Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 8/2022

02.02.2022 | Original Article

Galectin expression detected by 68Ga-galectracer PET as a predictive biomarker of radiotherapy resistance

verfasst von: Dehua Lu, Haoyi Zhou, Nan Li, Yanpu Wang, Ting Zhang, Fei Wang, Ning Liu, Hua Zhu, Jinming Zhang, Zhi Yang, Zhaofei Liu

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Hypoxia is a hallmark of solid tumors that is related to radiotherapy resistance. As galectin members, such as galectin-1 and galectin-3, are associated with tumor hypoxia, herein we aimed to investigate whether positron emission tomography (PET) imaging of galectin expression can be employed to effectively pinpoint tumor hypoxia, and to predict radiotherapy resistance.

Methods

We synthesized a galectin-targeting radiotracer, designated 68Ga-galectracer, by radiolabeling a thiodigalactoside derivative. The properties of 68Ga-galectracer for PET imaging of tumor hypoxia were characterized in three tumor hypoxia mouse models. Additionally, preliminary PET/CT was performed in two patients with lung cancer to investigate the potential application of 68Ga-galectracer for clinical imaging.

Results

High-contrast imaging was achieved in the murine acute hypoxia tumor model, A549 natural hypoxia model, and sorafenib treatment-induced hypoxic 4T1 tumor model by PET using 68Ga-galectracer. In fact, 68Ga-galectracer exhibited superior hypoxia detection to that of 18F-misonidazole in the 4T1 tumors. Moreover, tumors with high galectin expression levels, as detected by 68Ga-galectracer PET, exhibited significantly lower responses to subsequent radiotherapy compared to those with low galectin expression levels. In patients with lung cancer, PET imaging using 68Ga-galectracer provided data that were complementary to that of the glucose metabolic PET radiotracer 18F-fluorodeoxyglucose.

Conclusion

68Ga-galectracer is a promising radiotracer for PET-based imaging of tumor hypoxia in vivo. Thus, hypoxia PET with 68Ga-galectracer could provide a noninvasive approach to proactively predict radiotherapy efficacy.

Trial registration

Chictr.org.cn (ChiCTR2000029522). Registered 03 February 2020.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–85.PubMedCrossRef Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA Cancer J Clin. 2019;69:363–85.PubMedCrossRef
3.
Zurück zum Zitat Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med. 2009;9:442–58.PubMedPubMedCentralCrossRef Rockwell S, Dobrucki IT, Kim EY, Marrison ST, Vu VT. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med. 2009;9:442–58.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9:674–87.PubMedCrossRef Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9:674–87.PubMedCrossRef
7.
Zurück zum Zitat Sun X, Niu G, Chan N, Shen B, Chen X. Tumor hypoxia imaging. Mol Imaging Biol. 2011;13:399–410.PubMedCrossRef Sun X, Niu G, Chan N, Shen B, Chen X. Tumor hypoxia imaging. Mol Imaging Biol. 2011;13:399–410.PubMedCrossRef
8.
Zurück zum Zitat Stieb S, Eleftheriou A, Warnock G, Guckenberger M, Riesterer O. Longitudinal PET imaging of tumor hypoxia during the course of radiotherapy. Eur J Nucl Med Mol Imaging. 2018;45:2201–17.PubMedCrossRef Stieb S, Eleftheriou A, Warnock G, Guckenberger M, Riesterer O. Longitudinal PET imaging of tumor hypoxia during the course of radiotherapy. Eur J Nucl Med Mol Imaging. 2018;45:2201–17.PubMedCrossRef
9.
Zurück zum Zitat Strauss HW, Nunn A, Linder K. Nitroimidazoles for imaging hypoxic myocardium. J Nucl Cardiol. 1995;2:437–45.PubMedCrossRef Strauss HW, Nunn A, Linder K. Nitroimidazoles for imaging hypoxic myocardium. J Nucl Cardiol. 1995;2:437–45.PubMedCrossRef
10.
Zurück zum Zitat Barondes SH, Cooper DN, Gitt MA, Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994;269:20807–10. Barondes SH, Cooper DN, Gitt MA, Leffler H. Galectins. Structure and function of a large family of animal lectins. J Biol Chem. 1994;269:20807–10.
11.
Zurück zum Zitat Ito K, Stannard K, Gabutero E, Clark AM, Neo SY, Onturk S, et al. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metastasis Rev. 2012;31:763–78.PubMedCrossRef Ito K, Stannard K, Gabutero E, Clark AM, Neo SY, Onturk S, et al. Galectin-1 as a potent target for cancer therapy: role in the tumor microenvironment. Cancer Metastasis Rev. 2012;31:763–78.PubMedCrossRef
13.
Zurück zum Zitat Gu X, Meng H, Wang J, Wang R, Cao M, Liu S, et al. Hypoxia contributes to galectin-3 expression in renal carcinoma cells. Eur J Pharmacol. 2021;890:173637. Gu X, Meng H, Wang J, Wang R, Cao M, Liu S, et al. Hypoxia contributes to galectin-3 expression in renal carcinoma cells. Eur J Pharmacol. 2021;890:173637.
14.
Zurück zum Zitat Kuo P, Bratman SV, Shultz DB, von Eyben R, Chan C, Wang Z, et al. Galectin-1 mediates radiation-related lymphopenia and attenuates NSCLC radiation response. Clin Cancer Res. 2014;20:5558–69.PubMedPubMedCentralCrossRef Kuo P, Bratman SV, Shultz DB, von Eyben R, Chan C, Wang Z, et al. Galectin-1 mediates radiation-related lymphopenia and attenuates NSCLC radiation response. Clin Cancer Res. 2014;20:5558–69.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Lai J, Lu D, Zhang C, Zhu H, Gao L, Wang Y, et al. Noninvasive small-animal imaging of galectin-1 upregulation for predicting tumor resistance to radiotherapy. Biomaterials. 2018;158:1–9.PubMedCrossRef Lai J, Lu D, Zhang C, Zhu H, Gao L, Wang Y, et al. Noninvasive small-animal imaging of galectin-1 upregulation for predicting tumor resistance to radiotherapy. Biomaterials. 2018;158:1–9.PubMedCrossRef
16.
Zurück zum Zitat Carlucci G, Ippisch R, Slavik R, Mishoe A, Blecha J, Zhu S. 68Ga-PSMA-11 NDA approval: a novel and successful academic partnership. J Nucl Med. 2021;62:149–55.PubMedPubMedCentralCrossRef Carlucci G, Ippisch R, Slavik R, Mishoe A, Blecha J, Zhu S. 68Ga-PSMA-11 NDA approval: a novel and successful academic partnership. J Nucl Med. 2021;62:149–55.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Gourd E. New radiotracer shows impressive diagnostic potential. Lancet Oncol. 2019;20:e353. Gourd E. New radiotracer shows impressive diagnostic potential. Lancet Oncol. 2019;20:e353.
18.
Zurück zum Zitat Zhang H, Laaf D, Elling L, Pieters RJ. Thiodigalactoside–bovine serum albumin conjugates as high-potency inhibitors of galectin-3: an outstanding example of multivalent presentation of small molecule inhibitors. Bioconjug Chem. 2018;29:1266–75.PubMedPubMedCentralCrossRef Zhang H, Laaf D, Elling L, Pieters RJ. Thiodigalactoside–bovine serum albumin conjugates as high-potency inhibitors of galectin-3: an outstanding example of multivalent presentation of small molecule inhibitors. Bioconjug Chem. 2018;29:1266–75.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat van Hattum H, Branderhorst HM, Moret EE, Nilsson UJ, Leffler H, Pieters RJ. Tuning the preference of thiodigalactoside- and lactosamine-based ligands to galectin-3 over galectin-1. J Med Chem. 2013;56:1350–4.PubMedCrossRef van Hattum H, Branderhorst HM, Moret EE, Nilsson UJ, Leffler H, Pieters RJ. Tuning the preference of thiodigalactoside- and lactosamine-based ligands to galectin-3 over galectin-1. J Med Chem. 2013;56:1350–4.PubMedCrossRef
20.
Zurück zum Zitat Zhao Y, Zhang T, Wang Y, Lu D, Du J, Feng X, et al. ICAM-1 orchestrates the abscopal effect of tumor radiotherapy. Proc Natl Acad Sci U S A. 2021;118:e2010333118. Zhao Y, Zhang T, Wang Y, Lu D, Du J, Feng X, et al. ICAM-1 orchestrates the abscopal effect of tumor radiotherapy. Proc Natl Acad Sci U S A. 2021;118:e2010333118.
21.
Zurück zum Zitat Jin CS, Lovell JF, Chen J, Zheng G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano. 2013;7:2541–50.PubMedPubMedCentralCrossRef Jin CS, Lovell JF, Chen J, Zheng G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano. 2013;7:2541–50.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Feng X, Wang Y, Lu D, Xu X, Zhou X, Zhang H, et al. Clinical translation of a 68Ga-labeled integrin αvβ6-targeting cyclic radiotracer for PET imaging of pancreatic cancer. J Nucl Med. 2020;61:1461–7.PubMedPubMedCentralCrossRef Feng X, Wang Y, Lu D, Xu X, Zhou X, Zhang H, et al. Clinical translation of a 68Ga-labeled integrin αvβ6-targeting cyclic radiotracer for PET imaging of pancreatic cancer. J Nucl Med. 2020;61:1461–7.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Rabinovich GA, Vidal M. Galectins and microenvironmental niches during hematopoiesis. Curr Opin Hematol. 2011;18:443–51.PubMedCrossRef Rabinovich GA, Vidal M. Galectins and microenvironmental niches during hematopoiesis. Curr Opin Hematol. 2011;18:443–51.PubMedCrossRef
24.
Zurück zum Zitat Gilson RC, Gunasinghe SD, Johannes L, Gaus K. Galectin-3 modulation of T-cell activation: mechanisms of membrane remodelling. Prog Lipid Res. 2019;76:101010. Gilson RC, Gunasinghe SD, Johannes L, Gaus K. Galectin-3 modulation of T-cell activation: mechanisms of membrane remodelling. Prog Lipid Res. 2019;76:101010.
25.
Zurück zum Zitat Bhat R, Belardi B, Mori H, Kuo P, Tam A, Hines WC, et al. Nuclear repartitioning of galectin-1 by an extracellular glycan switch regulates mammary morphogenesis. Proc Natl Acad Sci U S A. 2016;113:E4820–7.PubMedPubMedCentralCrossRef Bhat R, Belardi B, Mori H, Kuo P, Tam A, Hines WC, et al. Nuclear repartitioning of galectin-1 by an extracellular glycan switch regulates mammary morphogenesis. Proc Natl Acad Sci U S A. 2016;113:E4820–7.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat D’Alessandria C, Braesch-Andersen S, Bejo K, Reder S, Blechert B, Schwaiger M, et al. Noninvasive in vivo imaging and biologic characterization of thyroid tumors by immunoPET targeting of galectin-3. Cancer Res. 2016;76:3583–92.PubMedCrossRef D’Alessandria C, Braesch-Andersen S, Bejo K, Reder S, Blechert B, Schwaiger M, et al. Noninvasive in vivo imaging and biologic characterization of thyroid tumors by immunoPET targeting of galectin-3. Cancer Res. 2016;76:3583–92.PubMedCrossRef
27.
Zurück zum Zitat Chen Y, Huang Y, Reiberger T, Duyverman AM, Huang P, Samuel R, et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology. 2014;59:1435–47.PubMedCrossRef Chen Y, Huang Y, Reiberger T, Duyverman AM, Huang P, Samuel R, et al. Differential effects of sorafenib on liver versus tumor fibrosis mediated by stromal-derived factor 1 alpha/C-X-C receptor type 4 axis and myeloid differentiation antigen-positive myeloid cell infiltration in mice. Hepatology. 2014;59:1435–47.PubMedCrossRef
28.
Zurück zum Zitat Salem A, Asselin MC, Reymen B, Jackson A, Lambin P, West CML, et al. Targeting hypoxia to improve non-small cell lung cancer outcome. J Natl Cancer Inst. 2018;110:14–30.CrossRef Salem A, Asselin MC, Reymen B, Jackson A, Lambin P, West CML, et al. Targeting hypoxia to improve non-small cell lung cancer outcome. J Natl Cancer Inst. 2018;110:14–30.CrossRef
29.
Zurück zum Zitat De Bruycker S, Vangestel C, Van den Wyngaert T, Pauwels P, Wyffels L, Staelens S, et al. 18F-flortanidazole hypoxia PET holds promise as a prognostic and predictive imaging biomarker in a lung cancer xenograft model treated with metformin and radiotherapy. J Nucl Med. 2019;60:34–40.PubMedCrossRef De Bruycker S, Vangestel C, Van den Wyngaert T, Pauwels P, Wyffels L, Staelens S, et al. 18F-flortanidazole hypoxia PET holds promise as a prognostic and predictive imaging biomarker in a lung cancer xenograft model treated with metformin and radiotherapy. J Nucl Med. 2019;60:34–40.PubMedCrossRef
30.
Zurück zum Zitat Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61:1591–602.PubMedCrossRef Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61:1591–602.PubMedCrossRef
31.
Zurück zum Zitat Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A. 2012;109:2784–9.PubMedPubMedCentralCrossRef Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A. 2012;109:2784–9.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Peeters SG, Zegers CM, Biemans R, Lieuwes NG, van Stiphout RG, Yaromina A, et al. TH-302 in combination with radiotherapy enhances the therapeutic outcome and is associated with pretreatment [18F]HX4 hypoxia PET imaging. Clin Cancer Res. 2015;21:2984–92.PubMedCrossRef Peeters SG, Zegers CM, Biemans R, Lieuwes NG, van Stiphout RG, Yaromina A, et al. TH-302 in combination with radiotherapy enhances the therapeutic outcome and is associated with pretreatment [18F]HX4 hypoxia PET imaging. Clin Cancer Res. 2015;21:2984–92.PubMedCrossRef
33.
Zurück zum Zitat Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T, Sheng J, et al. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J Clin Invest. 2018;128:5137–49.PubMedPubMedCentralCrossRef Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T, Sheng J, et al. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J Clin Invest. 2018;128:5137–49.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Le QT, Shi G, Cao H, Nelson DW, Wang Y, Chen EY, et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol. 2005;23:8932–41.PubMedCrossRef Le QT, Shi G, Cao H, Nelson DW, Wang Y, Chen EY, et al. Galectin-1: a link between tumor hypoxia and tumor immune privilege. J Clin Oncol. 2005;23:8932–41.PubMedCrossRef
35.
Zurück zum Zitat Zhao XY, Chen TT, Xia L, Guo M, Xu Y, Yue F, et al. Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis. 2010;31:1367–75.PubMedCrossRef Zhao XY, Chen TT, Xia L, Guo M, Xu Y, Yue F, et al. Hypoxia inducible factor-1 mediates expression of galectin-1: the potential role in migration/invasion of colorectal cancer cells. Carcinogenesis. 2010;31:1367–75.PubMedCrossRef
36.
Zurück zum Zitat Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med. 2005;46:106–13.PubMed Piert M, Machulla HJ, Picchio M, Reischl G, Ziegler S, Kumar P, et al. Hypoxia-specific tumor imaging with 18F-fluoroazomycin arabinoside. J Nucl Med. 2005;46:106–13.PubMed
37.
Zurück zum Zitat Pereira-Prado V, Vigil-Bastitta G, Sánchez-Romero C, Arocena M, Molina-Frechero N, González-González R, et al. Immunoexpression of galectin-3 and its potential relation to hypoxia-inducible factor-1α in ameloblastomas. Biotech Histochem. 2021;96:296–301.PubMedCrossRef Pereira-Prado V, Vigil-Bastitta G, Sánchez-Romero C, Arocena M, Molina-Frechero N, González-González R, et al. Immunoexpression of galectin-3 and its potential relation to hypoxia-inducible factor-1α in ameloblastomas. Biotech Histochem. 2021;96:296–301.PubMedCrossRef
38.
Zurück zum Zitat van den Brule F, Califice S, Garnier F, Fernandez PL, Berchuck A, Castronovo V. Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Invest. 2003;83:377–86.PubMedCrossRef van den Brule F, Califice S, Garnier F, Fernandez PL, Berchuck A, Castronovo V. Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin. Lab Invest. 2003;83:377–86.PubMedCrossRef
39.
Zurück zum Zitat Satelli A, Rao PS, Gupta PK, Lockman PR, Srivenugopal KS, Rao US. Varied expression and localization of multiple galectins in different cancer cell lines. Oncol Rep. 2008;19:587–94.PubMed Satelli A, Rao PS, Gupta PK, Lockman PR, Srivenugopal KS, Rao US. Varied expression and localization of multiple galectins in different cancer cell lines. Oncol Rep. 2008;19:587–94.PubMed
40.
Zurück zum Zitat Koopmans SM, Bot FJ, Schouten HC, Janssen J, van Marion AM. The involvement of Galectins in the modulation of the JAK/STAT pathway in myeloproliferative neoplasia. Am J Blood Res. 2012;2:119–27.PubMedPubMedCentral Koopmans SM, Bot FJ, Schouten HC, Janssen J, van Marion AM. The involvement of Galectins in the modulation of the JAK/STAT pathway in myeloproliferative neoplasia. Am J Blood Res. 2012;2:119–27.PubMedPubMedCentral
41.
Zurück zum Zitat Nagengast WB, Lub-de Hooge MN, Oosting SF, den Dunnen WF, Warnders FJ, Brouwers AH, et al. VEGF-PET imaging is a noninvasive biomarker showing differential changes in the tumor during sunitinib treatment. Cancer Res. 2011;71:143–53.PubMedCrossRef Nagengast WB, Lub-de Hooge MN, Oosting SF, den Dunnen WF, Warnders FJ, Brouwers AH, et al. VEGF-PET imaging is a noninvasive biomarker showing differential changes in the tumor during sunitinib treatment. Cancer Res. 2011;71:143–53.PubMedCrossRef
42.
Zurück zum Zitat Gaykema SB, Brouwers AH, Lub-de Hooge MN, Pleijhuis RG, Timmer-Bosscha H, Pot L, et al. 89Zr-bevacizumab PET imaging in primary breast cancer. J Nucl Med. 2013;54:1014–8.PubMedCrossRef Gaykema SB, Brouwers AH, Lub-de Hooge MN, Pleijhuis RG, Timmer-Bosscha H, Pot L, et al. 89Zr-bevacizumab PET imaging in primary breast cancer. J Nucl Med. 2013;54:1014–8.PubMedCrossRef
43.
Zurück zum Zitat Viola-Villegas NT, Rice SL, Carlin S, Wu X, Evans MJ, Sevak KK, et al. Applying PET to broaden the diagnostic utility of the clinically validated CA19.9 serum biomarker for oncology. J Nucl Med. 2013;54:1876–82. Viola-Villegas NT, Rice SL, Carlin S, Wu X, Evans MJ, Sevak KK, et al. Applying PET to broaden the diagnostic utility of the clinically validated CA19.9 serum biomarker for oncology. J Nucl Med. 2013;54:1876–82.
44.
Zurück zum Zitat Pereira PMR, Roberts S, Figueira F, Tomé JPC, Reiner T, Lewis JS. PET/CT imaging with an 18F-labeled galactodendritic unit in a galectin-1-overexpressing orthotopic bladder cancer model. J Nucl Med. 2020;61:1369–75.PubMedPubMedCentralCrossRef Pereira PMR, Roberts S, Figueira F, Tomé JPC, Reiner T, Lewis JS. PET/CT imaging with an 18F-labeled galactodendritic unit in a galectin-1-overexpressing orthotopic bladder cancer model. J Nucl Med. 2020;61:1369–75.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Bratteby K, Torkelsson E, L’Estrade ET, Peterson K, Shalgunov V, Xiong M, et al. In vivo veritas: 18F-radiolabeled glycomimetics allow insights into the pharmacological fate of galectin-3 inhibitors. J Med Chem. 2020;63:747–55.PubMedCrossRef Bratteby K, Torkelsson E, L’Estrade ET, Peterson K, Shalgunov V, Xiong M, et al. In vivo veritas: 18F-radiolabeled glycomimetics allow insights into the pharmacological fate of galectin-3 inhibitors. J Med Chem. 2020;63:747–55.PubMedCrossRef
46.
Zurück zum Zitat Muzi M, Peterson LM, O’Sullivan JN, Fink JR, Rajendran JG, McLaughlin LJ, et al. 18F-fluoromisonidazole quantification of hypoxia in human cancer patients using image-derived blood surrogate tissue reference regions. J Nucl Med. 2015;56:1223–8.PubMedCrossRef Muzi M, Peterson LM, O’Sullivan JN, Fink JR, Rajendran JG, McLaughlin LJ, et al. 18F-fluoromisonidazole quantification of hypoxia in human cancer patients using image-derived blood surrogate tissue reference regions. J Nucl Med. 2015;56:1223–8.PubMedCrossRef
47.
Zurück zum Zitat Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy. 2007;53:233–56.PubMedCrossRef Airley RE, Mobasheri A. Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: novel pathways and targets for anticancer therapeutics. Chemotherapy. 2007;53:233–56.PubMedCrossRef
48.
Zurück zum Zitat Leimgruber A, Hickson K, Lee ST, Gan HK, Cher LM, Sachinidis JI, et al. Spatial and quantitative mapping of glycolysis and hypoxia in glioblastoma as a predictor of radiotherapy response and sites of relapse. Eur J Nucl Med Mol Imaging. 2020;47:1476–85.PubMedCrossRef Leimgruber A, Hickson K, Lee ST, Gan HK, Cher LM, Sachinidis JI, et al. Spatial and quantitative mapping of glycolysis and hypoxia in glioblastoma as a predictor of radiotherapy response and sites of relapse. Eur J Nucl Med Mol Imaging. 2020;47:1476–85.PubMedCrossRef
49.
Zurück zum Zitat Busk M, Horsman MR, Kristjansen PE, van der Kogel AJ, Bussink J, Overgaard J. Aerobic glycolysis in cancers: implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia. Int J Cancer. 2008;122:2726–34.PubMedCrossRef Busk M, Horsman MR, Kristjansen PE, van der Kogel AJ, Bussink J, Overgaard J. Aerobic glycolysis in cancers: implications for the usability of oxygen-responsive genes and fluorodeoxyglucose-PET as markers of tissue hypoxia. Int J Cancer. 2008;122:2726–34.PubMedCrossRef
50.
Zurück zum Zitat Yamamoto K, Brender JR, Seki T, Kishimoto S, Oshima N, Choudhuri R, et al. Molecular imaging of the tumor microenvironment reveals the relationship between tumor oxygenation, glucose uptake, and glycolysis in pancreatic ductal adenocarcinoma. Cancer Res. 2020;80:2087–93.PubMedPubMedCentralCrossRef Yamamoto K, Brender JR, Seki T, Kishimoto S, Oshima N, Choudhuri R, et al. Molecular imaging of the tumor microenvironment reveals the relationship between tumor oxygenation, glucose uptake, and glycolysis in pancreatic ductal adenocarcinoma. Cancer Res. 2020;80:2087–93.PubMedPubMedCentralCrossRef
52.
Metadaten
Titel
Galectin expression detected by 68Ga-galectracer PET as a predictive biomarker of radiotherapy resistance
verfasst von
Dehua Lu
Haoyi Zhou
Nan Li
Yanpu Wang
Ting Zhang
Fei Wang
Ning Liu
Hua Zhu
Jinming Zhang
Zhi Yang
Zhaofei Liu
Publikationsdatum
02.02.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 8/2022
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-022-05711-1

Weitere Artikel der Ausgabe 8/2022

European Journal of Nuclear Medicine and Molecular Imaging 8/2022 Zur Ausgabe