Skip to main content
Erschienen in: Journal of Hematology & Oncology 1/2019

Open Access 01.12.2019 | Letter to the Editor

Genetic dynamics in untreated CLL patients with either stable or progressive disease: a longitudinal study

verfasst von: Alice Ramassone, Andrea D’Argenio, Angelo Veronese, Alessio Basti, Shimaa Hassan AbdelAziz Soliman, Stefano Volinia, Cristian Bassi, Sara Pagotto, Manuela Ferracin, Laura Lupini, Elena Saccenti, Veronica Balatti, Felice Pepe, Laura Z. Rassenti, Idanna Innocenti, Francesco Autore, Laura Marzetti, Renato Mariani-Costantini, Thomas J. Kipps, Massimo Negrini, Luca Laurenti, Rosa Visone

Erschienen in: Journal of Hematology & Oncology | Ausgabe 1/2019

Abstract

Clonal evolution of chronic lymphocytic leukemia (CLL) often follows chemotherapy and is associated with adverse outcome, but also occurs in untreated patients, in which case its predictive role is debated. We investigated whether the selection and expansion of CLL clone(s) precede an aggressive disease shift. We found that clonal evolution occurs in all CLL patients, irrespective of the clinical outcome, but is faster during disease progression. In particular, changes in the frequency of nucleotide variants (NVs) in specific CLL-related genes may represent an indicator of poor clinical outcome.
Hinweise
Alice Ramassone, Andrea D’Argenio and Angelo Veronese contributed equally to this work.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13045-019-0802-x.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
CLL
Chronic lymphocytic leukemia
CN
Copy number
CNV
Copy number variation
dNV
Dynamic nucleotide variant
FTP
First time point
LogR
Log ratio
LTP
Last time point
NV
Nucleotide variant
PBMC
Peripheral blood mononuclear cell
P-CLL
Progressive chronic lymphocytic leukemia
PS
Paired segment
S-CLL
Stable chronic lymphocytic leukemia
VAF
Variant allele frequency
To the Editor
In chronic lymphocytic leukemia (CLL), the clonal expansion acquired relevance with the NGS era, which allowed its use for clinical monitoring. Research was mainly performed on large CLL cohorts sampled before and after therapy [1] and only a few studies investigated clonal evolution longitudinally in stable versus progressive untreated patients [24]. The key results indicate expansion of specific clones upon therapy and heterogeneity of mutated genes among patients, but the extent to which the genetic dynamics differs between stable and progressive untreated CLLs is still controversial.
To address this point, we used a CLL cohort including untreated sequential samples from patients with either progressive (P-CLL) or stable (S-CLL) disease. Patients’ features are in Additional file 1: Table S1. At each time point, the diagnosis of stable or progressive CLL was established by the clinicians according to the criteria defined during the International Workshop on Chronic Lymphocytic Leukemia [5]. Using genome-wide copy number variation (CNV) analysis, we investigated copy number fluctuations in 11 stable CLLs (S-CLLs) and 15 progressive CLLs (P-CLLs). Data were processed using the Rawcopy package [6], and paired segments were defined for each patient (Additional file 2: Figure S1). Since the percentage of CLL cells (f) in PBMCs was not always known, analyses were performed varying f from 1 to 100%. To define aberrant loci, we used two sets of thresholds on log ratio (LogR) value, depending on f and on copy number (k) in CLL cells (Additional file 2: Figure S2). We did not find significant differences in percentages of aberrant loci between S-CLLs and P-CLLs (Fig. 1a), but the rate of change (or slope), reflecting the rate of aberrant clones evolving over time, was significantly higher in P-CLLs (p ≤ 0.05, Mann-Whitney U test) (Fig. 1b). Thus, S-CLLs and P-CLLs seemed to have the same probability of acquiring or losing clones, but this phenomenon was faster in P-CLLs. The results were validated on 6 S-CLLs and 5 P-CLLs with known percentage of CLL cells in PBMCs (Additional file 2: Figure S3-S4), suggesting that tracking copy number changes does not mandatorily require knowledge of cancer cell percentage.
To identify genetic events associated with faster clonal expansion, we characterized the CLL-specific genetic features of our cohort. Analyses by qPCR of three chromosomal abnormalities of prognostic value, del (11q), tri (12), and del (17p) [7], did not reveal significant differences between S-CLLs and P-CLLs (Additional file 2: Figure S5). Subsequently, we characterized 11 S-CLLs and 17 P-CLLs for point mutations or indels in regions of 27 genes reported as mutated in CLL (Additional file 3: Table S2). We did not register any significant difference between S-CLLs and P-CLLs with regard to frequency and number of nucleotide variants (NVs) (data not shown). Next, we focused only on NVs with variant allele frequencies (VAF) changing more than 20% between longitudinal samples (dynamic NV: dNVs, synonymous or non-synonymous). We detected on average 1.18 and 3.35 dNVs per sample in S-CLLs and P-CLLs, respectively (Additional file 4: Table S3). P-CLLs showed higher gains/increases of dNVs (p = 0.0008, Fisher’s test) (Fig. 2a). Patients with dNV > 1 had shorter treatment-free survival (TFS), considering as starting point the date at first sampling (p = 0.0029) or at diagnosis (p = 0.0004, log rank test) (Fig. 2b and Additional file 2: Figure S6). A dNV > 1 was also associated with poor prognostic factors, including unmutated IGVH and trisomy 12 (p = 0.0461 and p = 0.0407, respectively, Fisher’s test) (Additional file 5: Table S4). Patients with unmutated IGVH showed shorter TFS, supporting the reliability of our cohort (Fig. 2b). Finally, we found that in P-CLLs the average of dNV frequencies was higher in the first sample (p = 0.0074, Mann-Whitney U test), where it was not associated with IGVH mutational status (Fig. 2c). These findings suggest that dNVs could have an exploitable clinical relevance. However, since dNVs include synonymous/non-synonymous mutations and NVs in non-coding regions, we cannot speculate on the molecular role of the targeted genes most frequently mutated, such as ITPKB and NOTCH1 (Fig. 2a). Indeed, these dNVs were only used here to track genetic evolution.
In conclusion, differently from previous studies, we calculated VAFs on PBMCs, demonstrating that this is reliable to track CLL evolution. In fact, an increase of a single VAF over time indicates expansion of the clone carrying that NV, regardless of variation in cancer cell fraction. Overall, our study points to a higher genetic dynamics in P-CLLs and suggests that monitoring VAFs of a specific gene panel in PBMCs from sequential samples of a CLL patient may predict disease progression.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s13045-019-0802-x.

Acknowledgements

We thank Ms. Lia De Amicis for the administrative work. We thank Valerie Matarese for the manuscript editing and Prof. Carlo Maria Croce for providing DNA samples.
The institutional review board of the University of California, San Diego (171884CX), and of the Fondazione Policlinico Agostino Gemelli (P/948/CE/2011) approved the research protocol. Samples were provided upon written informed consent.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Sutton LA, Rosenquist R. Deciphering the molecular landscape in chronic lymphocytic leukemia: time frame of disease evolution. Haematologica. 2015;100(1):7–16.CrossRef Sutton LA, Rosenquist R. Deciphering the molecular landscape in chronic lymphocytic leukemia: time frame of disease evolution. Haematologica. 2015;100(1):7–16.CrossRef
2.
Zurück zum Zitat Hernandez-Sanchez M, Kotaskova J, Rodriguez AE, Radova L, Tamborero D, Abaigar M, et al. CLL cells cumulate genetic aberrations prior to the first therapy even in outwardly inactive disease phase. Leukemia. 2019;33(2):518–58.CrossRef Hernandez-Sanchez M, Kotaskova J, Rodriguez AE, Radova L, Tamborero D, Abaigar M, et al. CLL cells cumulate genetic aberrations prior to the first therapy even in outwardly inactive disease phase. Leukemia. 2019;33(2):518–58.CrossRef
3.
Zurück zum Zitat Leeksma AC, Taylor J, Wu B, Gardner JR, He J, Nahas M, et al. Clonal diversity predicts adverse outcome in chronic lymphocytic leukemia. Leukemia. 2019;33(2):390–402.CrossRef Leeksma AC, Taylor J, Wu B, Gardner JR, He J, Nahas M, et al. Clonal diversity predicts adverse outcome in chronic lymphocytic leukemia. Leukemia. 2019;33(2):390–402.CrossRef
4.
Zurück zum Zitat Rose-Zerilli MJ, Gibson J, Wang J, Tapper W, Davis Z, Parker H, et al. Longitudinal copy number, whole exome and targeted deep sequencing of 'good risk' IGHV-mutated CLL patients with progressive disease. Leukemia. 2016;30(6):1301–10.CrossRef Rose-Zerilli MJ, Gibson J, Wang J, Tapper W, Davis Z, Parker H, et al. Longitudinal copy number, whole exome and targeted deep sequencing of 'good risk' IGHV-mutated CLL patients with progressive disease. Leukemia. 2016;30(6):1301–10.CrossRef
5.
Zurück zum Zitat Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56.CrossRef Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111(12):5446–56.CrossRef
6.
Zurück zum Zitat Mayrhofer M, Viklund B, Isaksson A. Rawcopy: improved copy number analysis with Affymetrix arrays. Sci Rep. 2016;6:36158.CrossRef Mayrhofer M, Viklund B, Isaksson A. Rawcopy: improved copy number analysis with Affymetrix arrays. Sci Rep. 2016;6:36158.CrossRef
7.
Zurück zum Zitat Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.CrossRef Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.CrossRef
Metadaten
Titel
Genetic dynamics in untreated CLL patients with either stable or progressive disease: a longitudinal study
verfasst von
Alice Ramassone
Andrea D’Argenio
Angelo Veronese
Alessio Basti
Shimaa Hassan AbdelAziz Soliman
Stefano Volinia
Cristian Bassi
Sara Pagotto
Manuela Ferracin
Laura Lupini
Elena Saccenti
Veronica Balatti
Felice Pepe
Laura Z. Rassenti
Idanna Innocenti
Francesco Autore
Laura Marzetti
Renato Mariani-Costantini
Thomas J. Kipps
Massimo Negrini
Luca Laurenti
Rosa Visone
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Hematology & Oncology / Ausgabe 1/2019
Elektronische ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-019-0802-x

Weitere Artikel der Ausgabe 1/2019

Journal of Hematology & Oncology 1/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.