Skip to main content
Erschienen in: Clinical & Experimental Metastasis 5-6/2018

02.05.2018 | Research Paper

Genetics of metastasis: melanoma and other cancers

verfasst von: Noel Turner, Olivia Ware, Marcus Bosenberg

Erschienen in: Clinical & Experimental Metastasis | Ausgabe 5-6/2018

Einloggen, um Zugang zu erhalten

Abstract

Melanoma is a malignant neoplasm of melanocytes that accounts for the majority of skin cancer deaths despite comprising less than 5% of all cutaneous malignancies. Its incidence has increased faster than that of any other cancer over the past half-century and the annual costs of treatment in the United States alone have risen rapidly. Although the majority of primary melanomas are cured with local excision, metastatic melanoma historically carries a grim prognosis, with a median survival of 9 months and a long-term survival rate of 10%. Given the urgent need to develop treatment strategies for metastatic melanoma and the explosion of genetic technologies over the past 20 years, there has been extensive research into the genetic alterations that cause melanocytes to become malignant. More recently, efforts have focused on the genetic changes that drive melanoma metastasis. This review aims to summarize the current knowledge of the genetics of primary cutaneous and ocular melanoma, the genetic changes associated with metastasis in melanoma and other cancer types, and non-genetic factors that may contribute to metastasis.
Literatur
1.
Zurück zum Zitat Clark WH Jr, Elder DE, Van Horn M (1986) The biologic forms of malignant melanoma. Hum Pathol 17(5):443–450PubMedCrossRef Clark WH Jr, Elder DE, Van Horn M (1986) The biologic forms of malignant melanoma. Hum Pathol 17(5):443–450PubMedCrossRef
2.
Zurück zum Zitat Arrington JH 3rd et al (1977) Plantar lentiginous melanoma: a distinctive variant of human cutaneous malignant melanoma. Am J Surg Pathol 1(2):131–143PubMedCrossRef Arrington JH 3rd et al (1977) Plantar lentiginous melanoma: a distinctive variant of human cutaneous malignant melanoma. Am J Surg Pathol 1(2):131–143PubMedCrossRef
4.
Zurück zum Zitat Vazquez Vde L et al (2016) Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas. Melanoma Res 26(2):93–99PubMedCrossRef Vazquez Vde L et al (2016) Molecular profiling, including TERT promoter mutations, of acral lentiginous melanomas. Melanoma Res 26(2):93–99PubMedCrossRef
5.
Zurück zum Zitat Merkel EA, Gerami P (2017) Malignant melanoma of sun-protected sites: a review of clinical, histological, molecular features. Lab Invest 97(6):630–635PubMedCrossRef Merkel EA, Gerami P (2017) Malignant melanoma of sun-protected sites: a review of clinical, histological, molecular features. Lab Invest 97(6):630–635PubMedCrossRef
6.
Zurück zum Zitat Kim JY et al (2014) Acral lentiginous melanoma: indolent subtype with long radial growth phase. Am J Dermatopathol 36(2):142–147PubMedCrossRef Kim JY et al (2014) Acral lentiginous melanoma: indolent subtype with long radial growth phase. Am J Dermatopathol 36(2):142–147PubMedCrossRef
7.
Zurück zum Zitat Barnhill RL et al (1996) Predicting five-year outcome for patients with cutaneous melanoma in a population-based study. Cancer 78(3):427–432PubMedCrossRef Barnhill RL et al (1996) Predicting five-year outcome for patients with cutaneous melanoma in a population-based study. Cancer 78(3):427–432PubMedCrossRef
8.
Zurück zum Zitat Curtin JA et al (2005) Distinct sets of genetic alterations in melanoma. New Engl J Med 353(20):2135–2147PubMedCrossRef Curtin JA et al (2005) Distinct sets of genetic alterations in melanoma. New Engl J Med 353(20):2135–2147PubMedCrossRef
12.
Zurück zum Zitat Cheng KC et al (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—T and A—C substitutions. J Biol Chem 267(1):166–172CrossRefPubMed Cheng KC et al (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—T and A—C substitutions. J Biol Chem 267(1):166–172CrossRefPubMed
13.
Zurück zum Zitat Network TCGA (2015) Genomic classification of cutaneous melanoma. Cell 161(7):1681–1696CrossRef Network TCGA (2015) Genomic classification of cutaneous melanoma. Cell 161(7):1681–1696CrossRef
14.
15.
Zurück zum Zitat Avruch J et al (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155PubMedCrossRef Avruch J et al (2001) Ras activation of the Raf kinase: tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56:127–155PubMedCrossRef
17.
Zurück zum Zitat Nikolaev SI et al (2011) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 44(2):133–139PubMedCrossRef Nikolaev SI et al (2011) Exome sequencing identifies recurrent somatic MAP2K1 and MAP2K2 mutations in melanoma. Nat Genet 44(2):133–139PubMedCrossRef
18.
Zurück zum Zitat Bauer J et al (2007) Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 127(1):179–182PubMedCrossRef Bauer J et al (2007) Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 127(1):179–182PubMedCrossRef
19.
20.
Zurück zum Zitat Dhomen N et al (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15(4):294–303PubMedCrossRef Dhomen N et al (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15(4):294–303PubMedCrossRef
21.
Zurück zum Zitat Vredeveld LC et al (2012) Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 26(10):1055–1069PubMedPubMedCentralCrossRef Vredeveld LC et al (2012) Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 26(10):1055–1069PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Wu H, Goel V, Haluska FG (2003) PTEN signaling pathways in melanoma. Oncogene 22(20):3113–3122PubMedCrossRef Wu H, Goel V, Haluska FG (2003) PTEN signaling pathways in melanoma. Oncogene 22(20):3113–3122PubMedCrossRef
23.
Zurück zum Zitat Mirmohammadsadegh A et al (2006) Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 66(13):6546–6552PubMedCrossRef Mirmohammadsadegh A et al (2006) Epigenetic silencing of the PTEN gene in melanoma. Cancer Res 66(13):6546–6552PubMedCrossRef
29.
Zurück zum Zitat Bennett DC (2008) How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res 21(1):27–38PubMedCrossRef Bennett DC (2008) How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res 21(1):27–38PubMedCrossRef
31.
Zurück zum Zitat Reddy BY, Miller DM, Tsao H (2017) Somatic driver mutations in melanoma. Cancer 123(S11):2104–2117PubMedCrossRef Reddy BY, Miller DM, Tsao H (2017) Somatic driver mutations in melanoma. Cancer 123(S11):2104–2117PubMedCrossRef
33.
Zurück zum Zitat Horn S et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339(6122):959–961CrossRefPubMed Horn S et al (2013) TERT promoter mutations in familial and sporadic melanoma. Science 339(6122):959–961CrossRefPubMed
34.
Zurück zum Zitat Bell RJ et al (2015) Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348(6238):1036–1039PubMedPubMedCentralCrossRef Bell RJ et al (2015) Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348(6238):1036–1039PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Garraway LA et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122CrossRefPubMed Garraway LA et al (2005) Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 436(7047):117–122CrossRefPubMed
36.
Zurück zum Zitat Hartman ML, Czyz M (2015) MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 72(7):1249–1260PubMedCrossRef Hartman ML, Czyz M (2015) MITF in melanoma: mechanisms behind its expression and activity. Cell Mol Life Sci 72(7):1249–1260PubMedCrossRef
37.
Zurück zum Zitat Chin L, Garraway LA, Fisher DE (2006) Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20(16):2149–2182CrossRefPubMed Chin L, Garraway LA, Fisher DE (2006) Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 20(16):2149–2182CrossRefPubMed
38.
Zurück zum Zitat Prickett TD et al (2014) Somatic mutation of GRIN2A in malignant melanoma results in loss of tumor suppressor activity via aberrant NMDAR complex formation. J Invest Dermatol 134(9):2390–2398PubMedPubMedCentralCrossRef Prickett TD et al (2014) Somatic mutation of GRIN2A in malignant melanoma results in loss of tumor suppressor activity via aberrant NMDAR complex formation. J Invest Dermatol 134(9):2390–2398PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Prickett TD et al (2011) Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nat Genet 43(11):1119–1126PubMedPubMedCentralCrossRef Prickett TD et al (2011) Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nat Genet 43(11):1119–1126PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Neto A, Ceol CJ (2018) Melanoma-associated GRM3 variants dysregulate melanosome trafficking and cAMP signaling. Pigment Cell Melanoma Res 31(1):115–119PubMedCrossRef Neto A, Ceol CJ (2018) Melanoma-associated GRM3 variants dysregulate melanosome trafficking and cAMP signaling. Pigment Cell Melanoma Res 31(1):115–119PubMedCrossRef
41.
Zurück zum Zitat Gembarska A et al (2012) MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 18(8):1239–1247PubMedCrossRef Gembarska A et al (2012) MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 18(8):1239–1247PubMedCrossRef
42.
Zurück zum Zitat Stefansson B, Brautigan DL (2007) Protein phosphatase PP6 N terminal domain restricts G1 to S phase progression in human cancer cells. Cell Cycle 6(11):1386–1392PubMedCrossRef Stefansson B, Brautigan DL (2007) Protein phosphatase PP6 N terminal domain restricts G1 to S phase progression in human cancer cells. Cell Cycle 6(11):1386–1392PubMedCrossRef
43.
45.
Zurück zum Zitat Bastian BC et al (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58(10):2170–2175PubMed Bastian BC et al (1998) Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58(10):2170–2175PubMed
46.
Zurück zum Zitat van den Bosch T et al. (2010) Genetics of uveal melanoma and cutaneous melanoma: two of a kind? Dermatol Res Pract 2010:360136PubMedPubMedCentral van den Bosch T et al. (2010) Genetics of uveal melanoma and cutaneous melanoma: two of a kind? Dermatol Res Pract 2010:360136PubMedPubMedCentral
47.
Zurück zum Zitat James AWM et al (2014) Cytogenetics of melanoma: a review. J Assoc Genet Technol 40(4):209–218 James AWM et al (2014) Cytogenetics of melanoma: a review. J Assoc Genet Technol 40(4):209–218
48.
Zurück zum Zitat Hayward NK et al (2017) Whole-genome landscapes of major melanoma subtypes. Nature 545(7653):175–180PubMedCrossRef Hayward NK et al (2017) Whole-genome landscapes of major melanoma subtypes. Nature 545(7653):175–180PubMedCrossRef
49.
Zurück zum Zitat Bastian BC et al (2000) Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 60(7):1968–1973PubMed Bastian BC et al (2000) Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res 60(7):1968–1973PubMed
50.
Zurück zum Zitat Furney SJ et al (2014) The mutational burden of acral melanoma revealed by whole-genome sequencing and comparative analysis. Pigment Cell Melanoma Res 27(5):835–838PubMedCrossRef Furney SJ et al (2014) The mutational burden of acral melanoma revealed by whole-genome sequencing and comparative analysis. Pigment Cell Melanoma Res 27(5):835–838PubMedCrossRef
51.
Zurück zum Zitat Kong Y et al (2017) Frequent genetic aberrations in the CDK4 pathway in acral melanoma indicate the potential for CDK4/6 inhibitors in targeted therapy. Clin Cancer Res 23(22):6946–6957PubMedCrossRef Kong Y et al (2017) Frequent genetic aberrations in the CDK4 pathway in acral melanoma indicate the potential for CDK4/6 inhibitors in targeted therapy. Clin Cancer Res 23(22):6946–6957PubMedCrossRef
52.
Zurück zum Zitat Curtin JA et al (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24(26):4340–4346PubMedCrossRef Curtin JA et al (2006) Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 24(26):4340–4346PubMedCrossRef
53.
Zurück zum Zitat Woodman SE, Davies MA (2010) Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol 80(5):568–574PubMedPubMedCentralCrossRef Woodman SE, Davies MA (2010) Targeting KIT in melanoma: a paradigm of molecular medicine and targeted therapeutics. Biochem Pharmacol 80(5):568–574PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Dumaz N et al (2015) Driver KIT mutations in melanoma cluster in four hotspots. Melanoma Res 25(1):88–90PubMedCrossRef Dumaz N et al (2015) Driver KIT mutations in melanoma cluster in four hotspots. Melanoma Res 25(1):88–90PubMedCrossRef
55.
Zurück zum Zitat Fukuda R et al (2001) Gastrointestinal stromal tumor with a novel mutation of KIT proto-oncogene. Intern Med 40(4):301–303PubMedCrossRef Fukuda R et al (2001) Gastrointestinal stromal tumor with a novel mutation of KIT proto-oncogene. Intern Med 40(4):301–303PubMedCrossRef
56.
Zurück zum Zitat Dai J et al (2013) Large-scale analysis of PDGFRA mutations in melanomas and evaluation of their sensitivity to tyrosine kinase inhibitors imatinib and crenolanib. Clin Cancer Res 19(24):6935–6942PubMedCrossRef Dai J et al (2013) Large-scale analysis of PDGFRA mutations in melanomas and evaluation of their sensitivity to tyrosine kinase inhibitors imatinib and crenolanib. Clin Cancer Res 19(24):6935–6942PubMedCrossRef
57.
Zurück zum Zitat Board R, Jayson GC (2005) Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist Update 8(1–2):75–83CrossRef Board R, Jayson GC (2005) Platelet-derived growth factor receptor (PDGFR): a target for anticancer therapeutics. Drug Resist Update 8(1–2):75–83CrossRef
58.
Zurück zum Zitat Haass NK, Herlyn M (2005) Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10(2):153–163PubMedCrossRef Haass NK, Herlyn M (2005) Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc 10(2):153–163PubMedCrossRef
59.
Zurück zum Zitat Yan J et al (2018) Analysis of NRAS gain in 657 patients with melanoma and evaluation of its sensitivity to a MEK inhibitor. Eur J Cancer 89:90–101PubMedCrossRef Yan J et al (2018) Analysis of NRAS gain in 657 patients with melanoma and evaluation of its sensitivity to a MEK inhibitor. Eur J Cancer 89:90–101PubMedCrossRef
61.
Zurück zum Zitat Diaz A et al (2014) TERT and AURKA gene copy number gains enhance the detection of acral lentiginous melanomas by fluorescence in situ hybridization. J Mol Diagn 16(2):198–206PubMedCrossRef Diaz A et al (2014) TERT and AURKA gene copy number gains enhance the detection of acral lentiginous melanomas by fluorescence in situ hybridization. J Mol Diagn 16(2):198–206PubMedCrossRef
62.
Zurück zum Zitat Liau JY et al (2014) TERT promoter mutation is uncommon in acral lentiginous melanoma. J Cutan Pathol 41(6):504–508PubMedCrossRef Liau JY et al (2014) TERT promoter mutation is uncommon in acral lentiginous melanoma. J Cutan Pathol 41(6):504–508PubMedCrossRef
63.
Zurück zum Zitat Jovanovic P et al (2013) Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol 6(7):1230–1244PubMedPubMedCentral Jovanovic P et al (2013) Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol 6(7):1230–1244PubMedPubMedCentral
65.
Zurück zum Zitat Griewank KG et al (2013) Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 19(12):3143–3152PubMedCrossRef Griewank KG et al (2013) Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 19(12):3143–3152PubMedCrossRef
66.
Zurück zum Zitat Testa U, Castelli G, Pelosi E (2017) Melanoma: genetic abnormalities, tumor progression, clonal evolution and tumor initiating cells. Med Sci 5(4):28 Testa U, Castelli G, Pelosi E (2017) Melanoma: genetic abnormalities, tumor progression, clonal evolution and tumor initiating cells. Med Sci 5(4):28
67.
Zurück zum Zitat Van Raamsdonk CD et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457(7229):599–602PubMedCrossRef Van Raamsdonk CD et al (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457(7229):599–602PubMedCrossRef
68.
Zurück zum Zitat Van Raamsdonk CD et al (2010) Mutations in GNA11 in uveal melanoma. New Engl J Med 363(23):2191–2199PubMedCrossRef Van Raamsdonk CD et al (2010) Mutations in GNA11 in uveal melanoma. New Engl J Med 363(23):2191–2199PubMedCrossRef
69.
Zurück zum Zitat Feng X et al (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25(6):831–845PubMedPubMedCentralCrossRef Feng X et al (2014) Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 25(6):831–845PubMedPubMedCentralCrossRef
70.
71.
Zurück zum Zitat Mong S et al (1988) Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells. J Pharmacol Exp Ther 244(2):508–515PubMed Mong S et al (1988) Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells. J Pharmacol Exp Ther 244(2):508–515PubMed
72.
Zurück zum Zitat Johansson P et al (2016) Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 7(4):4624–4631CrossRefPubMed Johansson P et al (2016) Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget 7(4):4624–4631CrossRefPubMed
75.
Zurück zum Zitat Ismail IH et al (2014) Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res 74(16):4282–4294CrossRefPubMed Ismail IH et al (2014) Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res 74(16):4282–4294CrossRefPubMed
77.
78.
Zurück zum Zitat Martin M et al (2013) Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 45(8):933–936PubMedPubMedCentralCrossRef Martin M et al (2013) Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat Genet 45(8):933–936PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat van den Bosch T et al (2012) Higher percentage of FISH-determined monosomy 3 and 8q amplification in uveal melanoma cells relate to poor patient prognosis. Invest Ophthalmol Vis Sci 53(6):2668–2674PubMedCrossRef van den Bosch T et al (2012) Higher percentage of FISH-determined monosomy 3 and 8q amplification in uveal melanoma cells relate to poor patient prognosis. Invest Ophthalmol Vis Sci 53(6):2668–2674PubMedCrossRef
80.
Zurück zum Zitat de Snoo FA, Hayward NK (2005) Cutaneous melanoma susceptibility and progression genes. Cancer Lett 230(2):153–186PubMedCrossRef de Snoo FA, Hayward NK (2005) Cutaneous melanoma susceptibility and progression genes. Cancer Lett 230(2):153–186PubMedCrossRef
81.
Zurück zum Zitat Hussussian CJ et al (1994) Germline p16 mutations in familial melanoma. Nat Genet 8(1):15–21PubMedCrossRef Hussussian CJ et al (1994) Germline p16 mutations in familial melanoma. Nat Genet 8(1):15–21PubMedCrossRef
82.
Zurück zum Zitat Zuo L et al (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12(1):97–99CrossRefPubMed Zuo L et al (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12(1):97–99CrossRefPubMed
83.
Zurück zum Zitat Fletcher O et al (2004) Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst 96(5):357–363PubMedCrossRef Fletcher O et al (2004) Lifetime risks of common cancers among retinoblastoma survivors. J Natl Cancer Inst 96(5):357–363PubMedCrossRef
85.
Zurück zum Zitat Lin M et al (2017) Common, germline genetic variations in the novel tumor suppressor BAP1 and risk of developing different types of cancer. Oncotarget 8(43):74936–74946PubMedPubMedCentralCrossRef Lin M et al (2017) Common, germline genetic variations in the novel tumor suppressor BAP1 and risk of developing different types of cancer. Oncotarget 8(43):74936–74946PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Aoude LG et al (2015) Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res 28(2):148–160PubMedCrossRef Aoude LG et al (2015) Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res 28(2):148–160PubMedCrossRef
88.
Zurück zum Zitat Bertolotto C et al (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480(7375):94–98PubMedCrossRef Bertolotto C et al (2011) A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 480(7375):94–98PubMedCrossRef
90.
Zurück zum Zitat Bertolotto C et al (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142(3):827–835PubMedPubMedCentralCrossRef Bertolotto C et al (1998) Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 142(3):827–835PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Vajdic C et al (2003) Ocular melanoma is not associated with CDKN2A or MC1R variants–a population-based study. Melanoma Res 13(4):409–413PubMedCrossRef Vajdic C et al (2003) Ocular melanoma is not associated with CDKN2A or MC1R variants–a population-based study. Melanoma Res 13(4):409–413PubMedCrossRef
93.
Zurück zum Zitat Fidler IJ (2011) The pathogenesis of cancer metastasis: the ‘seed and soil’. hypothesis revisited. Int J Cancer 3:453 Fidler IJ (2011) The pathogenesis of cancer metastasis: the ‘seed and soil’. hypothesis revisited. Int J Cancer 3:453
94.
98.
Zurück zum Zitat Natali PG et al (1993) Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer 68(4):746–750PubMedPubMedCentralCrossRef Natali PG et al (1993) Expression of the c-Met/HGF receptor in human melanocytic neoplasms: demonstration of the relationship to malignant melanoma tumour progression. Br J Cancer 68(4):746–750PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Schmidt H et al (1999) Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosomes Cancer 25(3):205–211PubMedCrossRef Schmidt H et al (1999) Genomic imbalances of 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosomes Cancer 25(3):205–211PubMedCrossRef
100.
Zurück zum Zitat Ubagai T et al (2001) Comparative genomic hybridization analysis suggests a gain of chromosome 7p associated with lymph node metastasis in non-small cell lung cancer. Oncol Rep 8(1):83–88PubMed Ubagai T et al (2001) Comparative genomic hybridization analysis suggests a gain of chromosome 7p associated with lymph node metastasis in non-small cell lung cancer. Oncol Rep 8(1):83–88PubMed
102.
Zurück zum Zitat Kim M et al (2006) Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125(7):1269–1281PubMedCrossRef Kim M et al (2006) Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125(7):1269–1281PubMedCrossRef
103.
Zurück zum Zitat Timar J, Gyorffy B, Raso E (2010) Gene signature of the metastatic potential of cutaneous melanoma: too much for too little? Clin Exp Metastasis 27(6):371–387PubMedCrossRef Timar J, Gyorffy B, Raso E (2010) Gene signature of the metastatic potential of cutaneous melanoma: too much for too little? Clin Exp Metastasis 27(6):371–387PubMedCrossRef
104.
Zurück zum Zitat Rakosy Z et al (2007) EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer 121(8):1729–1737PubMedCrossRef Rakosy Z et al (2007) EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer 121(8):1729–1737PubMedCrossRef
105.
Zurück zum Zitat Udart M et al (2001) Chromosome 7 aneusomy. A marker for metastatic melanoma? Expression of the epidermal growth factor receptor gene and chromosome 7 aneusomy in nevi, primary malignant melanomas and metastases. Neoplasia 3(3):245–254PubMedPubMedCentralCrossRef Udart M et al (2001) Chromosome 7 aneusomy. A marker for metastatic melanoma? Expression of the epidermal growth factor receptor gene and chromosome 7 aneusomy in nevi, primary malignant melanomas and metastases. Neoplasia 3(3):245–254PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Gartner JJ et al (2012) Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genom 13:505CrossRef Gartner JJ et al (2012) Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genom 13:505CrossRef
108.
Zurück zum Zitat Colombino M et al (2012) BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 30(20):2522–2529PubMedCrossRef Colombino M et al (2012) BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol 30(20):2522–2529PubMedCrossRef
109.
Zurück zum Zitat Jakob JA et al (2012) NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118(16):4014–4023PubMedCrossRef Jakob JA et al (2012) NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer 118(16):4014–4023PubMedCrossRef
110.
Zurück zum Zitat Kotani M et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276(37):34631–34636PubMedCrossRef Kotani M et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276(37):34631–34636PubMedCrossRef
111.
Zurück zum Zitat Onken MD et al (2012) Collaborative Ocular Oncology Group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology 119(8):1596–1603PubMedCrossRef Onken MD et al (2012) Collaborative Ocular Oncology Group report number 1: prospective validation of a multi-gene prognostic assay in uveal melanoma. Ophthalmology 119(8):1596–1603PubMedCrossRef
113.
Zurück zum Zitat Bakalian S et al (2008) Molecular pathways mediating liver metastasis in patients with uveal melanoma. Clin Cancer Res 14(4):951–956PubMedCrossRef Bakalian S et al (2008) Molecular pathways mediating liver metastasis in patients with uveal melanoma. Clin Cancer Res 14(4):951–956PubMedCrossRef
115.
Zurück zum Zitat Giampieri S (2009) Localized and reversible TGFβ signaling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11:1287PubMedPubMedCentralCrossRef Giampieri S (2009) Localized and reversible TGFβ signaling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11:1287PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584PubMedCrossRef Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584PubMedCrossRef
118.
Zurück zum Zitat Logothetis CJ (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5(1):21PubMedCrossRef Logothetis CJ (2005) Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer 5(1):21PubMedCrossRef
119.
Zurück zum Zitat Kang Y (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537CrossRefPubMed Kang Y (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537CrossRefPubMed
120.
Zurück zum Zitat Sethi N (2011) Tumor-derived jagged1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192PubMedPubMedCentralCrossRef Sethi N (2011) Tumor-derived jagged1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19(2):192PubMedPubMedCentralCrossRef
122.
125.
Zurück zum Zitat Luo JL (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297PubMedCrossRef Luo JL (2004) Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell 6:297PubMedCrossRef
126.
Zurück zum Zitat Siegel PM (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100(14):8430PubMedCrossRefPubMedCentral Siegel PM (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100(14):8430PubMedCrossRefPubMedCentral
127.
Zurück zum Zitat Davidson B (2004) Altered expression of metastasis-associated and regulatory molecules in effusions from breast cancer patients: a novel model for tumour progression. Clin Cancer Res 10(21):7335PubMedCrossRef Davidson B (2004) Altered expression of metastasis-associated and regulatory molecules in effusions from breast cancer patients: a novel model for tumour progression. Clin Cancer Res 10(21):7335PubMedCrossRef
129.
Zurück zum Zitat Tabariès S (2011) Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 32:1318CrossRef Tabariès S (2011) Claudin-2 is selectively enriched in and promotes the formation of breast cancer liver metastases through engagement of integrin complexes. Oncogene 32:1318CrossRef
130.
Zurück zum Zitat Winquist E (2006) Non-hormonal systemic therapy in men with hormone-refractory prostate cancer and metastases: a systematic review from the Cancer Care Ontario Program in Evidence-based Care’s Genitourinary Cancer Disease Site Group. BMC Cancer 6:112PubMedPubMedCentralCrossRef Winquist E (2006) Non-hormonal systemic therapy in men with hormone-refractory prostate cancer and metastases: a systematic review from the Cancer Care Ontario Program in Evidence-based Care’s Genitourinary Cancer Disease Site Group. BMC Cancer 6:112PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Bubendorf L (2000) Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 31(5):578CrossRefPubMed Bubendorf L (2000) Metastatic patterns of prostate cancer: an autopsy study of 1589 patients. Hum Pathol 31(5):578CrossRefPubMed
132.
Zurück zum Zitat Mimeault M (2011) Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and novel promising multitargeted therapies. Mol Med 17:9CrossRef Mimeault M (2011) Frequent gene products and molecular pathways altered in prostate cancer- and metastasis-initiating cells and their progenies and novel promising multitargeted therapies. Mol Med 17:9CrossRef
133.
Zurück zum Zitat Mimeault M (2006) Functions of normal and malignant prostatic stem/progenitor cells in tissue regeneration and cancer progression and novel targeting therapies. Carcinogenesis 27(1):1PubMedCrossRef Mimeault M (2006) Functions of normal and malignant prostatic stem/progenitor cells in tissue regeneration and cancer progression and novel targeting therapies. Carcinogenesis 27(1):1PubMedCrossRef
135.
136.
Zurück zum Zitat Faltermeier C (2016) Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci USA 113(2):E172PubMedCrossRef Faltermeier C (2016) Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci USA 113(2):E172PubMedCrossRef
137.
Zurück zum Zitat Siegel RL (2015) Cancer statistics. CA: Cancer J Clin 65(1):5 Siegel RL (2015) Cancer statistics. CA: Cancer J Clin 65(1):5
138.
Zurück zum Zitat Nguyen DX (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274PubMedCrossRef Nguyen DX (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274PubMedCrossRef
139.
Zurück zum Zitat Popper HH (2016) Progression and metastasis of lung cancer. Caner Metastasis Rev 35:75CrossRef Popper HH (2016) Progression and metastasis of lung cancer. Caner Metastasis Rev 35:75CrossRef
140.
Zurück zum Zitat Yang J (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927CrossRefPubMed Yang J (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117(7):927CrossRefPubMed
141.
Zurück zum Zitat Xie L (2013) Genome-wide identification of bone metastasis-related microRNAs in lung adenocarcinoma by high-throughput sequencing. PLoS ONE 8(4):e61212PubMedPubMedCentralCrossRef Xie L (2013) Genome-wide identification of bone metastasis-related microRNAs in lung adenocarcinoma by high-throughput sequencing. PLoS ONE 8(4):e61212PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Rao S (2017) RANK requires energy homoeostasis in lung cancer cells and drives primary lung cancer. Genes 31(20):2099CrossRef Rao S (2017) RANK requires energy homoeostasis in lung cancer cells and drives primary lung cancer. Genes 31(20):2099CrossRef
143.
Zurück zum Zitat Vicent S (2008) A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism. Can Res 68(7):2275CrossRef Vicent S (2008) A novel lung cancer signature mediates metastatic bone colonization by a dual mechanism. Can Res 68(7):2275CrossRef
144.
Zurück zum Zitat Preusser M (2014) High rate of FGFR1 amplifications in brain metastases of squamous and non-squamous lung cancer. Lung Cancer 83(1):83PubMedCrossRef Preusser M (2014) High rate of FGFR1 amplifications in brain metastases of squamous and non-squamous lung cancer. Lung Cancer 83(1):83PubMedCrossRef
145.
Zurück zum Zitat Pukrop T (2010) Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58(12):1477PubMedCrossRef Pukrop T (2010) Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way. Glia 58(12):1477PubMedCrossRef
148.
Zurück zum Zitat Cook AD (2005) Surgical resection of primary tumors in patients who present with stage IV colorectal cancer: an analysis of surveillance, epidemiology, and end results data, 1988 to 2000. Ann Sure Oncol 12(8):637CrossRef Cook AD (2005) Surgical resection of primary tumors in patients who present with stage IV colorectal cancer: an analysis of surveillance, epidemiology, and end results data, 1988 to 2000. Ann Sure Oncol 12(8):637CrossRef
150.
Zurück zum Zitat Hansen IO (2012) Possible better long-term survival in left versus right-sided colon cancer: a systematic review. Dan Med J 59(6):A4444PubMed Hansen IO (2012) Possible better long-term survival in left versus right-sided colon cancer: a systematic review. Dan Med J 59(6):A4444PubMed
151.
Zurück zum Zitat Benedix F (2010) Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum 53(1):57CrossRefPubMed Benedix F (2010) Comparison of 17,641 patients with right- and left-sided colon cancer: differences in epidemiology, perioperative course, histology, and survival. Dis Colon Rectum 53(1):57CrossRefPubMed
152.
Zurück zum Zitat Iino H (1994) Molecular genetics for clinical management of colorectal carcinoma. 17p, 18q, and 22q loss of heterozygosity and decreased DCC expression are correlated with the metastatic potential. Cancer 73(5):1324PubMedCrossRef Iino H (1994) Molecular genetics for clinical management of colorectal carcinoma. 17p, 18q, and 22q loss of heterozygosity and decreased DCC expression are correlated with the metastatic potential. Cancer 73(5):1324PubMedCrossRef
153.
Zurück zum Zitat Ookawa K (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. Cancer 53(3):382 Ookawa K (1993) Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. Cancer 53(3):382
154.
Zurück zum Zitat Kemler R (1993) From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9(9):317PubMedCrossRef Kemler R (1993) From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 9(9):317PubMedCrossRef
155.
Zurück zum Zitat Dolled-Filhart M (2006) Quantitative in situ analysis of β-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Can Res 66(10):5487CrossRef Dolled-Filhart M (2006) Quantitative in situ analysis of β-catenin expression in breast cancer shows decreased expression is associated with poor outcome. Can Res 66(10):5487CrossRef
156.
Zurück zum Zitat Chao Y (2014) Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin Exp Metastasis 29(1):39CrossRef Chao Y (2014) Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clin Exp Metastasis 29(1):39CrossRef
157.
Zurück zum Zitat Adams GN (2015) Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Can Res 75(19):4235CrossRef Adams GN (2015) Colon cancer growth and dissemination relies upon thrombin, stromal PAR-1, and fibrinogen. Can Res 75(19):4235CrossRef
158.
Zurück zum Zitat Turajlic S, Swanton C (2016) Metastasis as an evolutionary process. Science 352(6282):169–175PubMedCrossRef Turajlic S, Swanton C (2016) Metastasis as an evolutionary process. Science 352(6282):169–175PubMedCrossRef
159.
Zurück zum Zitat Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability: an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228PubMedCrossRef Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability: an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228PubMedCrossRef
160.
Zurück zum Zitat Brannon AR et al (2014) Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol 15(8):454PubMedPubMedCentralCrossRef Brannon AR et al (2014) Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol 15(8):454PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Martincorena I et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880–886PubMedPubMedCentralCrossRef Martincorena I et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348(6237):880–886PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat Sanborn JZ et al (2015) Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci USA 112(35):10995–11000PubMedCrossRefPubMedCentral Sanborn JZ et al (2015) Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci USA 112(35):10995–11000PubMedCrossRefPubMedCentral
163.
Zurück zum Zitat Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329PubMedPubMedCentralCrossRef Bissell MJ, Hines WC (2011) Why don’t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17(3):320–329PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Park YJ (2011) Genome-wide epigenetic modifications in cancer. Progress Drug Res 67:25–49 Park YJ (2011) Genome-wide epigenetic modifications in cancer. Progress Drug Res 67:25–49
165.
Zurück zum Zitat Metri R et al (2017) Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach. Sci Rep 7(1):17314PubMedPubMedCentralCrossRef Metri R et al (2017) Identification of a gene signature for discriminating metastatic from primary melanoma using a molecular interaction network approach. Sci Rep 7(1):17314PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Shen SS et al (2003) Analysis of protein tyrosine kinase expression in melanocytic lesions by tissue array. J Cutan Pathol 30(9):539–547PubMedCrossRef Shen SS et al (2003) Analysis of protein tyrosine kinase expression in melanocytic lesions by tissue array. J Cutan Pathol 30(9):539–547PubMedCrossRef
167.
Zurück zum Zitat Isabel Zhu Y, Fitzpatrick JE (2006) Expression of c-kit (CD117) in Spitz nevus and malignant melanoma. J Cutan Pathol 33(1):33–37PubMedCrossRef Isabel Zhu Y, Fitzpatrick JE (2006) Expression of c-kit (CD117) in Spitz nevus and malignant melanoma. J Cutan Pathol 33(1):33–37PubMedCrossRef
168.
Zurück zum Zitat Del C Velasco-Herrera M et al (2017) Comparative genomics reveals that loss of lunatic fringe (LFNG) promotes melanoma metastasis. Mol Oncol 12(2):239–255CrossRef Del C Velasco-Herrera M et al (2017) Comparative genomics reveals that loss of lunatic fringe (LFNG) promotes melanoma metastasis. Mol Oncol 12(2):239–255CrossRef
170.
Zurück zum Zitat Boissan M, Lacombe ML (2012) NM23, an example of a metastasis suppressor gene. Bull Cancer 99(4):431–440PubMedCrossRef Boissan M, Lacombe ML (2012) NM23, an example of a metastasis suppressor gene. Bull Cancer 99(4):431–440PubMedCrossRef
171.
Zurück zum Zitat Clark EA et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406(6795):532–535PubMedCrossRef Clark EA et al (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406(6795):532–535PubMedCrossRef
172.
Zurück zum Zitat Li J et al (2011) Prognostic significance of BRMS1 expression in human melanoma and its role in tumor angiogenesis. Oncogene 30(8):896–906PubMedCrossRef Li J et al (2011) Prognostic significance of BRMS1 expression in human melanoma and its role in tumor angiogenesis. Oncogene 30(8):896–906PubMedCrossRef
173.
Zurück zum Zitat Achyut BR (2013) Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling. PLoS Genet 9(2):e1003251PubMedPubMedCentralCrossRef Achyut BR (2013) Inflammation-mediated genetic and epigenetic alterations drive cancer development in the neighboring epithelium upon stromal abrogation of TGF-β signaling. PLoS Genet 9(2):e1003251PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Pogribny IP (2013) DNA methylome alterations in chemical carcinogenesis. Cancer Lett 334(1):39PubMedCrossRef Pogribny IP (2013) DNA methylome alterations in chemical carcinogenesis. Cancer Lett 334(1):39PubMedCrossRef
175.
Zurück zum Zitat Gould CM (2014) Regulation of invadopodia by the tumor microenvironment. Cell Adhes Migr 8(3):226CrossRef Gould CM (2014) Regulation of invadopodia by the tumor microenvironment. Cell Adhes Migr 8(3):226CrossRef
178.
Zurück zum Zitat Spaeth E (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15(10):730PubMedCrossRef Spaeth E (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15(10):730PubMedCrossRef
Metadaten
Titel
Genetics of metastasis: melanoma and other cancers
verfasst von
Noel Turner
Olivia Ware
Marcus Bosenberg
Publikationsdatum
02.05.2018
Verlag
Springer Netherlands
Erschienen in
Clinical & Experimental Metastasis / Ausgabe 5-6/2018
Print ISSN: 0262-0898
Elektronische ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-018-9893-y

Weitere Artikel der Ausgabe 5-6/2018

Clinical & Experimental Metastasis 5-6/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.