36:659–670PubMedCrossRef Miederer I, Ziegler SI, Liedtke C, Spilker ME, Miederer M, Sprenger T, Wagner KJ, Drzezga A, Boecker H (2009) Kinetic modelling of [11C]flumazenil using data-driven methods. Eur J Nucl Med Mol Imaging 36:659–670PubMedCrossRef
48.
Zurück zum Zitat Lopes Alves I, Vállez García DV, Parente A, Doorduin J, da Silva AMM, Koole M, Dierckx R, Willemsen A, Boellaard R (2018) Parametric imaging of [11C]flumazenil binding in the rat brain. Mol Imaging Biol 20:114–123PubMedCrossRef Lopes Alves I, Vállez García DV, Parente A, Doorduin J, da Silva AMM, Koole M, Dierckx R, Willemsen A, Boellaard R (2018) Parametric imaging of [11C]flumazenil binding in the rat brain. Mol Imaging Biol 20:114–123PubMedCrossRef
49.
Zurück zum Zitat Zanotti-Fregonara P, Chen K, Liow J-S, Fujita M, Innis RB (2011) Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab 31:1986–1998PubMedPubMedCentralCrossRef Zanotti-Fregonara P, Chen K, Liow J-S, Fujita M, Innis RB (2011) Image-derived input function for brain PET studies: many challenges and few opportunities. J Cereb Blood Flow Metab 31:1986–1998PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Hammers A, Panagoda P, Heckemann RA et al (2007) [11C]flumazenil PET in temporal lobe epilepsy: do we need an arterial input function or kinetic modeling? J Cereb Blood Flow Metab 28:207–216PubMedCrossRef Hammers A, Panagoda P, Heckemann RA et al (2007) [11C]flumazenil PET in temporal lobe epilepsy: do we need an arterial input function or kinetic modeling? J Cereb Blood Flow Metab 28:207–216PubMedCrossRef
51.
Zurück zum Zitat Lanz B, Poitry-Yamate C, Gruetter R (2014) Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice. J Nucl Med 55:1380–1388PubMedCrossRef Lanz B, Poitry-Yamate C, Gruetter R (2014) Image-derived input function from the vena cava for 18F-FDG PET studies in rats and mice. J Nucl Med 55:1380–1388PubMedCrossRef
52.
Zurück zum Zitat Tsartsalis S, Tournier BB, Graf CE, Ginovart N, Ibáñez V, Millet P (2018) Dynamic image denoising for voxel-wise quantification with statistical parametric mapping in molecular neuroimaging. PLoS One 13:e0203589–e0203589PubMedPubMedCentralCrossRef Tsartsalis S, Tournier BB, Graf CE, Ginovart N, Ibáñez V, Millet P (2018) Dynamic image denoising for voxel-wise quantification with statistical parametric mapping in molecular neuroimaging. PLoS One 13:e0203589–e0203589PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Golla SSV, Adriaanse SM, Yaqub M, Windhorst AD, Lammertsma AA, van Berckel BNM, Boellaard R (2017) Model selection criteria for dynamic brain PET studies. EJNMMI Physics 4:30PubMedPubMedCentralCrossRef Golla SSV, Adriaanse SM, Yaqub M, Windhorst AD, Lammertsma AA, van Berckel BNM, Boellaard R (2017) Model selection criteria for dynamic brain PET studies. EJNMMI Physics 4:30PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Parente A, Vállez García D, Shoji A, Lopes Alves I, Maas B, Zijlma R, Dierckx RAJO, Buchpiguel CA, de Vries EFJ, Doorduin J (2017) Contribution of neuroinflammation to changes in [11C]flumazenil binding in the rat brain: evaluation of the inflamed pons as reference tissue. Nucl Med Biol 49:50–56PubMedCrossRef Parente A, Vállez García D, Shoji A, Lopes Alves I, Maas B, Zijlma R, Dierckx RAJO, Buchpiguel CA, de Vries EFJ, Doorduin J (2017) Contribution of neuroinflammation to changes in [11C]flumazenil binding in the rat brain: evaluation of the inflamed pons as reference tissue. Nucl Med Biol 49:50–56PubMedCrossRef
55.
Zurück zum Zitat Barnard EA, Skolnick P, Olsen RW et al (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313PubMed Barnard EA, Skolnick P, Olsen RW et al (1998) International Union of Pharmacology. XV. Subtypes of gamma-aminobutyric acidA receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50:291–313PubMed
56.
Zurück zum Zitat Palner M, Beinat C, Banister S, Zanderigo F, Park JH, Shen B, Hjoernevik T, Jung JH, Lee BC, Kim SE, Fung L, Chin FT (2016) Effects of common anesthetic agents on [18F]flumazenil binding to the GABAA receptor. EJNMMI Res 6:80PubMedPubMedCentralCrossRef Palner M, Beinat C, Banister S, Zanderigo F, Park JH, Shen B, Hjoernevik T, Jung JH, Lee BC, Kim SE, Fung L, Chin FT (2016) Effects of common anesthetic agents on [18F]flumazenil binding to the GABAA receptor. EJNMMI Res 6:80PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Gyulai MD, Ferenc E, Mintun MD et al (2001) Dose-dependent enhancement of in vivo GABAA–benzodiazepine receptor binding by isoflurane. Anesthesiology 95:585–593PubMedCrossRef Gyulai MD, Ferenc E, Mintun MD et al (2001) Dose-dependent enhancement of in vivo GABAA–benzodiazepine receptor binding by isoflurane. Anesthesiology 95:585–593PubMedCrossRef
58.
Zurück zum Zitat Rissman RA, De Blas AL, Armstrong DM (2007) GABAA receptors in aging and Alzheimer’s disease. J Neurochem 103:1285–1292PubMedCrossRef Rissman RA, De Blas AL, Armstrong DM (2007) GABAA receptors in aging and Alzheimer’s disease. J Neurochem 103:1285–1292PubMedCrossRef
59.
Zurück zum Zitat Rissman RA, Mobley WC (2011) Implications for treatment: GABAA receptors in aging, down syndrome and Alzheimer’s disease. J Neurochem 117:613–622PubMedPubMedCentral Rissman RA, Mobley WC (2011) Implications for treatment: GABAA receptors in aging, down syndrome and Alzheimer’s disease. J Neurochem 117:613–622PubMedPubMedCentral
60.
Zurück zum Zitat Prieto E, Collantes M, Delgado M, Juri C, García-García L, Molinet F, Fernández-Valle ME, Pozo MA, Gago B, Martí-Climent JM, Obeso JA, Peñuelas I (2011) Statistical parametric maps of 18F-FDG PET and 3-D autoradiography in the rat brain: a cross-validation study. Eur J Nucl Med Mol Imaging 38:2228–2237PubMedCrossRef Prieto E, Collantes M, Delgado M, Juri C, García-García L, Molinet F, Fernández-Valle ME, Pozo MA, Gago B, Martí-Climent JM, Obeso JA, Peñuelas I (2011) Statistical parametric maps of 18F-FDG PET and 3-D autoradiography in the rat brain: a cross-validation study. Eur J Nucl Med Mol Imaging 38:2228–2237PubMedCrossRef
61.
Zurück zum Zitat Benfenati F, Cimino M, Agnati LF, Fuxe K (1986) Quantitative autoradiography of central neurotransmitter receptors: methodological and statistical aspects with special reference to computer-assisted image analysis. Acta Physiol Scand 128:129–146PubMedCrossRef Benfenati F, Cimino M, Agnati LF, Fuxe K (1986) Quantitative autoradiography of central neurotransmitter receptors: methodological and statistical aspects with special reference to computer-assisted image analysis. Acta Physiol Scand 128:129–146PubMedCrossRef
62.
Zurück zum Zitat Pike VW, Halldin C, Crouzel C, Barré L, Nutt DJ, Osman S, Shah F, Turton DR, Waters SL (1993) Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites--current status. Nucl Med Biol 20:503–525PubMedCrossRef Pike VW, Halldin C, Crouzel C, Barré L, Nutt DJ, Osman S, Shah F, Turton DR, Waters SL (1993) Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites--current status. Nucl Med Biol 20:503–525PubMedCrossRef
63.
Zurück zum Zitat Andersson JD, Halldin C (2013) PET radioligands targeting the brain GABAA /benzodiazepine receptor complex. J Label Compd Radiopharm 56:196–206CrossRef Andersson JD, Halldin C (2013) PET radioligands targeting the brain GABAA /benzodiazepine receptor complex. J Label Compd Radiopharm 56:196–206CrossRef
64.
Zurück zum Zitat Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(a) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850PubMedCrossRef Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABA(a) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850PubMedCrossRef
66.
Zurück zum Zitat Banay-Schwartz M, Palkovits M, Lajtha A (1993) Heterogeneous distribution of functionally important amino acids in brain areas of adult and aging humans. Neurochem Res 18:417–423PubMedCrossRef Banay-Schwartz M, Palkovits M, Lajtha A (1993) Heterogeneous distribution of functionally important amino acids in brain areas of adult and aging humans. Neurochem Res 18:417–423PubMedCrossRef
67.
Zurück zum Zitat Caspary DM, Raza A, Lawhorn Armour BA, Pippin J, Arneric SP (1990) Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci 10:2363–2372PubMedPubMedCentralCrossRef Caspary DM, Raza A, Lawhorn Armour BA, Pippin J, Arneric SP (1990) Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci 10:2363–2372PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Gutierrez A, Khan ZU, Morris SJ, De Blas AL (1994) Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus. J Neurosci 14:7469–7477PubMedPubMedCentralCrossRef Gutierrez A, Khan ZU, Morris SJ, De Blas AL (1994) Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus. J Neurosci 14:7469–7477PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Milbrandt JC, Hunter C, Caspary DM (1997) Alterations of GABAA receptor subunit mRNA levels in the aging Fischer 344 rat inferior colliculus. J Comp Neurol 379:455–465PubMedCrossRef Milbrandt JC, Hunter C, Caspary DM (1997) Alterations of GABAA receptor subunit mRNA levels in the aging Fischer 344 rat inferior colliculus. J Comp Neurol 379:455–465PubMedCrossRef
70.
Zurück zum Zitat Godfrey DA, Chen K, O'Toole TR, Mustapha A (2017) Amino acid and acetylcholine chemistry in the central auditory system of young, middle-aged and old rats. Hear Res 350:173–188PubMedCrossRef Godfrey DA, Chen K, O'Toole TR, Mustapha A (2017) Amino acid and acetylcholine chemistry in the central auditory system of young, middle-aged and old rats. Hear Res 350:173–188PubMedCrossRef
71.
Zurück zum Zitat Burianova J, Ouda L, Profant O, Syka J (2009) Age-related changes in GAD levels in the central auditory system of the rat. Exp Gerontol 44:161–169PubMedCrossRef Burianova J, Ouda L, Profant O, Syka J (2009) Age-related changes in GAD levels in the central auditory system of the rat. Exp Gerontol 44:161–169PubMedCrossRef
72.
Zurück zum Zitat Ymer S, Draguhn A, Wisden W, Werner P, Keinänen K, Schofield PR, Sprengel R, Pritchett DB, Seeburg PH (1990) Structural and functional characterization of the gamma 1 subunit of GABAA/benzodiazepine receptors. EMBO J 9:3261–3267PubMedPubMedCentralCrossRef Ymer S, Draguhn A, Wisden W, Werner P, Keinänen K, Schofield PR, Sprengel R, Pritchett DB, Seeburg PH (1990) Structural and functional characterization of the gamma 1 subunit of GABAA/benzodiazepine receptors. EMBO J 9:3261–3267PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Hoekzema E, Rojas S, Herance R, Pareto D, Abad S, Jiménez X, Figueiras FP, Popota F, Ruiz A, Flotats N, Fernández FJ, Rocha M, Rovira M, Víctor VM, Gispert JD (2012) In vivo molecular imaging of the GABA/benzodiazepine receptor complex in the aged rat brain. Neurobiol Aging 33:1457–1465PubMedCrossRef Hoekzema E, Rojas S, Herance R, Pareto D, Abad S, Jiménez X, Figueiras FP, Popota F, Ruiz A, Flotats N, Fernández FJ, Rocha M, Rovira M, Víctor VM, Gispert JD (2012) In vivo molecular imaging of the GABA/benzodiazepine receptor complex in the aged rat brain. Neurobiol Aging 33:1457–1465PubMedCrossRef
74.
Zurück zum Zitat Hamezah HS, Durani LW, Ibrahim NF, Yanagisawa D, Kato T, Shiino A, Tanaka S, Damanhuri HA, Ngah WZW, Tooyama I (2017) Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions. Exp Gerontol 99:69–79PubMedCrossRef Hamezah HS, Durani LW, Ibrahim NF, Yanagisawa D, Kato T, Shiino A, Tanaka S, Damanhuri HA, Ngah WZW, Tooyama I (2017) Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions. Exp Gerontol 99:69–79PubMedCrossRef
Metadaten
Titel
GABAA Receptors in the Mongolian Gerbil: a PET Study Using [18F]Flumazenil to Determine Receptor Binding in Young and Old Animals
verfasst von
M. Kessler
M. Mamach
R. Beutelmann
M. Lukacevic
S. Eilert
P. Bascuñana
A. Fasel
F. M. Bengel
J. P. Bankstahl
T. L. Ross
G. M. Klump
G. Berding
Publikationsdatum
17.05.2019
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology / Ausgabe 2/2020
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-019-01371-0

Weitere Artikel der Ausgabe 2/2020

Molecular Imaging and Biology 2/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.