Skip to main content
Erschienen in:

29.05.2023

GATA2 Deficiency: Predisposition to Myeloid Malignancy and Hematopoietic Cell Transplantation

verfasst von: Roma V. Rajput, Danielle E. Arnold

Erschienen in: Current Hematologic Malignancy Reports | Ausgabe 4/2023

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

GATA2 deficiency is a haploinsufficiency syndrome associated with a wide spectrum of disease, including severe monocytopenia and B and NK lymphopenia, predisposition to myeloid malignancies, human papillomavirus infections, and infections with opportunistic organisms, particularly nontuberculous mycobacteria, herpes virus, and certain fungi. GATA2 mutations have variable penetrance and expressivity with imperfect genotype–phenotype correlations. However, approximately 75% of patients will develop a myeloid neoplasm at some point. Allogeneic hematopoietic cell transplantation (HCT) is the only currently available curative therapy. Here, we review the clinical manifestations of GATA2 deficiency, characterization of the hematologic abnormalities and progression to myeloid malignancy, and current HCT practices and outcomes.

Recent Findings

Cytogenetic abnormalities are common with high rates of trisomy 8, monosomy 7, and unbalanced translocation der(1;7) and may suggest an underlying GATA2 deficiency in patients presenting with myelodysplastic syndrome (MDS). Mutations in ASXL1 and STAG2 are the most frequently encountered somatic mutations and are associated with lower survival probability. A recent report of 59 patients with GATA2 deficiency who underwent allogenic HCT with myeloablative, busulfan-based conditioning and post-transplant cyclophosphamide reported excellent overall and event-free survival of 85% and 82% with reversal of disease phenotype and low rates of graft versus host disease.

Summary

Allogeneic HCT with myeloablative conditioning results in disease correction and should be considered for patients with a history of recurrent, disfiguring and/or severe infections, organ dysfunction, MDS with cytogenetic abnormalities, high-risk somatic mutations or transfusion dependence, or myeloid progression. Improved genotype/phenotype correlations are needed to allow for greater predictive capabilities.
Literatur
1.
Zurück zum Zitat Hsu AP, Sampaio EF, Kahn J, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653–5.PubMedPubMedCentralCrossRef Hsu AP, Sampaio EF, Kahn J, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653–5.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Vinh DC, Patel SY, Uzel G, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood. 2010;115(8):2653–5.CrossRef Vinh DC, Patel SY, Uzel G, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood. 2010;115(8):2653–5.CrossRef
3.
Zurück zum Zitat Bigley V, Haniffa M, Doulatov S, et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med. 2011;208(2):227–34.PubMedPubMedCentralCrossRef Bigley V, Haniffa M, Doulatov S, et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med. 2011;208(2):227–34.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Dickinson RE, Griffin H, Bigley V, et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte B and NK lymphoid deficiency. Blood. 2011;118(10):2656–8.PubMedCrossRef Dickinson RE, Griffin H, Bigley V, et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte B and NK lymphoid deficiency. Blood. 2011;118(10):2656–8.PubMedCrossRef
5.
Zurück zum Zitat Mansour S, Connell F, Steward C, et al. Emberger syndrome-primary lymphedema with myelodysplasia: report of seven new cases. Am J Med Genet A. 2010;152A(9):2287–96.PubMedCrossRef Mansour S, Connell F, Steward C, et al. Emberger syndrome-primary lymphedema with myelodysplasia: report of seven new cases. Am J Med Genet A. 2010;152A(9):2287–96.PubMedCrossRef
6.
Zurück zum Zitat Ostergaard P, Simpson MA, Connell FC, et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet. 2011;43(10):929–31.PubMedCrossRef Ostergaard P, Simpson MA, Connell FC, et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet. 2011;43(10):929–31.PubMedCrossRef
7.
Zurück zum Zitat Hahn CN, Chong CE, Carmichael CL, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011;43(10):1012–7.PubMedPubMedCentralCrossRef Hahn CN, Chong CE, Carmichael CL, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011;43(10):1012–7.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123(6):809–21.PubMedPubMedCentralCrossRef Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123(6):809–21.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Donadieu J, Lamant M, Fieschi C, et al. Natural history of GATA2 deficieny in a survey of 79 French and Belgian patients. Haematologica. 2018;103(8):1278–87.PubMedPubMedCentralCrossRef Donadieu J, Lamant M, Fieschi C, et al. Natural history of GATA2 deficieny in a survey of 79 French and Belgian patients. Haematologica. 2018;103(8):1278–87.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Orkin SH. Gata-binding transcription factors in hematopoietic cells. Blood. 1992;80(3):575–81.PubMedCrossRef Orkin SH. Gata-binding transcription factors in hematopoietic cells. Blood. 1992;80(3):575–81.PubMedCrossRef
12.
Zurück zum Zitat Tsai FY, Keller G, Kuo FC, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371(6494):221–6.PubMedCrossRef Tsai FY, Keller G, Kuo FC, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371(6494):221–6.PubMedCrossRef
13.
Zurück zum Zitat Tsai FY, Orkin SH. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood. 1997;371(6494):221–6. Tsai FY, Orkin SH. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood. 1997;371(6494):221–6.
14.
Zurück zum Zitat Suzuki M, Kobayashi-Osaki M, Tsutsumi S, et al. GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation. Genes Cells. 2013;18(11):921–33.PubMedCrossRef Suzuki M, Kobayashi-Osaki M, Tsutsumi S, et al. GATA factor switching from GATA2 to GATA1 contributes to erythroid differentiation. Genes Cells. 2013;18(11):921–33.PubMedCrossRef
16.
17.
Zurück zum Zitat Kotmayer L, Romero-Moya D, Marin-Bejar O, et al. GATA2 deficiency and MDS/AML: Experimental strategies for disease modelling and future therapeutic prospects. Br J Haematol. 2022;199(4):482–95.PubMedPubMedCentralCrossRef Kotmayer L, Romero-Moya D, Marin-Bejar O, et al. GATA2 deficiency and MDS/AML: Experimental strategies for disease modelling and future therapeutic prospects. Br J Haematol. 2022;199(4):482–95.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Wehr C, Grotius K, Casadei S, Bleckmann D, Bode SFN, Frye BC, et al. A novel disease-causing synonymous exonic mutation in GATA2 affecting RNA splicing. Blood. 2018;132(11):1211–5.PubMedPubMedCentralCrossRef Wehr C, Grotius K, Casadei S, Bleckmann D, Bode SFN, Frye BC, et al. A novel disease-causing synonymous exonic mutation in GATA2 affecting RNA splicing. Blood. 2018;132(11):1211–5.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Kozyra EJ, Pastor VB, Lefkopoulos S, et al. Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency. Leukemia. 2020;34(10):2673–87.PubMedPubMedCentralCrossRef Kozyra EJ, Pastor VB, Lefkopoulos S, et al. Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency. Leukemia. 2020;34(10):2673–87.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Singh P, Heer M, Resteu A, Mikulasova A, et al. GATA2 Deficiency Phenotype Associated With Tandem Duplication GATA2 and Over-Expression of GATA2-As1. Blood Adv. 2021;5(24):5631–5.PubMedPubMedCentralCrossRef Singh P, Heer M, Resteu A, Mikulasova A, et al. GATA2 Deficiency Phenotype Associated With Tandem Duplication GATA2 and Over-Expression of GATA2-As1. Blood Adv. 2021;5(24):5631–5.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Shiba N, Funato M, Ohki K, et al. Mutations of the GATA2 and CEBPA Genes in Paediatric Acute Myeloid Leukaemia. B J Haematol. 2014;164:142–5.CrossRef Shiba N, Funato M, Ohki K, et al. Mutations of the GATA2 and CEBPA Genes in Paediatric Acute Myeloid Leukaemia. B J Haematol. 2014;164:142–5.CrossRef
25.
Zurück zum Zitat Calvo KR, Hickstein DD, Holland SM. MonoMAC and GATA2 deficiency: overlapping clinical and pathological features with aplastic anemia and idiopathic CD4+ lymphocytopenia. Haematologica. 2012;97(4):e12–3.PubMedCentralCrossRef Calvo KR, Hickstein DD, Holland SM. MonoMAC and GATA2 deficiency: overlapping clinical and pathological features with aplastic anemia and idiopathic CD4+ lymphocytopenia. Haematologica. 2012;97(4):e12–3.PubMedCentralCrossRef
26.
Zurück zum Zitat Ganapathi KA, Townsley DM, Hsu AP, et al. GATA2 deficiency-associated bone marrow disorder differs from idiopathic aplastic anemia. Blood. 2015;125(1):56–70.PubMedPubMedCentralCrossRef Ganapathi KA, Townsley DM, Hsu AP, et al. GATA2 deficiency-associated bone marrow disorder differs from idiopathic aplastic anemia. Blood. 2015;125(1):56–70.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat •• Wlodarski MW, Hirabayashi S, Pastor V, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127(11):1387–97. Found high rates of GATA2 deficiency in pediatric patients with MDS and monosomy 7 (37% of all cases and 72% of adolescents), indicating that monosomy 7 may be a sign of underlying GATA2 deficiency in patients presenting with MDS. •• Wlodarski MW, Hirabayashi S, Pastor V, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127(11):1387–97. Found high rates of GATA2 deficiency in pediatric patients with MDS and monosomy 7 (37% of all cases and 72% of adolescents), indicating that monosomy 7 may be a sign of underlying GATA2 deficiency in patients presenting with MDS.
28.
Zurück zum Zitat Hirabayashi S, Wlodarski MW, Kozyra E, Niemeyer CM. Heterogeneity of GATA2-related myeloid neoplasms. Int J Hematol. 2017;106(2):175–82.PubMedCrossRef Hirabayashi S, Wlodarski MW, Kozyra E, Niemeyer CM. Heterogeneity of GATA2-related myeloid neoplasms. Int J Hematol. 2017;106(2):175–82.PubMedCrossRef
29.
30.
Zurück zum Zitat • West RR, Calvo KR, Embree LJ, et al. ASXL1 and STAG2 are common mutations in GATA2 deficiency patients with bone marrow disease and myelodysplastic syndrome. Blood Adv. 2022;6(3):793–807. Performed cytogenetic and mutational analysis on 106 patients with GATA2 deficiency and found high rates of monsomy 7, trisomy 8, and der(1;7). Mutations in STAG2 and ASXL1 were the most commonly identified somatic mutations. • West RR, Calvo KR, Embree LJ, et al. ASXL1 and STAG2 are common mutations in GATA2 deficiency patients with bone marrow disease and myelodysplastic syndrome. Blood Adv. 2022;6(3):793–807. Performed cytogenetic and mutational analysis on 106 patients with GATA2 deficiency and found high rates of monsomy 7, trisomy 8, and der(1;7). Mutations in STAG2 and ASXL1 were the most commonly identified somatic mutations.
31.
Zurück zum Zitat Kozyra EJ, Gohring G, Hickstein DD, et al. Association of unbalanced translocation der(1;7) with germline GATA2 mutations. Blood. 2021;138(23):2441–5.PubMedPubMedCentralCrossRef Kozyra EJ, Gohring G, Hickstein DD, et al. Association of unbalanced translocation der(1;7) with germline GATA2 mutations. Blood. 2021;138(23):2441–5.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Bodor C, Renneville A, Smith M, et al. Germ-line GATA2 p.THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival. Haematologica. 2012;97(6):890–4.PubMedPubMedCentralCrossRef Bodor C, Renneville A, Smith M, et al. Germ-line GATA2 p.THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival. Haematologica. 2012;97(6):890–4.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat West RR, Hsu AP, Holland SM, Cuellar-Rodriguez J, Hickstein DD. Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation. Haematologica. 2014;99(2):276–81.PubMedPubMedCentralCrossRef West RR, Hsu AP, Holland SM, Cuellar-Rodriguez J, Hickstein DD. Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation. Haematologica. 2014;99(2):276–81.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Pastor Loyola VB, Hirabayashi J, Pohl S, et al. Somatic genetic and epigenetic architecture of myelodysplastic syndromes arising from GATA2 deficiency. Blood. 2015;126(23):299.CrossRef Pastor Loyola VB, Hirabayashi J, Pohl S, et al. Somatic genetic and epigenetic architecture of myelodysplastic syndromes arising from GATA2 deficiency. Blood. 2015;126(23):299.CrossRef
35.
Zurück zum Zitat Fisher KE, Hsu AP, Williams CL, et al. Somatic mutations in children with GATA2-associated myelodysplastic syndrome who lack other features of GATA2 deficiency. Blood Adv. 2017;1(7):443–8.PubMedPubMedCentralCrossRef Fisher KE, Hsu AP, Williams CL, et al. Somatic mutations in children with GATA2-associated myelodysplastic syndrome who lack other features of GATA2 deficiency. Blood Adv. 2017;1(7):443–8.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Churpek JE, Pyrtel K, Kanchi KL, et al. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood. 2015;126(22):2484–90.PubMedPubMedCentralCrossRef Churpek JE, Pyrtel K, Kanchi KL, et al. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood. 2015;126(22):2484–90.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Drazer MW, Kadri S, Sukhanova M, et al. Prognostic tumor sequencing panels frequently identify germ line variants associated with hereditary hematopoietic malignancies. Blood Adv. 2018;2(2):146–50.PubMedPubMedCentralCrossRef Drazer MW, Kadri S, Sukhanova M, et al. Prognostic tumor sequencing panels frequently identify germ line variants associated with hereditary hematopoietic malignancies. Blood Adv. 2018;2(2):146–50.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Zhang MY, Keel SB, Walsh T, et al. Genomic analysis of bone marrow failure and myelodysplastic syndromes reveals phenotypic and diagnostic complexity. Haematologica. 2015;100(1):42–8.PubMedPubMedCentralCrossRef Zhang MY, Keel SB, Walsh T, et al. Genomic analysis of bone marrow failure and myelodysplastic syndromes reveals phenotypic and diagnostic complexity. Haematologica. 2015;100(1):42–8.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Keel SB, Scott A, Sanchez-Bonilla M, et al. Genetic features of myelodysplastic syndrome and aplastic anemia in pediatric and young adult patients. Haematologica. 2016;101(11):1343–50.PubMedPubMedCentralCrossRef Keel SB, Scott A, Sanchez-Bonilla M, et al. Genetic features of myelodysplastic syndrome and aplastic anemia in pediatric and young adult patients. Haematologica. 2016;101(11):1343–50.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Wang X, Muramatsu H, Okuno Y, et al. GATA2 and secondary mutations in familial myelodysplastic syndromes and pediatric myeloid malignancies. Haematologica. 2015;100(10):e398-401.PubMedPubMedCentralCrossRef Wang X, Muramatsu H, Okuno Y, et al. GATA2 and secondary mutations in familial myelodysplastic syndromes and pediatric myeloid malignancies. Haematologica. 2015;100(10):e398-401.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Pastor V, Hirabayashi S, Karow A, et al. Mutational landscape in children with myelodysplastic syndromes is distinct from adults: specific somatic drivers and novel germline variants. Leukemia. 2017;31(3):759–62.PubMedCrossRef Pastor V, Hirabayashi S, Karow A, et al. Mutational landscape in children with myelodysplastic syndromes is distinct from adults: specific somatic drivers and novel germline variants. Leukemia. 2017;31(3):759–62.PubMedCrossRef
43.
Zurück zum Zitat Kozyra E, Hirabayashi S, Pastor Loyola VB, et al. Clonal mutational landscape of childhood myelodysplastic syndromes. Blood. 2015;126:1662.CrossRef Kozyra E, Hirabayashi S, Pastor Loyola VB, et al. Clonal mutational landscape of childhood myelodysplastic syndromes. Blood. 2015;126:1662.CrossRef
44.
Zurück zum Zitat Mace EM, Hsu AP, Monaco-Shawver L, et al. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56(bright) subset. Blood. 2013;121:2669–77.PubMedPubMedCentralCrossRef Mace EM, Hsu AP, Monaco-Shawver L, et al. Mutations in GATA2 cause human NK cell deficiency with specific loss of the CD56(bright) subset. Blood. 2013;121:2669–77.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Chou J, Lutskiy M, Tsitsikov E, et al. Presence of hypogammaglobulinemia and abnormal antibody responses in GATA2 deficiency. J Allergy Clin Immunol. 2014;134(1):223–6.PubMedPubMedCentralCrossRef Chou J, Lutskiy M, Tsitsikov E, et al. Presence of hypogammaglobulinemia and abnormal antibody responses in GATA2 deficiency. J Allergy Clin Immunol. 2014;134(1):223–6.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Maciejewski-Duval A, Meuris F, Bignon A, et al. Altered chemotactic response to CXCL12 in patients carrying GATA2 mutations. J Leukoc Biol. 2016;99(6):1065–76.PubMedCrossRef Maciejewski-Duval A, Meuris F, Bignon A, et al. Altered chemotactic response to CXCL12 in patients carrying GATA2 mutations. J Leukoc Biol. 2016;99(6):1065–76.PubMedCrossRef
47.
Zurück zum Zitat Ruiz-Garcia R, Rodriguez-Vigil C, Marco FM, et al. Acquired Senescent T-Cell Phenotype Correlates with Clinical Severity in GATA Binding Protein 2-Deficient Patients. Front Immunol. 2017;8:802.PubMedPubMedCentralCrossRef Ruiz-Garcia R, Rodriguez-Vigil C, Marco FM, et al. Acquired Senescent T-Cell Phenotype Correlates with Clinical Severity in GATA Binding Protein 2-Deficient Patients. Front Immunol. 2017;8:802.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Spinner MA, Ker JP, Stoudenmire CJ, et al. GATA2 deficiency underlying severe blastomycosis and fatal herpes simplex virus-associated hemophagocytic lymphohistiocytosis. J Allergy Clin Immunol. 2016;137(2):638–40.PubMedCrossRef Spinner MA, Ker JP, Stoudenmire CJ, et al. GATA2 deficiency underlying severe blastomycosis and fatal herpes simplex virus-associated hemophagocytic lymphohistiocytosis. J Allergy Clin Immunol. 2016;137(2):638–40.PubMedCrossRef
49.
Zurück zum Zitat Delgado-Marquez AM, Zarco C, Ruiz R, Simarro A, Vanaclocha F. Severe disseminated primary herpes simplex infection as skin manifestation of GATA2 deficiency. J Eur Acad Dermatol Venereol: JEADV. 2016;30(7):1248–50.PubMedCrossRef Delgado-Marquez AM, Zarco C, Ruiz R, Simarro A, Vanaclocha F. Severe disseminated primary herpes simplex infection as skin manifestation of GATA2 deficiency. J Eur Acad Dermatol Venereol: JEADV. 2016;30(7):1248–50.PubMedCrossRef
50.
Zurück zum Zitat Cohen JI, Dropulic L, Hsu AP, et al. Association of GATA2 Deficiency With Severe Primary Epstein-Barr Virus (EBV) Infection and EBV-associated Cancers. Clin Infect Dis. 2016;63(1):41–7.PubMedPubMedCentralCrossRef Cohen JI, Dropulic L, Hsu AP, et al. Association of GATA2 Deficiency With Severe Primary Epstein-Barr Virus (EBV) Infection and EBV-associated Cancers. Clin Infect Dis. 2016;63(1):41–7.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Parta M, Cuellar-Rodriguez J, Freeman AF, et al. Resolution of Multifocal Epstein-Barr Virus-Related Smooth Muscle Tumor in a Patient with GATA2 Deficiency Following Hematopoietic Stem Cell Transplantation. J Clin Immunol. 2017;37(1):61–6.PubMedCrossRef Parta M, Cuellar-Rodriguez J, Freeman AF, et al. Resolution of Multifocal Epstein-Barr Virus-Related Smooth Muscle Tumor in a Patient with GATA2 Deficiency Following Hematopoietic Stem Cell Transplantation. J Clin Immunol. 2017;37(1):61–6.PubMedCrossRef
52.
Zurück zum Zitat Kazamel M, Klein CJ, Benarroch EE, Patnaik MM, Tracy JA. Subacute demyelinating polyradiculoneuropathy complicating Epstein-Barr virus infection in GATA2 haploinsufficiency. Muscle Nerve. 2018;57(1):150–6.PubMedCrossRef Kazamel M, Klein CJ, Benarroch EE, Patnaik MM, Tracy JA. Subacute demyelinating polyradiculoneuropathy complicating Epstein-Barr virus infection in GATA2 haploinsufficiency. Muscle Nerve. 2018;57(1):150–6.PubMedCrossRef
54.
Zurück zum Zitat Gonzalez-Lara MF, Wisniowski-Yanez A, Perez-Patrigeon S, et al. Pneumocystis jiroveci pneumonia and GATA2 deficiency: Expanding the spectrum of the disease. J Infect. 2017;74(4):425–7.PubMedCrossRef Gonzalez-Lara MF, Wisniowski-Yanez A, Perez-Patrigeon S, et al. Pneumocystis jiroveci pneumonia and GATA2 deficiency: Expanding the spectrum of the disease. J Infect. 2017;74(4):425–7.PubMedCrossRef
55.
Zurück zum Zitat Johnson JA, Yu SS, Elist M, et al. Rheumatologic manifestations of the “MonoMAC” syndrome: a systematic review. Clin Rheumatol. 2015;34:1643–5.PubMedCrossRef Johnson JA, Yu SS, Elist M, et al. Rheumatologic manifestations of the “MonoMAC” syndrome: a systematic review. Clin Rheumatol. 2015;34:1643–5.PubMedCrossRef
56.
Zurück zum Zitat Webb G, Chen YY, Li KK, et al. Single-gene association between GATA-2 and autoimmune hepatitis: A novel genetic insight highlighting immunologic pathways to disease. J Hepatol. 2016;64(5):1190–3.PubMedPubMedCentralCrossRef Webb G, Chen YY, Li KK, et al. Single-gene association between GATA-2 and autoimmune hepatitis: A novel genetic insight highlighting immunologic pathways to disease. J Hepatol. 2016;64(5):1190–3.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Johnson KD, Hsu AP, Ryu MJ, et al. Cis-element mutated in GATA2-dependent immunodeficency governs hematopoiesis and vascular integrity. J Clin Investig. 2012;122:3692–704.PubMedPubMedCentralCrossRef Johnson KD, Hsu AP, Ryu MJ, et al. Cis-element mutated in GATA2-dependent immunodeficency governs hematopoiesis and vascular integrity. J Clin Investig. 2012;122:3692–704.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Lim KC, Hosoya T, Brandt W, et al. Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning. J Clin Investig. 2012;122:3705–17.PubMedPubMedCentralCrossRef Lim KC, Hosoya T, Brandt W, et al. Conditional Gata2 inactivation results in HSC loss and lymphatic mispatterning. J Clin Investig. 2012;122:3705–17.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Berry D, Fekrat S. Central Retinal Vein Occlusion in Gata2 Deficiency. Retin Cases Brief Rep. 2019;13(2):181–4.PubMedCrossRef Berry D, Fekrat S. Central Retinal Vein Occlusion in Gata2 Deficiency. Retin Cases Brief Rep. 2019;13(2):181–4.PubMedCrossRef
60.
Zurück zum Zitat Kazenwadel J, Secker GA, Liu YJ, et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood. 2012;119(5):1283–91.PubMedPubMedCentralCrossRef Kazenwadel J, Secker GA, Liu YJ, et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood. 2012;119(5):1283–91.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat • Marciano BE, Olivier KN, Folio LR, et al. Pulmonary Manifestations of GATA2 Deficiency. Chest. 2021;160(4):1350–9. Largest review of pulmonary manifestations in GATA2 deficiency, demonstrating a high incidence of restrictive and obstructive defects, pulmonary alveolar proteinosis, and pulmonary hypertension. • Marciano BE, Olivier KN, Folio LR, et al. Pulmonary Manifestations of GATA2 Deficiency. Chest. 2021;160(4):1350–9. Largest review of pulmonary manifestations in GATA2 deficiency, demonstrating a high incidence of restrictive and obstructive defects, pulmonary alveolar proteinosis, and pulmonary hypertension.
62.
Zurück zum Zitat Polat A, Dinulescu M, Fraitag S, et al. Skin manifestations among GATA2-deficient patients. Br J Dermatol. 2018;178(3):781–5.PubMedCrossRef Polat A, Dinulescu M, Fraitag S, et al. Skin manifestations among GATA2-deficient patients. Br J Dermatol. 2018;178(3):781–5.PubMedCrossRef
63.
Zurück zum Zitat Haugas M, Lilleväli K, Hakanen J, Salminen M. Gata2 is required for the development of inner ear semicircular ducts and the surrounding perilymphatic space. Dev Dyn. 2010;239(9):2452–69.PubMedCrossRef Haugas M, Lilleväli K, Hakanen J, Salminen M. Gata2 is required for the development of inner ear semicircular ducts and the surrounding perilymphatic space. Dev Dyn. 2010;239(9):2452–69.PubMedCrossRef
64.
Zurück zum Zitat Fu YY, Ren CE, Qiao PY, Meng YH. Uterine natural killer cells and recurrent spontaneous abortion. Am J Reprod Immunol. 2021;86(2):e13433.PubMedCrossRef Fu YY, Ren CE, Qiao PY, Meng YH. Uterine natural killer cells and recurrent spontaneous abortion. Am J Reprod Immunol. 2021;86(2):e13433.PubMedCrossRef
65.
Zurück zum Zitat Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2011;118(13):3715–20.PubMedPubMedCentralCrossRef Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2011;118(13):3715–20.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Grossman J, Cuellar-Rodriguez J, Gea-Banacloche J, et al. Nonmyeloablative allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Biol Blood Marrow Transplant. 2014;20(12):1940–8.PubMedPubMedCentralCrossRef Grossman J, Cuellar-Rodriguez J, Gea-Banacloche J, et al. Nonmyeloablative allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Biol Blood Marrow Transplant. 2014;20(12):1940–8.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Tholouli E, Sturgess K, Dickinson RE, et al. In vivo T-depleted reduced-intensity transplantation for GATA2-related immune dysfunction. Blood. 2018;131(12):1383–7.PubMedPubMedCentralCrossRef Tholouli E, Sturgess K, Dickinson RE, et al. In vivo T-depleted reduced-intensity transplantation for GATA2-related immune dysfunction. Blood. 2018;131(12):1383–7.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Saida S, Umeda K, Yasumi T, et al. Successful reduced-intensity stem cell transplantation for GATA2 deficiency before progression of advanced MDS. Pediatr Transplant. 2016;20(2):333–6.PubMedCrossRef Saida S, Umeda K, Yasumi T, et al. Successful reduced-intensity stem cell transplantation for GATA2 deficiency before progression of advanced MDS. Pediatr Transplant. 2016;20(2):333–6.PubMedCrossRef
69.
Zurück zum Zitat Mallhi K, Dix DB, Niederhoffer KY, Armstrong L, Rozmus J. Successful umbilical cord blood hematopoietic stem cell transplantation in pediatric patients with MDS/AML associated with underlying GATA2 mutations: two case reports and review of literature. Pediatr Transplant. 2016;20(7):1004–7.PubMedCrossRef Mallhi K, Dix DB, Niederhoffer KY, Armstrong L, Rozmus J. Successful umbilical cord blood hematopoietic stem cell transplantation in pediatric patients with MDS/AML associated with underlying GATA2 mutations: two case reports and review of literature. Pediatr Transplant. 2016;20(7):1004–7.PubMedCrossRef
70.
Zurück zum Zitat Parta M, Shah NN, Baird K, et al. Allogeneic Hematopoietic Stem Cell Transplantation for GATA2 Deficiency Using a Busulfan-Based Regimen. Biol Blood Marrow Transplant. 2018;24(6):1250–9.PubMedPubMedCentralCrossRef Parta M, Shah NN, Baird K, et al. Allogeneic Hematopoietic Stem Cell Transplantation for GATA2 Deficiency Using a Busulfan-Based Regimen. Biol Blood Marrow Transplant. 2018;24(6):1250–9.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat •• Nichols-Vinueza DX, Parta M, Shah NN, et al. Donor source and post-transplantation cyclophosphamide influence outcome in allogeneic stem cell transplantation for GATA2 deficiency. Br J Haematol. 2022;196(1):169–78. Largest cohort of GATA2 patients transplanted to date, demonstrating excellent outcomes with myeloablative, busulfan-based conditioning and post-transplant cyclophosphamide. •• Nichols-Vinueza DX, Parta M, Shah NN, et al. Donor source and post-transplantation cyclophosphamide influence outcome in allogeneic stem cell transplantation for GATA2 deficiency. Br J Haematol. 2022;196(1):169–78. Largest cohort of GATA2 patients transplanted to date, demonstrating excellent outcomes with myeloablative, busulfan-based conditioning and post-transplant cyclophosphamide.
72.
Zurück zum Zitat Bortnick R, Wlodarski M, de Haas V, et al. Hematopoietic stem cell transplantation in children and adolescents with GATA2-related myelodysplastic syndrome. Bone Marrow Transplant. 2021;56(11):2732–41.PubMedPubMedCentralCrossRef Bortnick R, Wlodarski M, de Haas V, et al. Hematopoietic stem cell transplantation in children and adolescents with GATA2-related myelodysplastic syndrome. Bone Marrow Transplant. 2021;56(11):2732–41.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Hofmann I, Avagyan S, Stetson A, et al. Comparison of Outcomes of Myeloablative Allogeneic Stem Cell Transplantation for Pediatric Patients with Bone Marrow Failure, Myelodysplastic Syndrome and Acute Myeloid Leukemia with and without Germline GATA2 Mutations. Biol Blood Marrow Transplant. 2020;26(6):1124–30.PubMedPubMedCentralCrossRef Hofmann I, Avagyan S, Stetson A, et al. Comparison of Outcomes of Myeloablative Allogeneic Stem Cell Transplantation for Pediatric Patients with Bone Marrow Failure, Myelodysplastic Syndrome and Acute Myeloid Leukemia with and without Germline GATA2 Mutations. Biol Blood Marrow Transplant. 2020;26(6):1124–30.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Muffly L, Lee CJ, Gandhi A, et al. Preliminary Data from a Phase 1 Study of JSP191, and Anti-CD117 Monoclonal Antibody, in Combination with Low Dose Irradiation and Fludarabine Conditioning is Well-Tolerated, Facilitates Chimerism and Clearance of Minimal Residual Disease in Older Adults with MDS/AML Undergoing Allogeneic HCT. Abstr/Transplant Cell Ther. 2021;28(3S):S1–509. Muffly L, Lee CJ, Gandhi A, et al. Preliminary Data from a Phase 1 Study of JSP191, and Anti-CD117 Monoclonal Antibody, in Combination with Low Dose Irradiation and Fludarabine Conditioning is Well-Tolerated, Facilitates Chimerism and Clearance of Minimal Residual Disease in Older Adults with MDS/AML Undergoing Allogeneic HCT. Abstr/Transplant Cell Ther. 2021;28(3S):S1–509.
Metadaten
Titel
GATA2 Deficiency: Predisposition to Myeloid Malignancy and Hematopoietic Cell Transplantation
verfasst von
Roma V. Rajput
Danielle E. Arnold
Publikationsdatum
29.05.2023
Verlag
Springer US
Erschienen in
Current Hematologic Malignancy Reports / Ausgabe 4/2023
Print ISSN: 1558-8211
Elektronische ISSN: 1558-822X
DOI
https://doi.org/10.1007/s11899-023-00695-7

Neu im Fachgebiet Onkologie

Dänische Zwillingsstudie deutet auf erhöhtes Krebsrisiko bei Tätowierten hin

Haben Tattoo-Träger und -Trägerinnen ein erhöhtes Risiko, an Hautkrebs oder einem Lymphom zu erkranken? Die Ergebnisse einer Zwillingsstudie aus Dänemark scheinen dafür zu sprechen. Die Forschungsgruppe rät vorerst zur Zurückhaltung beim Tätowieren.

Weniger PSA-Screening, mehr fortgeschrittene Tumoren

Eine Empfehlung gegen das Prostatakrebs-Screening, die mehrere Jahre in den Leitlinien des Royal Australasian College of General Practitioners gegeben wurde, hat sich nicht nur auf die Rate von PSA-Tests negativ ausgewirkt.

Schützt kutane Autoimmunität vor Hauttumoren?

Schwedische Registerdaten deuten auf ein geringeres Risiko für bestimmte Hauttumoren bei Personen mit Vitiligo oder autoimmuner Alopezie. Wie es dazu kommt, ist dagegen unklar.

Muss man wirklich auch die letzte Krebszelle eliminieren?

Genauere Prognoseabschätzung, bessere Therapiesteuerung und eine schnellere Entwicklung innovativer Behandlungsansätze – der Messung der minimalen Resterkrankung (MRD) wird ein enormes Potenzial attestiert. Eine Übersichtsarbeit unterstreicht jetzt aber: Es gibt noch blinde Flecken.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.