Skip to main content
Erschienen in: Clinical & Experimental Metastasis 6/2014

01.08.2014 | Research Paper

Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells

verfasst von: Manohar C. Dange, Nithya Srinivasan, Shyam K. More, Sanjay M. Bane, Archana Upadhya, Arvind D. Ingle, Rajiv P. Gude, Rabindranath Mukhopadhyaya, Rajiv D. Kalraiya

Erschienen in: Clinical & Experimental Metastasis | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Interactions between molecules on the surface of tumor cells and those on the target organ endothelium play an important role in their arrest in an organ. Galectin-3 on the lung endothelium and high affinity ligands poly-N-acetyllactosamine (polyLacNAc) on N-oligosaccharides on melanoma cells facilitate such interactions. However, to extravasate and colonize an organ the cells must stabilize these interactions by spreading to retract endothelium, degrade exposed basement membrane (BM) and move into parenchyma and proliferate. Here, we show that galectin-3 is expressed on all the major compartments of the lungs and participates in not just promoting adhesion but also in spreading. We for the first time demonstrate that both soluble and immobilized galectin-3 induce secretion of MMP-9 required to breach vascular BM. Further, we show that immobilized galectin-3 is used as traction for the movement of cells. Downregulation of galactosyltransferases-I and -V resulted in significant loss in expression of polyLacNAc and thus reduced binding of galectin-3. This was accompanied with a loss in adhesion, spreading, MMP-9 secretion and motility of the cells on galectin-3 and thus their metastasis to lungs. Metastasis could also be inhibited by blocking surface polyLacNAc by pre-incubating cells with truncated galectin-3 (which lacked oligomerization domain) or by feeding mice with modified citrus pectin in drinking water. Overall, these results unequivocally show that polyLacNAc on melanoma cells and galectin-3 on the lungs play a critical role in arrest and extravasation of cells in the lungs and strategies that target these interactions inhibit lung metastasis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Brooks SA et al (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112(1):3–25PubMedCrossRef Brooks SA et al (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112(1):3–25PubMedCrossRef
2.
3.
Zurück zum Zitat Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7(2):143–188PubMedCrossRef Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7(2):143–188PubMedCrossRef
4.
Zurück zum Zitat Weiss L (1992) Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis 10(3):191–199PubMedCrossRef Weiss L (1992) Comments on hematogenous metastatic patterns in humans as revealed by autopsy. Clin Exp Metastasis 10(3):191–199PubMedCrossRef
5.
Zurück zum Zitat Nicolson GL (1991) Tumor and host molecules important in the organ preference of metastasis. Semin Cancer Biol 2(3):143–154PubMed Nicolson GL (1991) Tumor and host molecules important in the organ preference of metastasis. Semin Cancer Biol 2(3):143–154PubMed
6.
Zurück zum Zitat Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101PubMed Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8(2):98–101PubMed
7.
Zurück zum Zitat Zetter BR (1990) The cellular basis of site-specific tumor metastasis. N Engl J Med 322(9):605–612PubMedCrossRef Zetter BR (1990) The cellular basis of site-specific tumor metastasis. N Engl J Med 322(9):605–612PubMedCrossRef
8.
Zurück zum Zitat Konstantopoulos K, Thomas SN (2009) Cancer cells in transit: the vascular interactions of tumor cells. Annu Rev Biomed Eng 11:177–202PubMedCrossRef Konstantopoulos K, Thomas SN (2009) Cancer cells in transit: the vascular interactions of tumor cells. Annu Rev Biomed Eng 11:177–202PubMedCrossRef
9.
Zurück zum Zitat Mierke CT (2008) Role of the endothelium during tumor cell metastasis: is the endothelium a barrier or a promoter for cell invasion and metastasis? J Biophys 2008:183516PubMedCentralPubMed Mierke CT (2008) Role of the endothelium during tumor cell metastasis: is the endothelium a barrier or a promoter for cell invasion and metastasis? J Biophys 2008:183516PubMedCentralPubMed
11.
Zurück zum Zitat Ley K et al (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689PubMed Ley K et al (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689PubMed
12.
Zurück zum Zitat Schluter K et al (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169(3):1064–1073PubMedCentralPubMedCrossRef Schluter K et al (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169(3):1064–1073PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Gassmann P et al (2010) In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell–endothelial cell interaction. BMC Cancer 10:177PubMedCentralPubMedCrossRef Gassmann P et al (2010) In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell–endothelial cell interaction. BMC Cancer 10:177PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Belloni PN, Tressler RJ (1990) Microvascular endothelial cell heterogeneity: interactions with leukocytes and tumor cells. Cancer Metastasis Rev 8(4):353–389PubMedCrossRef Belloni PN, Tressler RJ (1990) Microvascular endothelial cell heterogeneity: interactions with leukocytes and tumor cells. Cancer Metastasis Rev 8(4):353–389PubMedCrossRef
15.
Zurück zum Zitat Haier J et al (2003) An intravital model to monitor steps of metastatic tumor cell adhesion within the hepatic microcirculation. J Gastrointest Surg 7(4):507–514 discussion 514–515PubMedCrossRef Haier J et al (2003) An intravital model to monitor steps of metastatic tumor cell adhesion within the hepatic microcirculation. J Gastrointest Surg 7(4):507–514 discussion 514–515PubMedCrossRef
16.
Zurück zum Zitat Voura EB, Sandig M, Siu CH (1998) Cell–cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 43(3):265–275PubMedCrossRef Voura EB, Sandig M, Siu CH (1998) Cell–cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 43(3):265–275PubMedCrossRef
17.
Zurück zum Zitat Orr FW, Wang HH (2001) Tumor cell interactions with the microvasculature: a rate-limiting step in metastasis. Surg Oncol Clin N Am 10(2):357–381, ix–x Orr FW, Wang HH (2001) Tumor cell interactions with the microvasculature: a rate-limiting step in metastasis. Surg Oncol Clin N Am 10(2):357–381, ix–x
18.
Zurück zum Zitat Kobayashi H, Boelte KC, Lin PC (2007) Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14(4):377–386PubMedCrossRef Kobayashi H, Boelte KC, Lin PC (2007) Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14(4):377–386PubMedCrossRef
19.
Zurück zum Zitat Glinskii OV et al (2005) Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7(5):522–527PubMedCentralPubMedCrossRef Glinskii OV et al (2005) Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7(5):522–527PubMedCentralPubMedCrossRef
20.
Zurück zum Zitat Dimitroff CJ et al (2004) Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res 64(15):5261–5269PubMedCrossRef Dimitroff CJ et al (2004) Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res 64(15):5261–5269PubMedCrossRef
21.
Zurück zum Zitat Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100(2):174–190PubMedCrossRef Aird WC (2007) Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circ Res 100(2):174–190PubMedCrossRef
22.
Zurück zum Zitat Downey GP et al (1993) Neutrophil sequestration and migration in localized pulmonary inflammation. Capillary localization and migration across the interalveolar septum. Am Rev Respir Dis 147(1):168–176PubMed Downey GP et al (1993) Neutrophil sequestration and migration in localized pulmonary inflammation. Capillary localization and migration across the interalveolar septum. Am Rev Respir Dis 147(1):168–176PubMed
23.
Zurück zum Zitat Biancone L et al (1996) Redirection of tumor metastasis by expression of E-selectin in vivo. J Exp Med 183(2):581–587PubMedCrossRef Biancone L et al (1996) Redirection of tumor metastasis by expression of E-selectin in vivo. J Exp Med 183(2):581–587PubMedCrossRef
24.
Zurück zum Zitat Abdel-Ghany M et al (2001) The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem 276(27):25438–25446PubMedCrossRef Abdel-Ghany M et al (2001) The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem 276(27):25438–25446PubMedCrossRef
25.
Zurück zum Zitat Cardones AR, Murakami T, Hwang ST (2003) CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via beta(1) integrin. Cancer Res 63(20):6751–6757PubMed Cardones AR, Murakami T, Hwang ST (2003) CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via beta(1) integrin. Cancer Res 63(20):6751–6757PubMed
26.
Zurück zum Zitat Elble RC, Pauli BU (1996) Lu-ECAM-1 and DPP IV in lung metastasis. Curr Top Microbiol Immunol 213(Pt 1):107–122PubMed Elble RC, Pauli BU (1996) Lu-ECAM-1 and DPP IV in lung metastasis. Curr Top Microbiol Immunol 213(Pt 1):107–122PubMed
27.
Zurück zum Zitat Krishnan V et al (2005) Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clin Exp Metastasis 22(1):11–24PubMedCrossRef Krishnan V et al (2005) Altered melanoma cell surface glycosylation mediates organ specific adhesion and metastasis via lectin receptors on the lung vascular endothelium. Clin Exp Metastasis 22(1):11–24PubMedCrossRef
28.
Zurück zum Zitat Srinivasan N et al (2009) Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen–Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3. Glycoconj J 26(4):445–456PubMedCrossRef Srinivasan N et al (2009) Poly N-acetyllactosamine substitutions on N- and not O-oligosaccharides or Thomsen–Friedenreich antigen facilitate lung specific metastasis of melanoma cells via galectin-3. Glycoconj J 26(4):445–456PubMedCrossRef
29.
Zurück zum Zitat Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5(1):29–41PubMedCrossRef Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5(1):29–41PubMedCrossRef
30.
Zurück zum Zitat Glinsky VV et al (2003) Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res 63(13):3805–3811PubMed Glinsky VV et al (2003) Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer Res 63(13):3805–3811PubMed
31.
Zurück zum Zitat Yu LG et al (2007) Galectin-3 interaction with Thomsen–Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem 282(1):773–781PubMedCrossRef Yu LG et al (2007) Galectin-3 interaction with Thomsen–Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem 282(1):773–781PubMedCrossRef
32.
Zurück zum Zitat Radosavljevic G et al (2011) Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity. Clin Exp Metastasis 28(5):451–462PubMedCrossRef Radosavljevic G et al (2011) Deletion of galectin-3 in the host attenuates metastasis of murine melanoma by modulating tumor adhesion and NK cell activity. Clin Exp Metastasis 28(5):451–462PubMedCrossRef
33.
Zurück zum Zitat Radosavljevic G et al (2012) The roles of Galectin-3 in autoimmunity and tumor progression. Immunol Res 52(1–2):100–110PubMedCrossRef Radosavljevic G et al (2012) The roles of Galectin-3 in autoimmunity and tumor progression. Immunol Res 52(1–2):100–110PubMedCrossRef
34.
Zurück zum Zitat Sparrow CP, Leffler H, Barondes SH (1987) Multiple soluble beta-galactoside-binding lectins from human lung. J Biol Chem 262(15):7383–7390PubMed Sparrow CP, Leffler H, Barondes SH (1987) Multiple soluble beta-galactoside-binding lectins from human lung. J Biol Chem 262(15):7383–7390PubMed
35.
Zurück zum Zitat Mehta P, Cummings RD, McEver RP (1998) Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J Biol Chem 273(49):32506–32513PubMedCrossRef Mehta P, Cummings RD, McEver RP (1998) Affinity and kinetic analysis of P-selectin binding to P-selectin glycoprotein ligand-1. J Biol Chem 273(49):32506–32513PubMedCrossRef
36.
Zurück zum Zitat Sato S et al (2002) Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol 168(4):1813–1822PubMedCrossRef Sato S et al (2002) Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J Immunol 168(4):1813–1822PubMedCrossRef
37.
Zurück zum Zitat Fidler IJ, Nicolson GL (1976) Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst 57(5):1199–1202PubMed Fidler IJ, Nicolson GL (1976) Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines. J Natl Cancer Inst 57(5):1199–1202PubMed
38.
Zurück zum Zitat Massa SM et al (1993) L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity. Biochemistry 32(1):260–267PubMedCrossRef Massa SM et al (1993) L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity. Biochemistry 32(1):260–267PubMedCrossRef
39.
Zurück zum Zitat Reddy BV, Kalraiya RD (2006) Sialilated beta1,6 branched N-oligosaccharides modulate adhesion, chemotaxis and motility of melanoma cells: effect on invasion and spontaneous metastasis properties. Biochim Biophys Acta 1760(9):1393–1402PubMedCrossRef Reddy BV, Kalraiya RD (2006) Sialilated beta1,6 branched N-oligosaccharides modulate adhesion, chemotaxis and motility of melanoma cells: effect on invasion and spontaneous metastasis properties. Biochim Biophys Acta 1760(9):1393–1402PubMedCrossRef
40.
Zurück zum Zitat Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102(1):196–202PubMedCrossRef Heussen C, Dowdle EB (1980) Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 102(1):196–202PubMedCrossRef
41.
Zurück zum Zitat Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4(6):457–467PubMedCrossRef Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4(6):457–467PubMedCrossRef
42.
Zurück zum Zitat Guo HB et al (2008) Loss of expression of N-acetylglucosaminyltransferase Va results in altered gene expression of glycosyltransferases and galectins. FEBS Lett 582(4):527–535PubMedCentralPubMedCrossRef Guo HB et al (2008) Loss of expression of N-acetylglucosaminyltransferase Va results in altered gene expression of glycosyltransferases and galectins. FEBS Lett 582(4):527–535PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408PubMedCrossRef Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408PubMedCrossRef
44.
Zurück zum Zitat Nangia-Makker P et al (2002) Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst 94(24):1854–1862PubMedCrossRef Nangia-Makker P et al (2002) Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J Natl Cancer Inst 94(24):1854–1862PubMedCrossRef
45.
Zurück zum Zitat Zhou D (2003) Why are glycoproteins modified by poly-N-acetyllactosamine glyco-conjugates? Curr Protein Pept Sci 4(1):1–9PubMedCrossRef Zhou D (2003) Why are glycoproteins modified by poly-N-acetyllactosamine glyco-conjugates? Curr Protein Pept Sci 4(1):1–9PubMedCrossRef
46.
Zurück zum Zitat Daligault F et al (2009) Thermodynamic insights into the structural basis governing the donor substrate recognition by human beta1,4-galactosyltransferase 7. Biochem J 418(3):605–614PubMedCrossRef Daligault F et al (2009) Thermodynamic insights into the structural basis governing the donor substrate recognition by human beta1,4-galactosyltransferase 7. Biochem J 418(3):605–614PubMedCrossRef
47.
Zurück zum Zitat Sato T et al (2000) Correlated gene expression between beta-1,4-galactosyltransferase V and N-acetylglucosaminyltransferase V in human cancer cell lines. Biochem Biophys Res Commun 276(3):1019–1023PubMedCrossRef Sato T et al (2000) Correlated gene expression between beta-1,4-galactosyltransferase V and N-acetylglucosaminyltransferase V in human cancer cell lines. Biochem Biophys Res Commun 276(3):1019–1023PubMedCrossRef
48.
Zurück zum Zitat Shirane K et al (1999) Involvement of beta-1,4-galactosyltransferase V in malignant transformation-associated changes in glycosylation. Biochem Biophys Res Commun 265(2):434–438PubMedCrossRef Shirane K et al (1999) Involvement of beta-1,4-galactosyltransferase V in malignant transformation-associated changes in glycosylation. Biochem Biophys Res Commun 265(2):434–438PubMedCrossRef
49.
Zurück zum Zitat John CM et al (2003) Truncated galectin-3 inhibits tumor growth and metastasis in orthotopic nude mouse model of human breast cancer. Clin Cancer Res 9(6):2374–2383PubMed John CM et al (2003) Truncated galectin-3 inhibits tumor growth and metastasis in orthotopic nude mouse model of human breast cancer. Clin Cancer Res 9(6):2374–2383PubMed
50.
Zurück zum Zitat Pauli BU et al (1990) Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev 9(3):175–189PubMedCrossRef Pauli BU et al (1990) Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer Metastasis Rev 9(3):175–189PubMedCrossRef
52.
Zurück zum Zitat Elola MT et al (2007) Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci: CMLS 64(13):1679–1700PubMedCrossRef Elola MT et al (2007) Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival. Cell Mol Life Sci: CMLS 64(13):1679–1700PubMedCrossRef
53.
Zurück zum Zitat Barboni EA, Bawumia S, Hughes RC (1999) Kinetic measurements of binding of galectin 3 to a laminin substratum. Glycoconj J 16(7):365–373PubMedCrossRef Barboni EA, Bawumia S, Hughes RC (1999) Kinetic measurements of binding of galectin 3 to a laminin substratum. Glycoconj J 16(7):365–373PubMedCrossRef
54.
Zurück zum Zitat Diskin S et al (2012) Galectin-8 promotes cytoskeletal rearrangement in trabecular meshwork cells through activation of Rho signaling. PLoS One 7(9):e44400PubMedCentralPubMedCrossRef Diskin S et al (2012) Galectin-8 promotes cytoskeletal rearrangement in trabecular meshwork cells through activation of Rho signaling. PLoS One 7(9):e44400PubMedCentralPubMedCrossRef
55.
Zurück zum Zitat Alge-Priglinger CS et al (2009) Inhibition of human retinal pigment epithelial cell attachment, spreading, and migration by the human lectin galectin-1. Mol Vis 15:2162–2173PubMedCentralPubMed Alge-Priglinger CS et al (2009) Inhibition of human retinal pigment epithelial cell attachment, spreading, and migration by the human lectin galectin-1. Mol Vis 15:2162–2173PubMedCentralPubMed
56.
Zurück zum Zitat Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1):9–34PubMedCrossRef Deryugina EI, Quigley JP (2006) Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 25(1):9–34PubMedCrossRef
57.
Zurück zum Zitat Kim SJ et al (2011) Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1). PLoS One 6(9):e25103PubMedCentralPubMedCrossRef Kim SJ et al (2011) Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1) and matrix metalloproteinase-1 (MMP-1). PLoS One 6(9):e25103PubMedCentralPubMedCrossRef
58.
Zurück zum Zitat Kobayashi T et al (2011) Transient gene silencing of galectin-3 suppresses pancreatic cancer cell migration and invasion through degradation of beta-catenin. Int J Cancer 129(12):2775–2786PubMed Kobayashi T et al (2011) Transient gene silencing of galectin-3 suppresses pancreatic cancer cell migration and invasion through degradation of beta-catenin. Int J Cancer 129(12):2775–2786PubMed
59.
Zurück zum Zitat Zhang D et al (2013) Galectin-3 gene silencing inhibits migration and invasion of human tongue cancer cells in vitro via downregulating beta-catenin. Acta Pharmacol Sin 34(1):176–184PubMedCrossRef Zhang D et al (2013) Galectin-3 gene silencing inhibits migration and invasion of human tongue cancer cells in vitro via downregulating beta-catenin. Acta Pharmacol Sin 34(1):176–184PubMedCrossRef
60.
Zurück zum Zitat Nangia-Makker P et al (2007) Galectin-3 cleavage: a novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer Res 67(24):11760–11768PubMedCentralPubMedCrossRef Nangia-Makker P et al (2007) Galectin-3 cleavage: a novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer Res 67(24):11760–11768PubMedCentralPubMedCrossRef
61.
Zurück zum Zitat Saravanan C et al (2009) Galectin-3 promotes lamellipodia formation in epithelial cells by interacting with complex N-glycans on alpha3beta1 integrin. J Cell Sci 122(Pt 20):3684–3693PubMedCentralPubMedCrossRef Saravanan C et al (2009) Galectin-3 promotes lamellipodia formation in epithelial cells by interacting with complex N-glycans on alpha3beta1 integrin. J Cell Sci 122(Pt 20):3684–3693PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Hsu DK et al (2009) Endogenous galectin-3 is localized in membrane lipid rafts and regulates migration of dendritic cells. J Invest Dermatol 129(3):573–583PubMedCentralPubMedCrossRef Hsu DK et al (2009) Endogenous galectin-3 is localized in membrane lipid rafts and regulates migration of dendritic cells. J Invest Dermatol 129(3):573–583PubMedCentralPubMedCrossRef
63.
Zurück zum Zitat Wang LP et al (2013) Galectin-3 accelerates the progression of oral tongue squamous cell carcinoma via a Wnt/beta-catenin-dependent pathway. Pathol Oncol Res 19(3):461–474PubMedCrossRef Wang LP et al (2013) Galectin-3 accelerates the progression of oral tongue squamous cell carcinoma via a Wnt/beta-catenin-dependent pathway. Pathol Oncol Res 19(3):461–474PubMedCrossRef
64.
Zurück zum Zitat Sano H et al (2000) Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 165(4):2156–2164PubMedCrossRef Sano H et al (2000) Human galectin-3 is a novel chemoattractant for monocytes and macrophages. J Immunol 165(4):2156–2164PubMedCrossRef
65.
Zurück zum Zitat Delgado VM et al (2011) Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8. FASEB J 25(1):242–254PubMedCrossRef Delgado VM et al (2011) Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8. FASEB J 25(1):242–254PubMedCrossRef
66.
Zurück zum Zitat Dennis JW, Granovsky M, Warren CE (1999) Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1473(1):21–34PubMedCrossRef Dennis JW, Granovsky M, Warren CE (1999) Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta 1473(1):21–34PubMedCrossRef
67.
Zurück zum Zitat Przybylo M et al (2007) Identification of proteins bearing beta1-6 branched N-glycans in human melanoma cell lines from different progression stages by tandem mass spectrometry analysis. Biochim Biophys Acta 1770(9):1427–1435PubMedCrossRef Przybylo M et al (2007) Identification of proteins bearing beta1-6 branched N-glycans in human melanoma cell lines from different progression stages by tandem mass spectrometry analysis. Biochim Biophys Acta 1770(9):1427–1435PubMedCrossRef
68.
Zurück zum Zitat Lau KS et al (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134PubMedCrossRef Lau KS et al (2007) Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell 129(1):123–134PubMedCrossRef
70.
Metadaten
Titel
Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells
verfasst von
Manohar C. Dange
Nithya Srinivasan
Shyam K. More
Sanjay M. Bane
Archana Upadhya
Arvind D. Ingle
Rajiv P. Gude
Rabindranath Mukhopadhyaya
Rajiv D. Kalraiya
Publikationsdatum
01.08.2014
Verlag
Springer Netherlands
Erschienen in
Clinical & Experimental Metastasis / Ausgabe 6/2014
Print ISSN: 0262-0898
Elektronische ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-014-9657-2

Weitere Artikel der Ausgabe 6/2014

Clinical & Experimental Metastasis 6/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.