Skip to main content
Erschienen in: BMC Women's Health 1/2015

Open Access 01.12.2015 | Research article

Gene polymorphisms in RANKL/RANK/OPG pathway are associated with ages at menarche and natural menopause in Chinese women

verfasst von: Peng Duan, Zhi-Ming Wang, Jiang Liu, Li-Na Wang, Zhi Yang, Ping Tu

Erschienen in: BMC Women's Health | Ausgabe 1/2015

Abstract

Background

Age at menarche (AAM) and age at natural menopause (AANM) have been shown intimately associated with woman’s health later in life. Previous studies have indicated that AAM and AANM are highly heritable. RANKL/RANK/OPG signaling pathway is essential for mammary gland development, which is also found associated with post-menopausal and hormone-related diseases. The aim of this study was to evaluate associations between the polymorphisms in the TNFSF11, TNFRSF11A and TNFRSF11B genes in the RANKL/RANK/OPG pathway with AAM and AANM in Chinese women.

Methods

Post-menopausal Chinese women (n = 845) aged from 42 to 89 years were recruited in the study. Information about AAM and AANM were obtained through questionnaires and the genomic DNA was isolated from peripheral blood from the participants. Total 21 tagging single nucleotide polymorphisms (SNPs) of TNFSF11, TNFRSF11A and TNFRSF11B were genotyped.

Results

Three SNPs of TNFRSF11A (rs4500848, rs6567270 and rs1805034) showed significant association with AAM (P < 0.01, P = 0.02 and P = 0.01, respectively), and one SNP (rs9962159) was significantly associated with AANM (P = 0.03). Haplotypes TC and AT (rs6567270-rs1805034) of TNFRSF11A were found to be significantly associated with AAM (P = 0.01 and P = 0.02, respectively), and haplotypes GC and AC (rs9962159-rs4603673) of TNFRSF11A showed significant association with AANM (P = 0.03 and P < 0.01, respectively). No significant association between TNFSF11 or TNFRSF11B gene with AAM or AANM was found.

Conclusions

The present study suggests that TNFRSF11A but not TNFSF11 and TNFRSF11B genetic polymorphisms are associated with AAM and AANM in Chinese women. The findings provide evidence that genetic variations in RANKL/RANK/OPG pathway may be associated with the onset and cessation of the menstruation cycle.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

PD participated in the molecular genetic studies, conducted statistical analyses and drafted the manuscript. ZMW assisted in genetic studies and drafted the manuscript. JL and LNW collected all samples and questionnaire information. ZY helped in recruiting subjects and statistical analyses. PT conceived of the study, participated in its design, recruited participants, revised the manuscript. All authors read and approved the final manuscript.
Abkürzungen
AAM
Age at menarche
AANM
Age at natural menopause
OPG
Osteoprotegerin
RANK
Receptor activator of nuclear factor-kappa B
RANKL
Receptor activator of nuclear factor-kappa B ligand
SNP
Single nucleotide polymorphisms
BMI
Body mass index
HWE
Hardy-Weinberg equilibrium
GnRH
Gonadotropin-releasing hormone
GWA
Genome-wide association
NF-κB
Nuclear factor-kappa B

Background

Age at menarche (AAM) and age at natural menopause (AANM) have been shown intimately associated with woman’s health later in life. Women with early menarche have high risks of breast cancer [1], ovarian cancer [2], type 2 diabetes [3] or metabolic syndrome [4], whereas late menarche can increase the risk of osteoporosis [5]. On the other hand, early AANM is associated with increased risk of cardiovascular diseases [6] and osteoporosis [7]. Recent data have shown that AAM and AANM were associated with all-cause mortality [8]. However, the factors that affect AAM and AANM are not entirely clear.
AAM and AANM are complex traits which are influenced by both genetic and environmental factors and their interactions [9]. Twin and familial studies have indicated that AAM and AANM are highly heritable, ranging from 45% to 74% for AAM [10,11] and from 49% to 87% for AANM [12,13]. Genes involved in hormone biosynthesis and metabolic pathways were found to be associated with AAM and AANM [14,15], however, no specific genes have been identified yet.
The receptor activator of nuclear factor-kappa B ligand (RANKL), its receptor RANK and the decoy receptor osteoprotegerin (OPG) belong to the tumor necrosis factor superfamily and they are encoded by genes TNFSF11, TNFRSF11A and TNFRSF11B, respectively. RANKL/RANK/OPG signaling pathway plays important roles in bone modeling and remodeling [16], cell death and proliferation, inflammation, and immunity [17,18]. RANKL/RANK/OPG pathway is also found associated with post-menopausal and hormone-related diseases, such as osteoporosis [19] and reproductive cancer [20]. Furthermore, RANKL is found to be essential for mammary gland development in mice by promoting proliferation and maintaining survival of mammary epithelial cells [21]. Mammary gland changes are one of the hallmarks during menarche and menopause [22,23]. Therefore, RANKL/RANK/OPG pathway may involve in modulating the onset and cessation of the menstrual cycle. The present study investigated the associations of single nucleotide polymorphisms and haplotypes in TNFSF11, TNFRSF11A and TNFRSF11B genes in RANKL/RANK/OPG pathway with AAM and AANM in Chinese females.

Methods

Participants

A total 1026 post-menopausal women from ten community centers in Nanchang from December 2011 to December 2012 were enrolled in the study. All the participants were from Han Chinese ethnic group. Age at interview, AAM, AANM, detailed medical history, birth history (number of live delivery), and abortion information (number of abortions) were obtained through a self-designed questionnaire, all the information collected in the study was self-reported. AAM was defined as the age at the first menstrual period. AANM was defined as one year without menstruation after the age at the last menstrual period. For each participant, height (cm) and weight (kg) were measured. The body mass index (BMI) was calculated as weight/height2.
All of the participants were subjected to blood counts, liver and kidney function tests, fasting plasma glucose tests. Subjects included in the study had normal blood counts, normal liver and kidney functions and blood glucose levels. Subjects were excluded from the study if they suffered from diseases and surgeries that could affect menstruation, such as severe chronic diseases, rheumatic diseases (e.g. systemic lupus erythematosus, rheumatoid arthritis), severe endocrine and metabolic diseases (e.g. diabetes, hyperparathyroidism, pituitary or adrenal diseases), malabsorption diseases (e.g. chronic diarrhea, anorexia nervosa), cancer, and uterine or ovarian resection. Participants who had taken glucocorticosteroid or sex hormone within the past 3 months were also excluded. Finally, 845 subjects were included in the study. The study was approved by the Ethics Committee of The Third Hospital of Nanchang. Written informed consent was obtained from every participant.

TagSNP selection

Tagging SNPs of the three genes were selected from the software program Haploview version 4.2 [24] (http://​www.​broad.​mit.​edu/​mpg/​haploview/​) with minor allele frequencies (MAF) > 10% in the Chinese Han population in HapMap (http://​www.​hapmap.​org/​), and the pairwise linkage disequilibrium (LD) was greater than a threshold of r2 (r2 = 0.8). In addition to, SNPs reported in previous studies or potentially functional SNPs in three candidate genes were forced into the SNP selection process. Finally, a total of 21 SNPs were selected in three genes (9 in TNFRSF11A gene, 6 in TNFSF11 gene, and 6 in TNFRSF11B gene). Of these, 18 SNPs are located in the introns of the three genes, one in 5′-UTR, two in the exonic region. All of these SNPs were authenticated using the NCBI (http://​www.​ncbi.​nlm.​nih.​gov/​SNP/​) and HapMap databases.

Genotyping

Approximately 5 mL of venous blood was collected from all of the participants after a minimum of 10 h fasting and stored in tubes containing 100 μL of 10% ethylene diaminetetraacetic acid (EDTA). Genomic DNA was extracted from whole blood samples using the QIAamp DNA Mini Kit (Qiagen Inc., Hilden, Germany). DNA samples concentration and quality were detected spectrophotometrically at 260/280 nm and stored at −80°C until analysed. Genotyping was performed using the high-throughput Sequenom genotyping platform (MassARRAY MALDI-TOF MS system, Sequenom Inc., San Diego, CA). For quality control, 5% of the samples were repeatedly genotyped, and the results were found to be 100% concordant.

Statistical analyses

Genotype frequencies and concordance of the SNPs were analyzed for the Hardy-Weinberg equilibrium (HWE) using the χ2 test. Data were expressed as mean ± standard deviation. The stepwise multiple regression analysis was used to analyze the relationships between the SNPs and AAM and AANM, subsequently, each SNP with different genotype was analyzed independently using one-way univariate analysis of variance (ANOVA), BMI, age at interview, number of deliveries and abortions were considered as covariates and were adjusted during analysis. Bonferroni correction was used to adjust the P values for multiple comparisons. The statistical analyses were performed using SPSS version 13.0 for Windows (SPSS Inc., Chicago, IL, USA). The linkage disequilibrium structure and allele frequencies were examined using Haploview 4.2 software [24]. The significance of each haplotype within the defined blocks was analyzed by PLINK software [25] (http://​pngu.​mgh.​harvard.​edu/​~purcell/​plink/​). All analyses were two-tailed, and P -value < 0.05 was considered statistically significant.

Results

Characteristics of the study participants

The basic characteristics of the 845 participants aged from 42 to 89 years were shown in Table 1. The mean age at interview was 60.88 ± 8.72 years, the mean AAM was 14.97 ± 2.00 years and AANM was 48.77 ± 4.16 years. No statistically significant association was observed between AAM and AANM (P = 0.15).
Table 1
Characteristics of the 845 participants
Characteristics
Average
95% CI
Age (years)
60.88 ± 8.72
60.30-61.47
Age at menarche (years)
14.97 ± 2.00
14.83-15.10
Age at menopause (years)
48.77 ± 4.16
48.49-49.05
Height (cm)
154.18 ± 5.97
153.78-154.58
Weight (kg)
58.21 ± 8.73
57.62-58.80
BMI (kg/m 2 )
24.46 ± 3.20
24.25-24.68
Number of deliveries
2.14 ± 1.32
2.05-2.23
Number of spontaneous abortions
0.13 ± 0.44
0.10-0.16
Number of induced abortions
1.21 ± 1.27
1.13-1.30
The data are presented as the means ± standard deviation. BMI, body mass index. CI, confidence interval.

SNP genotyping and linkage disequilibrium

The basic characteristics of the SNPs are listed in Table 2. All study SNPs had a minor allele frequency of at least 0.1 and were in agreement with Hardy-Weinberg equilibrium (P > 0.05). Linkage disequilibrium between alleles at polymorphic loci was shown in Figure 1. Four haplotype blocks and seventeen of the most common haplotypes (frequency > 5%) were further analyzed for the association of haplotype with AAM and AANM.
Table 2
Associations for the SNPs of TNFSF11, TNFRSF11A and TNFRSF11B genes with AAM and AANM
Gene
SNP
Allele
Function
HWE
MAF
AAM
AANM
Beta
P
P-Bonf
Beta
P
P-Bonf
TNFRSF11B
rs1485286
C/T
Intron
0.4237
T = 0.406
0.0697
0.49
1.00
0.2428
0.25
1.00
TNFRSF11B
rs11573869
A/G
Intron
0.8783
G = 0.165
−0.0529
0.69
1.00
0.1109
0.68
1.00
TNFRSF11B
rs3102728
T/C
Intron
0.2913
C = 0.138
0.0726
0.61
1.00
−0.2352
0.43
1.00
TNFRSF11B
rs11573819
G/A
Intron
0.9402
A = 0.157
0.0501
0.71
1.00
−0.1709
0.54
1.00
TNFRSF11B
rs2073618
C/G
Asn by Lys
0.5148
G = 0.258
−0.0065
0.95
1.00
0.2687
0.25
1.00
TNFRSF11B
rs2073617
A/G
UTR-5
0.7887
G = 0.382
−0.1137
0.26
1.00
0.1741
0.41
1.00
TNFSF11
rs9525641
T/C
Intron
0.1546
C = 0.472
0.0810
0.42
1.00
−0.0656
0.75
1.00
TNFSF11
rs2277439
A/G
Intron
0.5905
G = 0.295
−0.0611
0.56
1.00
0.2430
0.27
1.00
TNFSF11
rs2324851
G/A
Intron
0.6728
A = 0.294
−0.0699
0.51
1.00
0.2351
0.29
1.00
TNFSF11
rs2875459
C/T
Intron
0.8542
T = 0.220
−0.1036
0.38
1.00
−0.0189
0.94
1.00
TNFSF11
rs2200287
G/A
Intron
0.8891
A = 0.220
−0.0898
0.44
1.00
−0.0215
0.94
1.00
TNFSF11
rs9533166
T/C
Intron
0.5125
C = 0.131
−0.1694
0.23
1.00
−0.2154
0.47
1.00
TNFRSF11A
rs9962159
A/G
Intron
0.4172
G = 0.435
0.1338
0.17
1.00
−0.4434
0.03
0.57
TNFRSF11A
rs4603673
C/G
Intron
0.7190
G = 0.162
−0.1363
0.31
1.00
−0.2551
0.36
1.00
TNFRSF11A
rs7239261
C/A
Intron
0.2342
A = 0.239
−0.1656
0.14
1.00
0.3123
0.18
1.00
TNFRSF11A
rs4500848
C/T
Intron
0.7267
T = 0.262
−0.3395
<0.01
0.04
−0.0378
0.87
1.00
TNFRSF11A
rs6567270
T/A
Intron
0.1116
A = 0.408
0.2265
0.02
0.39
0.1197
0.55
1.00
TNFRSF11A
rs1805034
T/C
Ala by Val
0.3758
C = 0.288
−0.2790
0.01
0.22
0.0069
0.98
1.00
TNFRSF11A
rs4303637
C/T
Intron
0.9818
C = 0.471
0.1618
0.10
1.00
0.0701
0.73
1.00
TNFRSF11A
rs4941131
T/C
Intron
0.8166
C = 0.330
0.0437
0.67
1.00
−0.1892
0.38
1.00
TNFRSF11A
rs9646629
G/C
Intron
0.2416
C = 0.460
0.1461
0.14
1.00
−0.2256
0.28
1.00
HWE, P values for Hardy-Weinberg equilibrium. MAF, minor allele frequency. Beta, the regression coefficient. P-Bonf, P-value by Bonferroni correction. AAM, age at menarche. AANM, age at natural menopause.

Association analyses of the SNP and haplotypes with AAM and AANM

Three SNPs in TNFRSF11A, i.e. rs4500848, rs6567270 and rs1805034, showed significant association with AAM (P< 0.01, P = 0.02 and P = 0.01, respectively), whereas only rs9962159 in TNFRSF11A was significantly associated with AANM (P = 0.03) (Table 2). After correction of age at interview, BMI, number of deliveries and abortions, the associations between those SNPs and AAM or AANM were found significant. After the Bonferroni correction, the rs4500848 was still significantly associated with AAM (P = 0.04), however, the associations between the others SNPs with AAM or AANM were no longer statistically significant (Table 2). Individuals with the T/T genotype of SNP rs4500848 had an earlier onset of menarche by 0.59 years than did those with the C/C genotype. Likewise, women with the G/G genotype of SNP rs9962159 had an earlier menopause by 0.79 years than those with the A/A genotype (Table 3).
Table 3
Significant associations for the single SNPs of TNFSF11, TNFRSF11A and TNFRSF11B genes with AAM and AANM
Genotype
n
AAM
Genotype
n
AAM
rs4500848
rs1805034
C/C
471
15.16 ± 1.95
C/C
64
14.53 ± 2.17
C/T
313
14.76 ± 2.07
C/T
358
14.86 ± 2.04
T/T
61
14.57 ± 1.85
T/T
423
15.12 ± 1.93
P-value
 
<0.01
P-value
 
0.04
Genotype
n
AAM
Genotype
n
AANM
rs6567270
rs9962159
A/A
152
15.35 ± 2.07
G/G
166
48.45 ± 4.18
A/T
385
14.92 ± 2.02
G/A
403
48.56 ± 4.23
T/T
308
14.84 ± 1.91
A/A
276
49.26 ± 4.00
P-value
 
0.03
P-value
 
0.05
Two haplotypes (TC and AT) of block rs6567270-rs1805034 of TNFRSF11A were found significantly associated with AAM (P = 0.01 and P = 0.02, respectively) (Table 4). Haplotypes GC and AC of block rs9962159-rs4603673 of TNFRSF11A were significantly associated with AANM (P = 0.03 and P< 0.01, respectively). Haplotype TAGCGT of block rs9525641-rs2277439-rs2324851-rs2875459-rs2200287-rs9533166 of TNFSF11 showed marginally significant association with AAM (P = 0.06). Notably, all the significantly associated SNPs and haplotypes were observed in TNFRSF11A. SNPs and haplotypes in TNFSF11 and TNFRSF11B genes did not show significant association with either AAM or AANM.
Table 4
The associations of haplotypes of TNFSF11, TNFRSF11A and TNFRSF11B genes with AAM and AANM
Gene
Haplotype
Frequency
AAM
AANM
Beta
P
Beta
P
TNFSF11: rs9525641-rs2277439-rs2324851-rs2875459-rs2200287-rs9533166
 
TAGTAC
0.131
−0.1686
0.24
−0.2171
0.46
 
TAGTAT
0.088
0.0148
0.93
0.2392
0.50
 
TGACGT
0.292
−0.0737
0.49
0.1958
0.38
 
CAGCGT
0.469
0.0773
0.44
−0.1007
0.63
 
TAGCGT
0.017
0.7854
0.06
−1.3300
0.09
TNFRSF11A: rs9962159-rs4603673
 
AG
0.161
−0.1455
0.28
−0.2432
0.38
 
GC
0.434
0.1294
0.18
−0.4383
0.03
 
AC
0.405
−0.0578
0.55
0.5747
<0.01
TNFRSF11A : rs6567270-rs1805034
 
TC
0.288
−0.2787
0.01
0.0069
0.98
 
AT
0.408
0.2263
0.02
0.1197
0.55
 
TT
0.305
−0.0113
0.91
−0.1408
0.51
TNFRSF11B : rs1485286-rs11573869-rs3102728-rs11573819-rs2073618
 
TATGG
0.250
0.0311
0.78
0.2791
0.24
 
CATAC
0.155
0.0770
0.57
−0.1808
0.52
 
CACGC
0.139
0.0726
0.61
−0.2352
0.43
 
CGTGC
0.164
−0.0407
0.76
0.1067
0.70
 
TATGC
0.154
0.0955
0.48
0.0410
0.88
 
CATGC
0.130
−0.2041
0.17
−0.1828
0.56
The analyses were performed under an additive model adjusted for age at interview and BMI. Beta, regression coefficient.

Discussion

According to the previous studies, there was a direct relationship between AAM and AANM, women with earlier menarche had earlier menopause in Poland [26]. However, other studies had reported no association between AAM and AANM [27]. In this tudy, no statistically significant association was observed between AAM and AANM. The present study revealed that three SNPs (rs4500848, rs6567270 and rs1805034) and two haplotypes of TNFRSF11A showed significant association with AAM in Chinese women. These findings are in line to a previous report by Pan et al. [28], the authors found five SNPs (rs7239261, rs8094884, rs3826620, rs8089829, and rs9956850) and seven haplotypes of TNFRSF11A significantly associated with AAM in Chinese women. Thus, polymorphisms in TNFRSF11A are highly associated with AAM in Chinese women. In contrast to TNFRSF11A, SNPs of TNFSF11 did not show association with AAM in our study. Noticeably, two SNPs (rs9525641 and rs2200287) of TNFSF11 displayed a strong association with AAM in white women [29], but no significant association was observed between the two SNPs and AAM in our study. The inconsistency between the results of the present study and the other [29] may due to the different ethnic populations used, different sample sizes and statistical approaches. The inconsistent results were also observed in the association of TNFSF11 gene polymorphisms and AANM. In the present study, no significant association between polymorphisms of TNFSF11 and AANM was found in Chinese women, however, such relationship was reported in white women, two SNPs (rs346578 and rs9525641) of TNFSF11 showed association with AANM [29]. Regardless of the discrepancy in TNFSF11, we and the others [29] both found a strong association between polymorphisms of TNFRSF11A and AANM.
The associations between polymorphisms of TNFRSF11A with AAM and AANM found in the present study can be explained by its possible roles in mammary gland development and menstruation. First, TNFRSF11A belongs to RANKL/RANK/OPG signaling pathway. RANKL plays an important role in mammary gland development, indicating its potential role in regulating or responding to sex hormone fluctuation and subsequently influencing menstrual cycles. Studies have shown that gonadotropin-releasing hormone (GnRH) can modulate RANKL expression in breast cancer cells [30], and expressions of RANK and RANKL in different cell lines are controlled by estrogen [31], follicle-stimulating hormone [32], and dehydroepiandrosterone [33]. Estrogen is also found to regulate gene expression and ratio of the RANKL/OPG [34]. Second, RANKL signaling pathway can stimulate ductal side-branching and alveologenesis in the mammary gland in mouse [35]. RANKL can be induced in mammary epithelium and can regulate the proliferation of cells [36]. Therefore, RANK signaling pathway may influence onset of puberty and menstrual cycle by regulating mammary gland development. Third, genome-wide association (GWA) studies have identified some novel genetic loci associated with AAM and AANM [37,38]. Gene set enrichment pathway analyses using the GWA dataset found that nuclear factor-kappa B (NF-κB) signaling pathway may be associated with timing of menopause [39]. Recent studies have revealed that NF-κB pathway plays an important role in mammary ductal morphogenesis [40], and ovarian cell function in animals [41]. It was well established that the RANKL/RANK/OPG pathway can activate NF-κB and its downstream players [42]. Thus, genes (e.g. TNFRSF11A) in the RANKL/RANK/OPG pathway may have role in the onset and cessation of the menstruation cycle.
The present study has some limitations. First, beside genetic other factors can influence timing of menarche and menopause, e.g. environment and socioeconomic status. We studied only the relationship between genetic variations and AAM and AANM. Furthermore, gene-environment interactions may also play a role in causing variation in the AAM and AANM. Second, The data of AAM and AANM were collected through retrospective self-report, which may cause recall bias. The participants in the study were aged from 42 to 89 years, with long interval periods, which might potentially incur recall error. It is reported that the accuracy of long-term recall of AAM and AANM varied from 70% to 84% [43,44]. In fact, it was found that some participants could not remember the exact age at the first menstrual period, and those subjects were excluded from the study. Large-scale studies are needed to confirm current findings, and the precise mechanisms underlying the observed associations in our study remain to be determined.

Conclusions

The present study, for the first time, demonstrated that TNFRSF11A but not TNFSF11 and TNFRSF11B genetic polymorphisms are associated with AAM and AANM in Chinese women. The findings provide evidence that genetic variations in RANKL/RANK/OPG pathway may be associated with the onset and cessation of the menstruation cycle.

Acknowledgements

The authors would like to thank Prof. Gao Xin Yuan and Dr. Zhang Zeng for technical assistance. We thank all the participants in this study. This study was supported by grants from the National Natural Science Foundation of China (no. 81260133) and Key Projects of Health Department of Jiangxi province, China (no. 20114030).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

PD participated in the molecular genetic studies, conducted statistical analyses and drafted the manuscript. ZMW assisted in genetic studies and drafted the manuscript. JL and LNW collected all samples and questionnaire information. ZY helped in recruiting subjects and statistical analyses. PT conceived of the study, participated in its design, recruited participants, revised the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Ritte R, Lukanova A, Tjønneland A, Olsen A, Overvad K, Mesrine S, et al. Height, age at menarche and risk of hormone receptor -positive and -negative breast cancer: a cohort study. Int J Cancer. 2013;132:2619–29.CrossRefPubMed Ritte R, Lukanova A, Tjønneland A, Olsen A, Overvad K, Mesrine S, et al. Height, age at menarche and risk of hormone receptor -positive and -negative breast cancer: a cohort study. Int J Cancer. 2013;132:2619–29.CrossRefPubMed
2.
Zurück zum Zitat Gong TT, Wu QJ, Vogtmann E, Lin B, Wang YL. Age at menarche and risk of ovarian cancer: a meta-analysis of epidemiological studies. Int J Cancer. 2013;132:2894–900.CrossRefPubMed Gong TT, Wu QJ, Vogtmann E, Lin B, Wang YL. Age at menarche and risk of ovarian cancer: a meta-analysis of epidemiological studies. Int J Cancer. 2013;132:2894–900.CrossRefPubMed
3.
Zurück zum Zitat Stöckl D, Döring A, Peters A, Thorand B, Heier M, Huth C, et al. Age at menarche is associated with prediabetes and diabetes in women (aged 32–81 years) from the general population: the KORA F4 study. Diabetologia. 2012;55:681–8.CrossRefPubMed Stöckl D, Döring A, Peters A, Thorand B, Heier M, Huth C, et al. Age at menarche is associated with prediabetes and diabetes in women (aged 32–81 years) from the general population: the KORA F4 study. Diabetologia. 2012;55:681–8.CrossRefPubMed
4.
Zurück zum Zitat Akter S, Jesmin S, Islam M, Sultana SN, Okazaki O, Hiroe M, et al. Association of age at menarche with metabolic syndrome and its components in rural Bangladeshi women. Nutr Metab (Lond). 2012;9:99.CrossRef Akter S, Jesmin S, Islam M, Sultana SN, Okazaki O, Hiroe M, et al. Association of age at menarche with metabolic syndrome and its components in rural Bangladeshi women. Nutr Metab (Lond). 2012;9:99.CrossRef
5.
Zurück zum Zitat Eastell R. Role of oestrogen in the regulation of bone turnover at the menarche. J Endocrinol. 2005;185:223–34.CrossRefPubMed Eastell R. Role of oestrogen in the regulation of bone turnover at the menarche. J Endocrinol. 2005;185:223–34.CrossRefPubMed
6.
Zurück zum Zitat Cui R, Iso H, Toyoshima H, Date C, Yamamoto A, Kikuchi S, et al. Relationships of age at menarche and menopause, and reproductive year with mortality from cardiovascular disease in Japanese postmenopausal women: the JACC study. J Epidemiol. 2006;16:177–84.CrossRefPubMed Cui R, Iso H, Toyoshima H, Date C, Yamamoto A, Kikuchi S, et al. Relationships of age at menarche and menopause, and reproductive year with mortality from cardiovascular disease in Japanese postmenopausal women: the JACC study. J Epidemiol. 2006;16:177–84.CrossRefPubMed
7.
Zurück zum Zitat Sioka C, Fotopoulos A, Georgiou A, Xourgia X, Papadopoulos A, Kalef-Ezra JA. Age at menarche, age at menopause and duration of fertility as risk factors for osteoporosis. Climacteric. 2010;13:63–71.CrossRefPubMed Sioka C, Fotopoulos A, Georgiou A, Xourgia X, Papadopoulos A, Kalef-Ezra JA. Age at menarche, age at menopause and duration of fertility as risk factors for osteoporosis. Climacteric. 2010;13:63–71.CrossRefPubMed
8.
Zurück zum Zitat Li S, Rosenberg L, Wise LA, Boggs DA, LaValley M, Palmer JR. Age at natural menopause in relation to all-cause and cause-specific mortality in a follow-up study of US black women. Maturitas. 2013;75:246–52.CrossRefPubMedPubMedCentral Li S, Rosenberg L, Wise LA, Boggs DA, LaValley M, Palmer JR. Age at natural menopause in relation to all-cause and cause-specific mortality in a follow-up study of US black women. Maturitas. 2013;75:246–52.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Dvornyk V. Waqar-ul-Haq: genetics of age at menarche: a systematic review. Hum Reprod Update. 2012;18:198–210.CrossRefPubMed Dvornyk V. Waqar-ul-Haq: genetics of age at menarche: a systematic review. Hum Reprod Update. 2012;18:198–210.CrossRefPubMed
10.
Zurück zum Zitat Snieder H, MacGregor AJ, Spector TD. Genes control the cessation of a woman’s reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab. 1998;83:1875–80.PubMed Snieder H, MacGregor AJ, Spector TD. Genes control the cessation of a woman’s reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab. 1998;83:1875–80.PubMed
11.
Zurück zum Zitat Sharma K. Genetic basis of human female pelvic morphology: a twin study. Am J Phys Anthropol. 2002;117:327–33.CrossRefPubMed Sharma K. Genetic basis of human female pelvic morphology: a twin study. Am J Phys Anthropol. 2002;117:327–33.CrossRefPubMed
12.
Zurück zum Zitat Murabito JM, Yang Q, Fox C, Wilson PW, Cupples LA. Heritability of age at natural menopause in the Framingham heart study. J Clin Endocrinol Metab. 2005;90:3427–30.CrossRefPubMed Murabito JM, Yang Q, Fox C, Wilson PW, Cupples LA. Heritability of age at natural menopause in the Framingham heart study. J Clin Endocrinol Metab. 2005;90:3427–30.CrossRefPubMed
13.
Zurück zum Zitat de Bruin JP, Bovenhuis H, van Noord PA, Pearson PL, van Arendonk JA, te Velde ER, et al. The role of genetic factors in age at natural menopause. Hum Reprod. 2001;16:2014–8.CrossRefPubMed de Bruin JP, Bovenhuis H, van Noord PA, Pearson PL, van Arendonk JA, te Velde ER, et al. The role of genetic factors in age at natural menopause. Hum Reprod. 2001;16:2014–8.CrossRefPubMed
14.
Zurück zum Zitat He C, Kraft P, Chen C, Buring JE, Paré G, Hankinson SE, et al. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat Genet. 2009;41:724–8.CrossRefPubMedPubMedCentral He C, Kraft P, Chen C, Buring JE, Paré G, Hankinson SE, et al. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat Genet. 2009;41:724–8.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Perry JR, Hsu YH, Chasman DI, Johnson AD, Elks C, Albrecht E, et al. DNA mismatch repair gene MSH6 implicated in determining age at natural menopause. Hum Mol Genet. 2014;23:2490–7.CrossRefPubMed Perry JR, Hsu YH, Chasman DI, Johnson AD, Elks C, Albrecht E, et al. DNA mismatch repair gene MSH6 implicated in determining age at natural menopause. Hum Mol Genet. 2014;23:2490–7.CrossRefPubMed
16.
Zurück zum Zitat Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 2006;12:17–25.CrossRefPubMed Wada T, Nakashima T, Hiroshi N, Penninger JM. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med. 2006;12:17–25.CrossRefPubMed
18.
Zurück zum Zitat Hanada R, Hanada T, Sigl V, Schramek D, Penninger JM. RANKL/RANK- beyond bones. J Mol Med (Berl). 2011;89:647–56.CrossRef Hanada R, Hanada T, Sigl V, Schramek D, Penninger JM. RANKL/RANK- beyond bones. J Mol Med (Berl). 2011;89:647–56.CrossRef
19.
Zurück zum Zitat Rinotas V, Niti A, Dacquin R, Bonnet N, Stolina M, Han CY, et al. Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J Bone Miner Res. 2014;29:1158–69.CrossRefPubMed Rinotas V, Niti A, Dacquin R, Bonnet N, Stolina M, Han CY, et al. Novel genetic models of osteoporosis by overexpression of human RANKL in transgenic mice. J Bone Miner Res. 2014;29:1158–69.CrossRefPubMed
20.
Zurück zum Zitat Lane D, Matte I, Laplante C, Garde-Granger P, Rancourt C, Piché A. Osteoprotegerin (OPG) activates integrin, focal adhesion kinase (FAK), and Akt signaling in ovarian cancer cells to attenuate TRAIL-induced apoptosis. J Ovarian Res. 2013;6:82.CrossRefPubMedPubMedCentral Lane D, Matte I, Laplante C, Garde-Granger P, Rancourt C, Piché A. Osteoprotegerin (OPG) activates integrin, focal adhesion kinase (FAK), and Akt signaling in ovarian cancer cells to attenuate TRAIL-induced apoptosis. J Ovarian Res. 2013;6:82.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001;107:763–75.CrossRefPubMed Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001;107:763–75.CrossRefPubMed
24.
Zurück zum Zitat Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.CrossRefPubMed Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.CrossRefPubMed
25.
Zurück zum Zitat Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.CrossRefPubMedPubMedCentral Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Kaczmarek M. The timing of natural menopause in Poland and associated factors. Maturitas. 2007;57:139–53.CrossRefPubMed Kaczmarek M. The timing of natural menopause in Poland and associated factors. Maturitas. 2007;57:139–53.CrossRefPubMed
27.
Zurück zum Zitat Otero UB, Chor D, Carvalho MS, Faerstein E, Lopes Cde S, Werneck GL. Lack of association between age at menarche and age at menopause: Pró-Saúde Study, Rio de Janeiro, Brazil. Maturitas. 2010;67:245–50.CrossRefPubMed Otero UB, Chor D, Carvalho MS, Faerstein E, Lopes Cde S, Werneck GL. Lack of association between age at menarche and age at menopause: Pró-Saúde Study, Rio de Janeiro, Brazil. Maturitas. 2010;67:245–50.CrossRefPubMed
28.
Zurück zum Zitat Pan R, Liu YZ, Deng HW, Dvornyk V. Association analyses suggest the effects of RANK and RANKL on age at menarche in Chinese women. Climacteric. 2012;15:75–81.CrossRefPubMed Pan R, Liu YZ, Deng HW, Dvornyk V. Association analyses suggest the effects of RANK and RANKL on age at menarche in Chinese women. Climacteric. 2012;15:75–81.CrossRefPubMed
29.
Zurück zum Zitat Lu Y, Liu P, Recker RR, Deng HW, Dvornyk V. TNFRSF11A and TNFSF11 are associated with age at menarche and natural menopause in white women. Menopause. 2010;17:1048–54.CrossRefPubMedPubMedCentral Lu Y, Liu P, Recker RR, Deng HW, Dvornyk V. TNFRSF11A and TNFSF11 are associated with age at menarche and natural menopause in white women. Menopause. 2010;17:1048–54.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Schubert A, Schulz H, Emons G, Grundker C. Expression of osteoprotegerin and receptor activator of nuclear factor-κB ligand (RANKL) in HCC70 breast cancer cells and effects of treatment with gonadotropin-releasing hormone on RANKL expression. Gynecol Endocrinol. 2008;24:331–8.CrossRefPubMed Schubert A, Schulz H, Emons G, Grundker C. Expression of osteoprotegerin and receptor activator of nuclear factor-κB ligand (RANKL) in HCC70 breast cancer cells and effects of treatment with gonadotropin-releasing hormone on RANKL expression. Gynecol Endocrinol. 2008;24:331–8.CrossRefPubMed
31.
Zurück zum Zitat Bord S, Ireland DC, Beavan SR, Compston JE. The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone. 2003;32:136–41.CrossRefPubMed Bord S, Ireland DC, Beavan SR, Compston JE. The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone. 2003;32:136–41.CrossRefPubMed
32.
Zurück zum Zitat Cannon JG, Kraj B, Sloan G. Follicle-stimulating hormone promotes RANK expression on human monocytes. Cytokine. 2011;53:141–4.CrossRefPubMed Cannon JG, Kraj B, Sloan G. Follicle-stimulating hormone promotes RANK expression on human monocytes. Cytokine. 2011;53:141–4.CrossRefPubMed
33.
Zurück zum Zitat Wang YD, Tao MF, Wang L, Cheng WW, Wan XP. Selective regulation of osteoblastic OPG and RANKL by dehydroepiandrosterone through activation of the estrogen receptor β-mediated MAPK signaling pathway. Horm Metab Res. 2012;44:494–500.CrossRefPubMed Wang YD, Tao MF, Wang L, Cheng WW, Wan XP. Selective regulation of osteoblastic OPG and RANKL by dehydroepiandrosterone through activation of the estrogen receptor β-mediated MAPK signaling pathway. Horm Metab Res. 2012;44:494–500.CrossRefPubMed
34.
Zurück zum Zitat Bashir A, Mak YT, Sankaralingam S, Cheung J, McGowan NW, Grigoriadis AE, et al. Changes in RANKL/OPG/RANK gene expression in peripheral mononuclear cells following treatment with estrogen or raloxifene. Steroids. 2005;70:847–55.CrossRefPubMed Bashir A, Mak YT, Sankaralingam S, Cheung J, McGowan NW, Grigoriadis AE, et al. Changes in RANKL/OPG/RANK gene expression in peripheral mononuclear cells following treatment with estrogen or raloxifene. Steroids. 2005;70:847–55.CrossRefPubMed
35.
Zurück zum Zitat Fernandez-Valdivia R, Mukherjee A, Ying Y, Li J, Paquet M, DeMayo FJ, et al. The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol. 2009;328:127–39.CrossRefPubMed Fernandez-Valdivia R, Mukherjee A, Ying Y, Li J, Paquet M, DeMayo FJ, et al. The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol. 2009;328:127–39.CrossRefPubMed
36.
Zurück zum Zitat Kim NS, Kim HJ, Koo BK, Kwon MC, Kim YW, Cho Y, et al. Receptor activator of NF-kappaB ligand regulates the proliferation of mammary epithelial cells via Id2. Mol Cell Biol. 2006;26:1002–13.CrossRefPubMedPubMedCentral Kim NS, Kim HJ, Koo BK, Kwon MC, Kim YW, Cho Y, et al. Receptor activator of NF-kappaB ligand regulates the proliferation of mammary epithelial cells via Id2. Mol Cell Biol. 2006;26:1002–13.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Delahanty RJ, Beeghly-Fadiel A, Long JR, Gao YT, Lu W, Xiang YB, et al. Evaluation of GWAS-identified genetic variants for age at menarche among Chinese women. Hum Reprod. 2013;28:1135–43.CrossRefPubMedPubMedCentral Delahanty RJ, Beeghly-Fadiel A, Long JR, Gao YT, Lu W, Xiang YB, et al. Evaluation of GWAS-identified genetic variants for age at menarche among Chinese women. Hum Reprod. 2013;28:1135–43.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Pyun JA, Kim S, Cho NH, Koh I, Lee JY, Shin C, et al. Genome-wide association studies and epistasis analyses of candidate genes related to age at menarche and age at natural menopause in a Korean population. Menopause. 2014;21:522–9.CrossRefPubMed Pyun JA, Kim S, Cho NH, Koh I, Lee JY, Shin C, et al. Genome-wide association studies and epistasis analyses of candidate genes related to age at menarche and age at natural menopause in a Korean population. Menopause. 2014;21:522–9.CrossRefPubMed
39.
Zurück zum Zitat Stolk L, Perry JR, Chasman DI, He C, Mangino M, Sulem P, et al. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat Genet. 2012;44:260–8.CrossRefPubMedPubMedCentral Stolk L, Perry JR, Chasman DI, He C, Mangino M, Sulem P, et al. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat Genet. 2012;44:260–8.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Voutilainen M, Lindfors PH, Lefebvre S, Ahtiainen L, Fliniaux I, Rysti E, et al. Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-κB. Proc Natl Acad Sci U S A. 2012;109:5744–9.CrossRefPubMedPubMedCentral Voutilainen M, Lindfors PH, Lefebvre S, Ahtiainen L, Fliniaux I, Rysti E, et al. Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-κB. Proc Natl Acad Sci U S A. 2012;109:5744–9.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Pavlová S, Klucska K, Vašíček D, Ryban L, Harrath AH, Alwasel SH, et al. The involvement of SIRT1 and transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function. Anim Reprod Sci. 2013;140:180–8.CrossRefPubMed Pavlová S, Klucska K, Vašíček D, Ryban L, Harrath AH, Alwasel SH, et al. The involvement of SIRT1 and transcription factor NF-κB (p50/p65) in regulation of porcine ovarian cell function. Anim Reprod Sci. 2013;140:180–8.CrossRefPubMed
42.
Zurück zum Zitat Hanada R, Hanada T, Penninger JM. Physiology and pathophysiology of the RANKL/RANK system. Biol Chem. 2010;391:1365–70.CrossRefPubMed Hanada R, Hanada T, Penninger JM. Physiology and pathophysiology of the RANKL/RANK system. Biol Chem. 2010;391:1365–70.CrossRefPubMed
43.
Zurück zum Zitat Must A, Phillips SM, Naumova EN, Blum M, Harris S, Dawson-Hughes B, et al. Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? Am J Epidemiol. 2002;155:672–9.CrossRefPubMed Must A, Phillips SM, Naumova EN, Blum M, Harris S, Dawson-Hughes B, et al. Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? Am J Epidemiol. 2002;155:672–9.CrossRefPubMed
44.
Zurück zum Zitat den Tonkelaar I. Validity and reproducibility of self-reported age at menopause in women participating in the DOM-project. Maturitas. 1997;27:117–23.CrossRef den Tonkelaar I. Validity and reproducibility of self-reported age at menopause in women participating in the DOM-project. Maturitas. 1997;27:117–23.CrossRef
Metadaten
Titel
Gene polymorphisms in RANKL/RANK/OPG pathway are associated with ages at menarche and natural menopause in Chinese women
verfasst von
Peng Duan
Zhi-Ming Wang
Jiang Liu
Li-Na Wang
Zhi Yang
Ping Tu
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
BMC Women's Health / Ausgabe 1/2015
Elektronische ISSN: 1472-6874
DOI
https://doi.org/10.1186/s12905-015-0192-3

Weitere Artikel der Ausgabe 1/2015

BMC Women's Health 1/2015 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.