Skip to main content
Erschienen in: Diabetologia 5/2016

29.01.2016 | Article

Genetic models rule out a major role of beta cell glycogen in the control of glucose homeostasis

verfasst von: Joan Mir-Coll, Jordi Duran, Felipe Slebe, Mar García-Rocha, Ramon Gomis, Rosa Gasa, Joan J. Guinovart

Erschienen in: Diabetologia | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Glycogen accumulation occurs in beta cells of diabetic patients and has been proposed to partly mediate glucotoxicity-induced beta cell dysfunction. However, the role of glycogen metabolism in beta cell function and its contribution to diabetes pathophysiology remain poorly understood. We investigated the function of beta cell glycogen by studying glucose homeostasis in mice with (1) defective glycogen synthesis in the pancreas; and (2) excessive glycogen accumulation in beta cells.

Methods

Conditional deletion of the Gys1 gene and overexpression of protein targeting to glycogen (PTG) was accomplished by Cre-lox recombination using pancreas-specific Cre lines. Glucose homeostasis was assessed by determining fasting glycaemia, insulinaemia and glucose tolerance. Beta cell mass was determined by morphometry. Glycogen was detected histologically by periodic acid–Schiff's reagent staining. Isolated islets were used for the determination of glycogen and insulin content, insulin secretion, immunoblots and gene expression assays.

Results

Gys1 knockout (Gys1 KO) mice did not exhibit differences in glucose tolerance or basal glycaemia and insulinaemia relative to controls. Insulin secretion and gene expression in isolated islets was also indistinguishable between Gys1 KO and controls. Conversely, despite effective glycogen overaccumulation in islets, mice with PTG overexpression (PTGOE) presented similar glucose tolerance to controls. However, under fasting conditions they exhibited lower glycaemia and higher insulinaemia. Importantly, neither young nor aged PTGOE mice showed differences in beta cell mass relative to age-matched controls. Finally, a high-fat diet did not reveal a beta cell-autonomous phenotype in either model.

Conclusions/interpretation

Glycogen metabolism is not required for the maintenance of beta cell function. Glycogen accumulation in beta cells alone is not sufficient to trigger the dysfunction or loss of these cells, or progression to diabetes.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Carpenter AM, Lazarow A (1967) Effects of hyper- and hypoglycemia on beta cell degranulation and glycogen infiltration in normal, subdiabetic and diabetic rats. Diabetes 16:493–501CrossRefPubMed Carpenter AM, Lazarow A (1967) Effects of hyper- and hypoglycemia on beta cell degranulation and glycogen infiltration in normal, subdiabetic and diabetic rats. Diabetes 16:493–501CrossRefPubMed
2.
Zurück zum Zitat Hellman B, Idahl LA (1969) Presence and mobilization of glycogen in mammalian pancreatic beta cells. Endocrinology 84:1–8CrossRefPubMed Hellman B, Idahl LA (1969) Presence and mobilization of glycogen in mammalian pancreatic beta cells. Endocrinology 84:1–8CrossRefPubMed
3.
Zurück zum Zitat Pederson BA, Schroeder JM, Parker GE et al (2005) Glucose metabolism in mice lacking muscle glycogen synthase. Diabetes 54:3466–3473CrossRefPubMed Pederson BA, Schroeder JM, Parker GE et al (2005) Glucose metabolism in mice lacking muscle glycogen synthase. Diabetes 54:3466–3473CrossRefPubMed
4.
Zurück zum Zitat Malaisse WJ, Sener A, Koser M et al (1977) The stimulus-secretion coupling of glucose-induced insulin release. Insulin release due to glycogenolysis in glucose-deprived islets. Biochem J 164:447–454CrossRefPubMedPubMedCentral Malaisse WJ, Sener A, Koser M et al (1977) The stimulus-secretion coupling of glucose-induced insulin release. Insulin release due to glycogenolysis in glucose-deprived islets. Biochem J 164:447–454CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Weir GC, Laybutt DR, Kaneto H et al (2001) Beta cell adaptation and decompensation during the progression of diabetes. Diabetes 50:S154–S159CrossRefPubMed Weir GC, Laybutt DR, Kaneto H et al (2001) Beta cell adaptation and decompensation during the progression of diabetes. Diabetes 50:S154–S159CrossRefPubMed
6.
Zurück zum Zitat Robertson RP, Harmon J, Tran PO, Poitout V (2014) Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53:S119–S124CrossRef Robertson RP, Harmon J, Tran PO, Poitout V (2014) Beta-cell glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 53:S119–S124CrossRef
7.
Zurück zum Zitat Toreson WE (1951) Glycogen infiltration (so-called hydropic degeneration) in the pancreas in human and experimental diabetes mellitus. Am J Pathol 27:327–347PubMedPubMedCentral Toreson WE (1951) Glycogen infiltration (so-called hydropic degeneration) in the pancreas in human and experimental diabetes mellitus. Am J Pathol 27:327–347PubMedPubMedCentral
8.
Zurück zum Zitat Malaisse WJ, Like AA, Malaisse-Lagae F et al (1968) Insulin secretion in vitro by the pancreas of the sand rat (Psammomys obesus). Diabetes 17:754–759CrossRefPubMed Malaisse WJ, Like AA, Malaisse-Lagae F et al (1968) Insulin secretion in vitro by the pancreas of the sand rat (Psammomys obesus). Diabetes 17:754–759CrossRefPubMed
9.
Zurück zum Zitat Ravelli RBG, Kalicharan RD, Avramut MC et al (2013) Destruction of tissue, cells and organelles in type 1 diabetic rats presented at macromolecular resolution. Sci Rep 3:1804CrossRefPubMedPubMedCentral Ravelli RBG, Kalicharan RD, Avramut MC et al (2013) Destruction of tissue, cells and organelles in type 1 diabetic rats presented at macromolecular resolution. Sci Rep 3:1804CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Graf R, Klessen C (1981) Glycogen in pancreatic islets of steroid diabetic rats. Histochemistry 73:225–232CrossRefPubMed Graf R, Klessen C (1981) Glycogen in pancreatic islets of steroid diabetic rats. Histochemistry 73:225–232CrossRefPubMed
11.
Zurück zum Zitat Sasaki M, Arai T, Usui T, Oki Y (1991) Immunohistochemical, ultrastructural, and hormonal studies on the endocrine pancreas of voles (Microtus arvalis) with monosodium aspartate-induced diabetes. Vet Pathol 28:497–505CrossRefPubMed Sasaki M, Arai T, Usui T, Oki Y (1991) Immunohistochemical, ultrastructural, and hormonal studies on the endocrine pancreas of voles (Microtus arvalis) with monosodium aspartate-induced diabetes. Vet Pathol 28:497–505CrossRefPubMed
12.
Zurück zum Zitat Malaisse WJ, Marynissen G, Sener A (1992) Possible role of glycogen accumulation in B cell glucotoxicity. Metabolism 41:814–819CrossRefPubMed Malaisse WJ, Marynissen G, Sener A (1992) Possible role of glycogen accumulation in B cell glucotoxicity. Metabolism 41:814–819CrossRefPubMed
13.
Zurück zum Zitat Duran J, Gruart A, García-Rocha M et al (2014) Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum Mol Genet 23:3147–3156CrossRefPubMed Duran J, Gruart A, García-Rocha M et al (2014) Glycogen accumulation underlies neurodegeneration and autophagy impairment in Lafora disease. Hum Mol Genet 23:3147–3156CrossRefPubMed
14.
Zurück zum Zitat Duran J, Tevy MF, Garcia-Rocha M et al (2012) Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol Med 4:719–729CrossRefPubMedPubMedCentral Duran J, Tevy MF, Garcia-Rocha M et al (2012) Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol Med 4:719–729CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Printen JA, Brady MJ, Saltiel AR (1997) PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science 275:1475–1478CrossRefPubMed Printen JA, Brady MJ, Saltiel AR (1997) PTG, a protein phosphatase 1-binding protein with a role in glycogen metabolism. Science 275:1475–1478CrossRefPubMed
16.
Zurück zum Zitat Jurczak MJ, Danos AM, Rehrmann VR et al (2007) Transgenic overexpression of protein targeting to glycogen markedly increases adipocytic glycogen storage in mice. Am J Physiol Endocrinol Metab 292:E952–E963CrossRefPubMed Jurczak MJ, Danos AM, Rehrmann VR et al (2007) Transgenic overexpression of protein targeting to glycogen markedly increases adipocytic glycogen storage in mice. Am J Physiol Endocrinol Metab 292:E952–E963CrossRefPubMed
17.
Zurück zum Zitat Villarroel-Espíndola F, Maldonado R, Mancilla H et al (2013) Muscle glycogen synthase isoform is responsible for testicular glycogen synthesis: glycogen overproduction induces apoptosis in male germ cells. J Cell Biochem 114:1653–1664CrossRefPubMed Villarroel-Espíndola F, Maldonado R, Mancilla H et al (2013) Muscle glycogen synthase isoform is responsible for testicular glycogen synthesis: glycogen overproduction induces apoptosis in male germ cells. J Cell Biochem 114:1653–1664CrossRefPubMed
18.
Zurück zum Zitat López-Soldado I, Zafra D, Duran J et al (2015) Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model. Diabetes 64:796–807CrossRefPubMed López-Soldado I, Zafra D, Duran J et al (2015) Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model. Diabetes 64:796–807CrossRefPubMed
19.
Zurück zum Zitat Duran J, Saez I, Gruart A et al (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33:550–556CrossRefPubMedPubMedCentral Duran J, Saez I, Gruart A et al (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33:550–556CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Hingorani SR, Petricoin EF, Maitra A et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450CrossRefPubMed Hingorani SR, Petricoin EF, Maitra A et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450CrossRefPubMed
21.
Zurück zum Zitat Altirriba J, Gasa R, Casas S et al (2010) The role of transmembrane protein 27 (TMEM27) in islet physiology and its potential use as a beta cell mass biomarker. Diabetologia 53:1406–1414CrossRefPubMed Altirriba J, Gasa R, Casas S et al (2010) The role of transmembrane protein 27 (TMEM27) in islet physiology and its potential use as a beta cell mass biomarker. Diabetologia 53:1406–1414CrossRefPubMed
22.
Zurück zum Zitat Fernandez-Ruiz R, Vieira E, Garcia-Roves PM, Gomis R (2014) Protein tyrosine phosphatase-1B modulates pancreatic β-cell mass. PLoS One 9:1–10 Fernandez-Ruiz R, Vieira E, Garcia-Roves PM, Gomis R (2014) Protein tyrosine phosphatase-1B modulates pancreatic β-cell mass. PLoS One 9:1–10
23.
Zurück zum Zitat Cid E, Cifuentes D, Baqué S et al (2005) Determinants of the nucleocytoplasmic shuttling of muscle glycogen synthase. FEBS J 272:3197–3213CrossRefPubMed Cid E, Cifuentes D, Baqué S et al (2005) Determinants of the nucleocytoplasmic shuttling of muscle glycogen synthase. FEBS J 272:3197–3213CrossRefPubMed
24.
Zurück zum Zitat García-Rocha M, Roca A, de la Iglesia N et al (2001) Intracellular distribution of glycogen synthase and glycogen in primary cultured rat hepatocytes. Biochem J 357:17–24CrossRefPubMedPubMedCentral García-Rocha M, Roca A, de la Iglesia N et al (2001) Intracellular distribution of glycogen synthase and glycogen in primary cultured rat hepatocytes. Biochem J 357:17–24CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Chan TM, Exton JH (1976) A rapid method for the determination of glycogen content and radioactivity in small quantities of tissue or isolated hepatocytes. Anal Biochem 71:96–105CrossRefPubMed Chan TM, Exton JH (1976) A rapid method for the determination of glycogen content and radioactivity in small quantities of tissue or isolated hepatocytes. Anal Biochem 71:96–105CrossRefPubMed
26.
Zurück zum Zitat Zhu A, Romero R, Petty HR (2009) An enzymatic fluorimetric assay for glucose-6-phosphate: application in an in vitro Warburg-like effect. Anal Biochem 388:97–101CrossRefPubMedPubMedCentral Zhu A, Romero R, Petty HR (2009) An enzymatic fluorimetric assay for glucose-6-phosphate: application in an in vitro Warburg-like effect. Anal Biochem 388:97–101CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Nishimura M, Yokoi N, Miki T et al (2004) Construction of a multi-functional cDNA library specific for mouse pancreatic islets and its application to microarray. Mol Cell 323:315–323 Nishimura M, Yokoi N, Miki T et al (2004) Construction of a multi-functional cDNA library specific for mouse pancreatic islets and its application to microarray. Mol Cell 323:315–323
28.
Zurück zum Zitat Graf R, Tölken M (1984) Ultrastructural distribution of glycogen in pancreatic islets of steroid diabetic rats. Basic Appl Histochem 28:391–397PubMed Graf R, Tölken M (1984) Ultrastructural distribution of glycogen in pancreatic islets of steroid diabetic rats. Basic Appl Histochem 28:391–397PubMed
29.
Zurück zum Zitat Malaisse WJ, Ladrière L, Cancelas J et al (2001) Pancreatic and hepatic glycogen content in normoglycemic and hyperglycemic rats. Mol Cell Biochem 219:45–49CrossRefPubMed Malaisse WJ, Ladrière L, Cancelas J et al (2001) Pancreatic and hepatic glycogen content in normoglycemic and hyperglycemic rats. Mol Cell Biochem 219:45–49CrossRefPubMed
30.
Zurück zum Zitat Doherty M, Malaisse WJ (2001) Glycogen accumulation in rat pancreatic islets: in vitro experiments. Endocrine 14:303–309CrossRefPubMed Doherty M, Malaisse WJ (2001) Glycogen accumulation in rat pancreatic islets: in vitro experiments. Endocrine 14:303–309CrossRefPubMed
31.
Zurück zum Zitat Berman HK, O’Doherty RM, Anderson P, Newgard CB (1998) Overexpression of protein targeting to glycogen (PTG) in rat hepatocytes causes profound activation of glycogen synthesis independent of normal hormone- and substrate-mediated regulatory mechanisms. J Biol Chem 273:26421–26425CrossRefPubMed Berman HK, O’Doherty RM, Anderson P, Newgard CB (1998) Overexpression of protein targeting to glycogen (PTG) in rat hepatocytes causes profound activation of glycogen synthesis independent of normal hormone- and substrate-mediated regulatory mechanisms. J Biol Chem 273:26421–26425CrossRefPubMed
32.
Zurück zum Zitat Malaisse WJ, Maggetto C, Leclercq-Meyer V, Sener A (1993) Interference of glycogenolysis with glycolysis in pancreatic islets from glucose-infused rats. J Clin Invest 91:432–436CrossRefPubMedPubMedCentral Malaisse WJ, Maggetto C, Leclercq-Meyer V, Sener A (1993) Interference of glycogenolysis with glycolysis in pancreatic islets from glucose-infused rats. J Clin Invest 91:432–436CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Keller C, Steensberg A, Pilegaard H et al (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15:2748–2750PubMed Keller C, Steensberg A, Pilegaard H et al (2001) Transcriptional activation of the IL-6 gene in human contracting skeletal muscle: influence of muscle glycogen content. FASEB J 15:2748–2750PubMed
35.
Zurück zum Zitat Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489CrossRefPubMedPubMedCentral Ellingsgaard H, Hauselmann I, Schuler B et al (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Markan KR, Jurczak MJ, Allison MB et al (2010) Enhanced glycogen metabolism in adipose tissue decreases triglyceride mobilization. Am J Physiol Endocrinol Metab 299:E117–E125CrossRefPubMedPubMedCentral Markan KR, Jurczak MJ, Allison MB et al (2010) Enhanced glycogen metabolism in adipose tissue decreases triglyceride mobilization. Am J Physiol Endocrinol Metab 299:E117–E125CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Saez I, Duran J, Sinadinos C et al (2014) Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J Cereb Blood Flow Metab 34:945–955CrossRefPubMedPubMedCentral Saez I, Duran J, Sinadinos C et al (2014) Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J Cereb Blood Flow Metab 34:945–955CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Green AR, Aiston S, Greenberg CC et al (2004) The glycogenic action of protein targeting to glycogen in hepatocytes involves multiple mechanisms including phosphorylase inactivation and glycogen synthase translocation. J Biol Chem 279:46474–46482CrossRefPubMed Green AR, Aiston S, Greenberg CC et al (2004) The glycogenic action of protein targeting to glycogen in hepatocytes involves multiple mechanisms including phosphorylase inactivation and glycogen synthase translocation. J Biol Chem 279:46474–46482CrossRefPubMed
40.
Zurück zum Zitat Lee JY, Ristow M, Lin X et al (2006) RIP-Cre revisited, evidence for impairments of pancreatic b-cell function. J Biol Chem 281:2649–2653CrossRefPubMed Lee JY, Ristow M, Lin X et al (2006) RIP-Cre revisited, evidence for impairments of pancreatic b-cell function. J Biol Chem 281:2649–2653CrossRefPubMed
Metadaten
Titel
Genetic models rule out a major role of beta cell glycogen in the control of glucose homeostasis
verfasst von
Joan Mir-Coll
Jordi Duran
Felipe Slebe
Mar García-Rocha
Ramon Gomis
Rosa Gasa
Joan J. Guinovart
Publikationsdatum
29.01.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 5/2016
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-3871-1

Weitere Artikel der Ausgabe 5/2016

Diabetologia 5/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.